1
|
Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Sun X, Zhou B, Cai Z. Determination of the adsorption density of high molecular weight polymers on ultrafine sub-micron particles. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Wang X, Zhang H, He Q, Xing H, Feng K, Guo F, Wang W. Core-shell alginate beads as green reactor to synthesize grafted composite beads to efficiently boost single/co-adsorption of dyes and Pb(II). Int J Biol Macromol 2022; 206:10-20. [PMID: 35218799 DOI: 10.1016/j.ijbiomac.2022.02.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
A series of sodium alginate (SA) grafted polymer composite beads were synthesized by a solution free-radical graft polymerization reaction performed in a surface crosslinked alginate bead reactor. The outer surface of the precursor droplet containing reactants including SA, acrylamide (AM), N,N'-methylene-bis-acrylamide (MBA), ammonium persulfate (APS), sepiolite (SP) and gelatin (GE) was instantly crosslinked with Ca2+ ions to form a capsule-like bead when it was dropped into aqueous solution of calcium chloride, and simultaneously the reactants inside the capsule-like "bead reactor" were polymerized in-situ to form new composite beads with crosslinked network structure, abundant functional groups, single or co-adsorption ability and easily separable advantages. The optimal composite bead shows high adsorption capacity of 390.78, 1425.65 and 533.91 mg/g towards Methylene Blue (MB), Basic Fuchsin (BF) and Pb(II), respectively. After adsorption by the composite bead, 99.71% of MB, 99.99% of BF and 99.97% of Pb(II) were removed from original dye or Pb(II) solutions. Moreover, above 99.22% of BF and 95.33% of Pb(II) was co-removed from their binary mixture (BF concentration, 100 mg/L; Pb(II) concentration, 50 mg/L). This paper provides a simple green way to synthesize efficient and recyclable biopolymer-based adsorbents capable of purifying dyes and heavy metal ions in water.
Collapse
Affiliation(s)
- Xue Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Haifeng Xing
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010010, PR China
| | - Ke Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, PR China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
4
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
5
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
6
|
Zhao C, Hu L, Zhang C, Wang S, Wang X, Huo Z. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117303. [PMID: 34010759 DOI: 10.1016/j.envpol.2021.117303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe3+ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe3+ was soldered on Fe-SA-C matrix as FeO(OH) and Fe2O3. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g-1) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2-7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of -OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of -OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Collapse
Affiliation(s)
- Chenhao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, PR China
| | - Linlin Hu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
7
|
Montoya Rojo Ú, Rossi E, Cerrutti P, Errea MI, Foresti ML. Preparation of water insoluble carboxymethylated bacterial cellulose with maximum lead retention capacity. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ryu S, Naidu G, Moon H, Vigneswaran S. Continuous and selective copper recovery by multi-modified and granulated SBA-15. CHEMOSPHERE 2021; 271:129820. [PMID: 33736221 DOI: 10.1016/j.chemosphere.2021.129820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Continuous and selective recovery of copper (Cu) from heavy metal wastewater not only mitigates the pollution of environment but also can be applied for industrial field. Due to several advantages such as large pore size, easy modification, physical and chemical stabilities, mesoporous silica material, SBA-15, has been synthesized via hydrothermal reaction in this study. For enhancing the adsorption capacity and selectivity for Cu ions, prepared SBA-15 was modified with manganese loading and amine-grafting (MN-SBA) then granulated by alginic-acid (GMN-SBA), successfully. Adsorption capacities for heavy metals such as Cu, Zn, Ni and Mn were 2.11, 1.24, 1.74 and 1.25 mmol/g on MN-SBA and decreased to 1.23, 0.68, 0.86 and 0.65 when it was granulated. Even though the adsorption capacities of GMN-SBA for heavy metals decreased by 40-50%, it enabled easy regeneration and separation process when applied for continuous fixed-bed column adsorption mode. Specifically, the results demonstrated that GMN-SBA was able to be reused for 5 times while maintaining over 80% adsorption capacities. Fixed-bed adsorption results were well explained by dynamic adsorption model incorporated with linear driving force approximation (LDFA) model. The simulation of fixed-bed adsorption tests was proceeded in terms of bed length, feeding concentration and flow rate, and it showed the breakthrough times were shifted in the axis of time. In multi-component adsorption, LDFA model showed a high overshoot phenomenon of the breakthrough curves for Zn, Ni and Mn compared to Cu. This reflected the high affinity of Cu towards GMN-SBA compared to other heavy metals.
Collapse
Affiliation(s)
- SeongChul Ryu
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia
| | - Gayathri Naidu
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia
| | - Hee Moon
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Masoumi H, Ghaemi A, Gilani HG. Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Niu C, Zhang H, Yang B, Sun H. A tough, anti-freezing and conductive nanocomposite interpenetrated organohydrogel mediated by hydrogen bonding. NEW J CHEM 2021. [DOI: 10.1039/d1nj01774h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conductive hydrogels have received extensive attention in the field of stretchable electric materials due to their good flexibility and conductivity.
Collapse
Affiliation(s)
- Chao Niu
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Huijuan Zhang
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Biao Yang
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Hui Sun
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| |
Collapse
|
11
|
A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04761-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Sahiner N, Suner SS, Ayyala RS. Preparation of hyaluronic acid and copolymeric hyaluronic acid: sucrose particles as tunable antibiotic carriers. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02168-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Beaugeard V, Muller J, Graillot A, Ding X, Robin JJ, Monge S. Acidic polymeric sorbents for the removal of metallic pollution in water: A review. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104599] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Wang F, Zhu Y, Wang A. Preparation of Carboxymethyl Cellulose- g- Poly(acrylamide)/Attapulgite Porous Monolith With an Eco-Friendly Pickering-MIPE Template for Ce(III) and Gd(III) Adsorption. Front Chem 2020; 8:398. [PMID: 32528928 PMCID: PMC7262556 DOI: 10.3389/fchem.2020.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their high specific surface and metal-binding functional groups in their crosslinked polymeric networks, monolithic materials incorporating a porous structure have been considered one of the most efficient kinds of adsorbents for rare earth element recovery. Herein, a facile and novel monolithic multi-porous carboxymethyl cellulose-g-poly(acrylamide)/attapulgite was synthesized by free radical polymerization via green vegetable oil-in-water Pickering medium internal phase emulsion (O/W Pickering-MIPEs), which was synergically stabilized by attapulgite and tween-20. The homogenizer rotation speed and time were investigated to form stable Pickering-MIPEs. The effects of different types of oil phase on the formation of Pickering-MIPEs were investigated with stability tests and rheological characterization. The structure and composition of the porous material when prepared with eight kinds of vegetable oil were characterized by FTIR and SEM. The results indicate that the obtained materials, which have abundant interconnected porosity, are comparable to those fabricated with Pickering-HIPE templates. The adsorption experiment demonstrated that the prepared materials have a fast capture rate and high adsorption capacities for Ce(III) and Gd(III), respectively. The saturation adsorption capacities for Ce(III) and Gd(III) are 205.48 and 216.73 mg/g, respectively, which can be reached within 30 min. Moreover, the monolithic materials exhibit excellent regeneration ability and reusability. This work provides a feasible and eco-friendly pathway for the construction of a multi-porous adsorbent for adsorption and separation applications.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
15
|
Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1797-1827. [PMID: 32666937 DOI: 10.2166/wst.2020.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.
Collapse
Affiliation(s)
- Ya-Nan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail:
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
A mechanically strong polyvinyl alcohol/poly(2-(N,N′-dimethyl amino) ethyl methacrylate)-poly (acrylic acid) hydrogel with pH-responsiveness. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04652-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Deepuppha N, Thongsaw A, Rutnakornpituk B, Chaiyasith WC, Rutnakornpituk M. Alginate-based magnetic nanosorbent immobilized with aptamer for selective and high adsorption of Hg 2+ in water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12030-12038. [PMID: 31983002 DOI: 10.1007/s11356-020-07809-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Alginate-coated magnetic nanocluster (MNC) immobilized with Hg2+-specific aptamer was synthesized to obtain the nanosorbent with high adsorption capacity and high selectivity for trace analysis of inorganic mercury (Hg2+) in water samples. Magnetite nanoparticle was first synthesized by a co-precipitation of iron precursors in the presence of alginate to obtain alginate-coated MNC, followed by immobilization with avidin. Hg2+-Specific DNA aptamer labeled with biotin was then conjugated on the MNC surface via specific avidin-biotin interaction to form aptamer-immobilized MNC. Coating the MNC with alginate can improve its water dispersibility and also increase its adsorption capacity toward Hg2+ (350 mg/g). It exhibited high selectivity through thymine-Hg2+-thymine (T-Hg2+-T) interaction with high tolerance to other foreign ions. This nanosorbent showed linearity over the Hg2+ concentration range of 0.2-10 μg/L with a correlation coefficient of 0.9977, limit of detection of 0.46 μg/L, and enrichment factor of 13. Moreover, it also showed a potential for detection of Hg2+ in drinking and tap water samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Nunthiya Deepuppha
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Arnont Thongsaw
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Boonjira Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wipharat Chuachuad Chaiyasith
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
18
|
Wang B, Chi H, Hou Y, Wang S, Feng S, Lv Y, Li Q, Li M. Enhancement of Pb(II) Adsorption and Antibacterial Performances of Sodium Alginate/Acrylic Acid Composite Hydrogel via Snowflake-like ZnO Modification. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bo Wang
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Hongjin Chi
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Yatong Hou
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Shuxue Wang
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Shuangjiang Feng
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Yuanfei Lv
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Qiurong Li
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| | - Menglin Li
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, China
| |
Collapse
|
19
|
Gholamali I. Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00134-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Abdelrahman EA, Abdel-Salam ET, El Rayes SM, Mohamed NS. Facile synthesis of graft copolymers of maltodextrin and chitosan with 2-acrylamido-2-methyl-1-propanesulfonic acid for efficient removal of Ni(II), Fe(III), and Cd(II) ions from aqueous media. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1920-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Nezami S, Sadeghi M. pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02801-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Nematidil N, Sadeghi M. Fabrication and characterization of a novel biosorbent and its evaluation as adsorbent for heavy metal ions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ochi M, Ida J, Matsuyama T, Yamamoto H. Thermoresponsive-interpenetrating polymer network hydrogels for heavy metal ion recovery. J Appl Polym Sci 2018. [DOI: 10.1002/app.46701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masanori Ochi
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering; Soka University, 1-236 Tangi-cho; Hachioji Tokyo 192-8577 Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering; Soka University, 1-236 Tangi-cho; Hachioji Tokyo 192-8577 Japan
| | - Tatsushi Matsuyama
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering; Soka University, 1-236 Tangi-cho; Hachioji Tokyo 192-8577 Japan
| | - Hideo Yamamoto
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering; Soka University, 1-236 Tangi-cho; Hachioji Tokyo 192-8577 Japan
| |
Collapse
|
24
|
El-Halah A, Machado D, González N, Contreras J, López-Carrasquero F. Use of super absorbent hydrogels derivative from acrylamide with itaconic acid and itaconates to remove metal ions from aqueous solutions. J Appl Polym Sci 2018. [DOI: 10.1002/app.46999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amal El-Halah
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias; Universidad de Los Andes; Mérida 5101-A Venezuela
| | - Daniel Machado
- Laboratorio de Investigación en Análisis Químico, Industrial y Agropecuario (LIAQIA), Departamento de Química, Facultad de Ciencias; Universidad de Los Andes; Mérida 5101-A Venezuela
| | - Nain González
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias; Universidad de Los Andes; Mérida 5101-A Venezuela
| | - Jesús Contreras
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias; Universidad de Los Andes; Mérida 5101-A Venezuela
| | - Francisco López-Carrasquero
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias; Universidad de Los Andes; Mérida 5101-A Venezuela
| |
Collapse
|
25
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
26
|
Huang Y, Hu Y, Chen L, Yang T, Huang H, Shi R, Lu P, Zhong C. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf. PLoS One 2018; 13:e0193659. [PMID: 29509801 PMCID: PMC5839565 DOI: 10.1371/journal.pone.0193659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 11/24/2022] Open
Abstract
Low-cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH-dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo-second-order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g-1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves.
Collapse
Affiliation(s)
- Yaoyao Huang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Yang Hu
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| | - Lvcun Chen
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Tao Yang
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| | - Hanfang Huang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Runping Shi
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Peng Lu
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chenghua Zhong
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Yi X, Yang M, Mo L, Xu W, Wang S, He J, Gu J, Ou M, Xu X. Modification of chitosan/calcium alginate/Fe 3O 4 hydrogel microsphere for enhancement of Cu(II) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3922-3932. [PMID: 29177783 DOI: 10.1007/s11356-017-0802-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Copper in drinking water causes a significant environmental problem. Composite material based on alginate hydrogel has been gaining attention in the field of Cu(II) adsorption. However, alginate-based hydrogel exhibits poor mechanical property and relative low adsorption capacity which limit their application. The present study is devoted to the modification of chitosan/calcium alginate/Fe3O4 (CAF) hydrogel microsphere by NaOH solution for enhancement of Cu(II) adsorption. Results reveal that modification of CAF via NaOH solution significantly improves the mechanical strength and Cu2+ adsorption capacity of pristine materials. FTIR and XRD analysis confirms that CAF and newly prepared materials (NACAF) are successfully prepared. SEM and EDX are employed to analyze the surface morphology and elemental composition, respectively, both before and after their loading with Cu2+. XPS study demonstrates adsorption mechanism is based on chelation and ion-exchange. Compressive stress-strain curves demonstrate NACAF has better mechanical performance than CAF. The adsorption kinetics of the two adsorbents follow a pseudo-second-order model. The equilibrium data were best described by Langmuir isotherm model, and the estimated maximum equilibrium sorption capacity, q m,is 261.31 mg/g for the NACAF, which is larger than that of CAF (145.39 mg/g). Hence, NACAF shows excellent mechanical strength and high sorption capacity for Cu2+. It has great potential for Cu(II) removal in aqueous solutions.
Collapse
Affiliation(s)
- Xiaofeng Yi
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Meixia Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Liuda Mo
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenkai Xu
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shuai Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiarui He
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Junjie Gu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Minrui Ou
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
28
|
Shao ZJ, Huang XL, Yang F, Zhao WF, Zhou XZ, Zhao CS. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr Polym 2018; 187:85-93. [PMID: 29486848 DOI: 10.1016/j.carbpol.2018.01.092] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Sodium alginate (SA) beads with ultrahigh adsorption capacity were prepared via hydrogen bonds between SA and 2-acrylamido-2-methylpropa-1-propanesulfonic acid (AMPS), and the AMPS was then post-cross-linked to manufacture SA/PAMPS beads. The equilibrium adsorption capacities of methylene blue (MB) and Pb2+ for the SA/PAMPS10 beads were 2977 and 2042 mg/g, respectively. Although the SA beads exhibited higher equilibrium adsorption capacities of MB and Pb2+ than those of the SA/PAMPS10 beads, the SA/PAMPS10 beads had better mechanical property and higher stability. The pseudo-second-order kinetic model and the Langmuir isotherm described the adsorption processes of the SA/PAMPS10 beads for MB well. In addition, the SA/PAMPS10 beads could be reused with stable adsorption capacity for at least three cycles. The beads also had excellent performances on absorbing methylene violet and other heavy metal ions (Cu2+, Cd2+ and Ni2+). Therefore, the SA-based beads with high adsorption capacity might be good candidates for industrial pollutant treatments.
Collapse
Affiliation(s)
- Zi-Jian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xue-Lian Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin-Zhi Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Preparation of SA-g-(PAA-co-PDMC) polyampholytic superabsorbent polymer and its application to the anionic dye adsorption removal from effluents. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Zhu Y, Zhang H, Wang W, Ye X, Wu Z, Wang A. Fabrication of a magnetic porous hydrogel sphere for efficient enrichment of Rb+ and Cs+ from aqueous solution. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
WANG F, WANG W, ZHU Y, WANG A. Evaluation of Ce(III) and Gd(III) adsorption from aqueous solution using CTS- g -(AA- co -SS)/ISC hybrid hydrogel adsorbent. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60966-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Ni N, Zhang D, Dumont MJ. Synthesis and characterization of zein-based superabsorbent hydrogels and their potential as heavy metal ion chelators. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2017-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Singha NR, Karmakar M, Mahapatra M, Mondal H, Dutta A, Roy C, Chattopadhyay PK. Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(ii): determination of physicochemical changes in loaded hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py00316a] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Superadsorbent hydrogel with excellent physicochemical properties is used for mere/synergic chemisorption of dyes and M(ii).
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Mrinmoy Karmakar
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Manas Mahapatra
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Himarati Mondal
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Arnab Dutta
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Chandan Roy
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology
- Government College of Engineering and Leather Technology (Post-Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| |
Collapse
|
34
|
Khan M, Lo IMC. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. WATER RESEARCH 2016; 106:259-271. [PMID: 27728820 DOI: 10.1016/j.watres.2016.10.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 05/12/2023]
Abstract
Due to the unique physical and chemical characteristics of hydrogels, such as hydrophilicity, swellability, and modifiability, there is increasing research interest in the development and application of novel hydrogels in water and wastewater treatment. Hydrogels have exhibited superior performance in the adsorptive removal of a wide range of aqueous pollutants including heavy metals, nutrients, and toxic dyes. However, there remain certain challenges which need to be addressed in order to evolve hydrogel based treatment systems from the lab-scale to practical applications. This review provides a coverage of the latest developments in the application of hydrogels for the adsorptive removal of aqueous pollutants. A holistic overview of different steps involved in the hydrogel based treatment systems is provided, and the influencing factors and mechanisms of pollutants removal are reviewed. Major challenges pertaining to adsorption kinetics, operational pH range, interference, and hydrogel recovery are examined. Important considerations such as stability and reusability of hydrogels and resource recovery are also discussed, for economic and sustainability concerns.
Collapse
Affiliation(s)
- Musharib Khan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
35
|
Shi Y, Huang Z, Liu X, Imran S, Peng L, Dai R, Deng Y. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6168-6178. [PMID: 26604199 DOI: 10.1007/s11356-015-5778-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.
Collapse
Affiliation(s)
- Yu Shi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Xiujie Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Suheryani Imran
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Licheng Peng
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
36
|
Zhao F, Qin X, Feng S. Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+adsorption properties. RSC Adv 2016. [DOI: 10.1039/c6ra21546g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic diagram of microgel/SA composite spherical granular hydrogel formation.
Collapse
Affiliation(s)
- Fang Zhao
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Xuping Qin
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Shengyu Feng
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
37
|
|
38
|
Ullah F, Othman MBH, Javed F, Ahmad Z, Md Akil H. Classification, processing and application of hydrogels: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:414-33. [PMID: 26354282 DOI: 10.1016/j.msec.2015.07.053] [Citation(s) in RCA: 653] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/23/2015] [Accepted: 07/25/2015] [Indexed: 01/11/2023]
Abstract
This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.
Collapse
Affiliation(s)
- Faheem Ullah
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Muhammad Bisyrul Hafi Othman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fatima Javed
- Department of Chemistry, Quaid-e-Azam University Islamabad, 45320 Islamabad, Pakistan
| | - Zulkifli Ahmad
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
39
|
|
40
|
Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for $$ {{\text{UO}}_{ 2}}^{{ 2 { + }}} $$ UO 2 2 +. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4288-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Li L, Wang Z, Ma P, Bai H, Dong W, Chen M. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0794-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Wang GX, Lu M, Hou ZH, Wu H. Homogeneous Fe-Mediated AGET ATRP of Methyl Methacrylate in PEG-400 in the Presence of Na2CO3. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.996939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
|