1
|
Ankit Y, Ajay K, Nischal S, Kaushal S, Kataria V, Dietze E, Anoop A. Atmospheric deposition of microplastics in an urban conglomerate near to the foothills of Indian Himalayas: Investigating the quantity, chemical character, possible sources and transport mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124629. [PMID: 39074688 DOI: 10.1016/j.envpol.2024.124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The global apprehension regarding the ubiquitous presence of microplastics (MPs) and their associated health risks underscore a significant challenge. However, our understanding on the occurrence and characteristics of this emerging class of pollutants in the different environmental compartments remains limited. For instance, despite housing approximately 20-25% of the global population, the evidence of the atmospheric MPs in Indian Subcontinent is exceedingly rare. Hence, we for the first-time present data on the depositional flux, chemical composition, morphological features of the atmospheric MPs collected from the foothills of Indian Himalayas. The total number of MPs for the collected samples ranged from 65 to 752 particles, with an average of 317 ± 171 particles count. The average flux of atmospheric MPs was 2256 ± 1221 particles/m2/day and varied significantly from 462 particles/m2/day to 5346 particles/m2/day. The highest deposition (5346 particles/m2/day) of atmospheric MPs was recorded during the 3rd week of sampling, coinciding with the Diwali festival. Based on the visual characteristics, we determined that the size of MPs ranged from 67 to 2320 μm, with a predominant presence of smaller particles (<1200 μm), primarily composed of fragments and films/sheets. Raman spectroscopy indicated that the analyzed MPs were mainly composed of 4 different polymer types, including PE (46.8 ± 7.2 %), PP (20.9 ± 7.4 %), PS (15.6 ± 3.8 %) and PET (16.7 ± 9.9 %). We further highlighted the extent to which climate variables control the deposition of atmospheric MPs in this urban conglomerate located in the foothills of Himalayas. Our Lagrangian parcel tracking approach showed that the greater frequencies are of local origin and clustered near to the studied region. We also speculate that atmospheric microplastics can be transported along the westerly winds. Though we did not observe any significant relation (p > 0.05) between meteorological parameters and the quantity of atmospheric MPs.
Collapse
Affiliation(s)
- Yadav Ankit
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India; Physical Geography, University of Göttingen, Germany.
| | - Kumar Ajay
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Sharma Nischal
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Sahil Kaushal
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Vishal Kataria
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| | | | - Ambili Anoop
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| |
Collapse
|
2
|
Tuuri EM, Gascooke JR, Leterme SC. Efficacy of chemical digestion methods to reveal undamaged microplastics from planktonic samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174279. [PMID: 38942303 DOI: 10.1016/j.scitotenv.2024.174279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Standardisation and validation of methods for microplastics research is essential. A major methodological challenge is the removal of planktonic organisms from marine water samples allowing for the identification of microplastics associated to planktonic communities. To improve the reproducibility and accuracy of digestion methods for the removal of planktonic biomass, we compared and modified existing chemical digestion methods. These digestion methods included an acidic digestion using nitric acid, alkaline digestions with potassium hydroxide (alkaline 1 digestion) and sodium hydroxide from drain cleaner (alkaline 2 digestion), an oxidative digestion using sodium dodecyl sulfate with hydrogen peroxide, and an enzymatic digestion using enzyme drain clean pellets. Chemical digestion of three densities of zooplankton communities (high, medium, and low) in the presence of five commonly found environmental microplastic pollutants (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polystyrene) were performed for each treatment. The chemical treatments were assessed for (i) their digestion efficiency of zooplankton communities by different biomass densities, and (ii) their impact on microplastic particles through the comparison of both chemical (Raman spectroscopy) and physical (length, width, and visual) changes, between the pre-treatment and post-treatment microplastic particles. The alkaline 1, alkaline 2 and oxidative methods demonstrated significantly better digestion efficiency (p < 0.05) than the modified enzymatic and acidic treatments. The acidic, alkaline 1, and alkaline 2, treatments caused the most damages to the microplastic particles. We suggest future studies to implement the oxidative digestion method with sodium dodecyl sulfate and hydrogen peroxide because of its high digestion efficiency, and low damage to microplastic particles. This method is similar to the wet peroxide oxidation digestion method used throughout the literature but can be implemented at a lower cost.
Collapse
Affiliation(s)
- Elise M Tuuri
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | - Jason R Gascooke
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sophie C Leterme
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Jacob O, Stefaniak EA, Seghers J, La Spina R, Schirinzi GF, Chatzipanagis K, Held A, Emteborg H, Koeber R, Elsner M, Ivleva NP. Towards a reference material for microplastics' number concentration-case study of PET in water using Raman microspectroscopy. Anal Bioanal Chem 2024; 416:3045-3058. [PMID: 38546794 PMCID: PMC11045626 DOI: 10.1007/s00216-024-05251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Increasing demand for size-resolved identification and quantification of microplastic particles in drinking water and environmental samples requires the adequate validation of methods and techniques that can be used for this purpose. In turn, the feasibility of such validation depends on the existence of suitable certified reference materials (CRM). A new candidate reference material (RM), consisting of polyethylene terephthalate (PET) particles and a water matrix, has been developed. Here, we examine its suitability with respect to a homogeneous and stable microplastic particle number concentration across its individual units. A measurement series employing tailor-made software for automated counting and analysis of particles (TUM-ParticleTyper 2) coupled with Raman microspectroscopy showed evidence of the candidate RM homogeneity with a relative standard deviation of 12% of PET particle counts involving particle sizes >30 µm. Both the total particle count and the respective sums within distinct size classes were comparable in all selected candidate RM units. We demonstrate the feasibility of production of a reference material that is sufficiently homogeneous and stable with respect to the particle number concentration.
Collapse
Affiliation(s)
- Oliver Jacob
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | | | - John Seghers
- Joint Research Centre (JRC), European Commission (EC), Geel, Belgium
| | - Rita La Spina
- Joint Research Centre (JRC), European Commission (EC), Geel, Belgium
| | | | | | - Andrea Held
- Joint Research Centre (JRC), European Commission (EC), Geel, Belgium
| | - Håkan Emteborg
- Joint Research Centre (JRC), European Commission (EC), Geel, Belgium
| | - Robert Koeber
- Joint Research Centre (JRC), European Commission (EC), Geel, Belgium
| | - Martin Elsner
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Natalia P Ivleva
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
4
|
Nicita F, D'Amico C, Filardi V, Spadaro D, Aquilio E, Mancini M, Fiorillo L. Chemical-Physical Characterization of PET-G-Based Material for Orthodontic Use: Preliminary Evaluation of micro-Raman Analysis. Eur J Dent 2024; 18:228-235. [PMID: 37247624 PMCID: PMC10959632 DOI: 10.1055/s-0043-1764424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES Orthodontic treatment with clear thermoplastic aligners is in great demand by patients especially for aesthetics. Any alterations in the chemical composition of the thermoplastic material for aligners, subjected to the oral environment and exposure to various commonly used substances, could influence the desired orthodontic movement decreasing the predictability of the treatment. The objective of this study was to determine the chemical-physical characterization by micro-Raman spectroscopy of a thermoplastic material based on polyethylene terephthalate glycol (PET-G) used for the manufacture of Lineo aligners (Micerium Lab, Avegno, Italy) subjected to different staining beverages and cleaning agents. MATERIALS AND METHODS Twenty-two thermoformed PET-G samples were immersed to various substances of daily use for 10 and 15 days (coffee, tea, Coca-Cola, red wine, colloidal silver disinfectant, nicotine, artificial saliva, cigarette smoke, and different combinations of saliva with some of the previous solutions). Subsequently, the chemical-physical characterization was investigated by micro-Raman spectroscopy. RESULTS The analysis of the spectra acquired for all the specimens showed no difference in the exposure to the different solvents at 10 and 15 days. Furthermore, having ascertained the heterogeneous surface morphology of the PET-G material due to thermoforming, various deposits were present on all the samples whose consistency and concentration depended on the substance used. CONCLUSION The spectroscopic investigations have provided a precise and detailed analysis of the qualitative and structural data of the PET-G material under examination. No significant structural modifications of the thermoplastic polymer were found after immersion in different solutions in the exposure times adopted.
Collapse
Affiliation(s)
- Fabiana Nicita
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Cesare D'Amico
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Vincenzo Filardi
- D.A. Research and Internationalization, University of Messina, Via Consolato del mare 41, Messina, Italy
| | | | | | - Maura Mancini
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
5
|
Rath AP, Krishnan PSG, Kanny K. Studies on (polytrimethylene terephthalate)/graphene oxide/f-MWCNT hybrid nanocomposites. DISCOVER NANO 2024; 19:21. [PMID: 38289389 PMCID: PMC11322493 DOI: 10.1186/s11671-024-03966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
Natural resource-driven approaches to bioengineering plastics are being developed to compete in the automobiles, power, and other sectors. Polytrimethylene terephthalate (PTT) is a particular of them, and it was chosen for the current investigation to build an advanced nanocomposite material. Using a twin-screw micro compounder, injection moulded PTT/Graphene-Oxide (GO)/Carboxyl functionalized Multiwall Carbon nanotube (f-MWCNT) hybrid nanocomposites were prepared. The impact of GO and f-MWCNT reinforcement on the composite's thermal and mechanical characteristics of hybrid nanocomposites was examined. GO was synthesized from the graphite powder by modified Hummer's method and MWCNTs were functionalized using the concentrated sulfuric acid (H2SO4) and nitric acid (HNO3) with a volume ratio of 3:1 in an ultrasonic bath at room temperature. In all formulations, the investigation was done at a constant filler amount of 2 wt%. To understand the chemical interaction between PTT and nanofiller, Raman spectroscopy was used and to examine the state of dispersion, scanning electron microscopy (SEM) was systematically analysed. In comparison to pristine PTT, the water absorption, tensile strength, flexural strength and impact strength of hybrid nanocomposites were improved marginally. It was also observed that GO has more prominent in increasing the mechanical properties of the hybrid and f-MWCNT in thermal properties. The 3-D geometrical bridge between GO (2-D) and f-MWCNT (1-D) made the hybrid more dispersible and effective for different applications.
Collapse
Affiliation(s)
- Abjesh Prasad Rath
- Laboratory for Advanced Research in Polymeric Materials (LARPM), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Patia, Bhubaneswar, 751024, India
- Composites Research Group, Department of Mechanical Engineering, Durban University of Technology, Durban, 4000, South Africa
| | - P Santhana Gopala Krishnan
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Devanahalli, Bengaluru, 562149, India.
- Faculty of Engineering and the Built Environment, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Krishnan Kanny
- Composites Research Group, Department of Mechanical Engineering, Durban University of Technology, Durban, 4000, South Africa
| |
Collapse
|
6
|
Ren L, Liu S, Huang S, Wang Q, Lu Y, Song J, Guo J. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy. Talanta 2023; 260:124611. [PMID: 37163925 DOI: 10.1016/j.talanta.2023.124611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) pose a threat to human and environmental health, and have emerged as a global environmental issue. Because MPs are small and complex, methods of quickly and reliably classifying and identifying them are either lacking or in the early stages of development. In this study, micro-Raman spectroscopy and a convolutional neural network (CNN) were combined to establish identification models for 10 MP references and three environmental samples. In addition, an interaction network was established based on pair-wise correlations of Raman bands to determine the influence of environmental stress on MPs. The CNN model achieved average classification accuracies of 96.43% and 95.6% for the 10 MP references and the three environmental samples, respectively. For MPs exposed to environmental stressors, an interaction network can provide highly sensitive, information-dense, and universally applicable signatures for characterizing the environmental processes affecting MP spectra. The results of this study can help establish efficient and automatic analysis for accurate identification of MPs as well as an intuitive exhibition of spectral changes on environmental exposure.
Collapse
Affiliation(s)
- Lihui Ren
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, China; Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Shuang Liu
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shi Huang
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China
| | - Qi Wang
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuan Lu
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiaojian Song
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Jinjia Guo
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Zhao Y, Wang Z, Chen M, Huang X, Luo Z. Effects of nitrogen to phosphorus ratios on algal growth and arsenate metabolism by Microcystis aeruginosa with dissolved organic phosphorus and nitrate as nutrients. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Stroupe ZD, Strange NA, Daemen LL, Larese JZ. Inelastic Neutron Scattering from Thin Film Biaxially Oriented Polyethylene Terephthalate. J Phys Chem A 2022; 126:7491-7501. [PMID: 36201680 DOI: 10.1021/acs.jpca.2c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent interest in emerging processes for polymer manufacturing and bio-based chemistries for direct chemical recycling/upcycling has motivated new research focused on a deeper understanding of atomic-scale polymer properties and how they influence macroscopic phenomena. Uncovering the fundamental properties of polymers that give rise to macroscopic behavior could enable new pathways for improved recyclability or utilization of alternative "greener" polymer analogues. In this study, the neutron vibrational spectrum was measured for a film of biaxially oriented polyethylene terephthalate (BoPET) using inelastic neutron scattering (INS), to investigate the relationship between the structure and dynamics of a widely used polymer. Compared to conventional spectroscopic techniques, the use of INS is advantageous for polymeric materials due to the absence of selection rules (i.e., all transitions are allowed), broad-band energy range, and considerable sensitivity to hydrogen modes. In order to distinguish the vibrational modes caused by trans and gauche rotational isomerism, the normal modes of vibration were calculated from a density functional theory-optimized structure of crystalline PET (cPET), representative of the all-trans state, and compared with INS from "highly crystalline" PET powder. Although in- and out-of-plane wagging of hydrogens on the ring structure exhibit significant contribution to both BoPET and cPET spectra, the wagging, rocking, and twisting modes of hydrogen on the ethylene glycol group are, in most cases, conformation-specific. These results were further rationalized by investigating the role of hyperconjugation in stabilizing both conformations using the natural bond order method. Through comparison of experimental and calculated INS results, this work provides the fundamental basis for discovering the role of structure and dynamics in shaping the macroscopic properties of PET and polymer analogues.
Collapse
Affiliation(s)
- Zachary D Stroupe
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States.,UT Institute for Advanced Materials & Manufacturing, Knoxville, Tennessee37920, United States
| | - Nicholas A Strange
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - John Z Larese
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States.,UT Institute for Advanced Materials & Manufacturing, Knoxville, Tennessee37920, United States.,Shull-Wollan Center, A Joint Institute for Neutron Sciences, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
9
|
Guo H, Yan J, Jiang L, Deng S, Lin X, Qu L. Femtosecond Laser Bessel Beam Fabrication of a Supercapacitor with a Nanoscale Electrode Gap for High Specific Volumetric Capacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39220-39229. [PMID: 35994368 DOI: 10.1021/acsami.2c10037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supercapacitors are widely used in electronic systems as energy storage devices. The fabrication of a miniaturized supercapacitor with high specific capacitance has attracted much attention in recent years. Here, we propose a new method to fabricate supercapacitors with a nanoscale electrode gap by using a femtosecond laser. The original femtosecond laser was converted to a nondiffraction Bessel light field with nanoscale beam width and microscale focal depth. Nanoscale processing precision was achieved by regulating the Bessel beam. We fabricated graphene supercapacitors with different electrode gap widths (varying from the microscale to the nanoscale) using this method. Supercapacitors fabricated by this method have advantages in both size miniaturization (electrode gap width down to ∼500 nm) and electrochemical performance improvement (a specific volumetric capacitance of 195 F/cm3). This work demonstrates that the femtosecond laser Bessel beam processing method provides a reliable pathway to fabricate miniaturized supercapacitors with high specific capacitance and other nanoscale electronic devices.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lan Jiang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shengfa Deng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinzhu Lin
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Chang YS, Chou SH, Jhang YJ, Wu TS, Lin LX, Soo YL, Hsiao IL. Extraction method development for nanoplastics from oyster and fish tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152675. [PMID: 34968609 DOI: 10.1016/j.scitotenv.2021.152675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Nanoplastics are now found in some environmental media and consumer products. However, very limited data on nanoplastics are available for one of the main human consumption sources of microplastics: seafood. Unlike microplastics, a method for extracting nanoplastics from seafood is still lacking. Herein, a combination of common extraction techniques including enzymatic digestion, sequential membrane filtration, centrifugal concentration, and purification (dialysis and sodium dodecylsulfate (SDS) incubation), was developed to extract nanoplastics from oyster and fish tissues. Corolase with subsequent lipase treatment achieved the highest digestion efficiencies (88- 89%) for non-homogenized tissues compared to other proteases and additional cellulase or H2O2 treatment. With the exception of polyethylene terephthalate (PET), enzymatic digestion did not change the morphology or structure of polyvinyl chloride (PVC), polyethylene (PE), or polystyrene (PS) nanoplastic particles, and the subsequent extraction procedures had good recoveries of 71- 110% for fluorescence-labeled 76-nm PVC and 100- and 750-nm PS, as validated by a Nanoparticle Tracking Analysis (NTA). Few of the 1011 digested residual particles of 150- 300 nm in diameter per oyster or per serving of fish tissue were left in the method blank. Consequently, this efficient approach could be used as a pretreatment protocol for current potential nanoplastic detection methods.
Collapse
Affiliation(s)
- Yu-Shan Chang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 10031, Taiwan
| | - Shih-Hsuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ya-Jhu Jhang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30013, Taiwan
| | - Li-Xin Lin
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University 30013, Taiwan
| | - I-Lun Hsiao
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 10031, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
11
|
Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis. Anal Chim Acta 2022; 1197:339519. [DOI: 10.1016/j.aca.2022.339519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
|
12
|
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 2022; 12:528. [PMID: 35017590 PMCID: PMC8752627 DOI: 10.1038/s41598-021-04489-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microplastics (MPs) are a widely recognized global problem due to their prevalence in natural environments and the food chain. However, the impact of microplastics on human microbiota and their possible biotransformation in the gastrointestinal tract have not been well reported. To evaluate the potential risks of microplastics at the digestive level, completely passing a single dose of polyethylene terephthalate (PET) through the gastrointestinal tract was simulated by combining a harmonized static model and the dynamic gastrointestinal simgi model, which recreates the different regions of the digestive tract in physiological conditions. PET MPs started several biotransformations in the gastrointestinal tract and, at the colon, appeared to be structurally different from the original particles. We report that the feeding with microplastics alters human microbial colonic community composition and hypothesize that some members of the colonic microbiota could adhere to MPs surface promoting the formation of biofilms. The work presented here indicates that microplastics are indeed capable of digestive-level health effects. Considering this evidence and the increasing exposure to microplastics in consumer foods and beverages, the impact of plastics on the functionality of the gut microbiome and their potential biodegradation through digestion and intestinal bacteria merits critical investigation.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Julián J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
- Encapsulae S.L, c/Lituania 10, 12006, Castellón de la Plana, Spain
| | | | - Raquel Portela
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Miguel A Bañares
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Jose F Fernández
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
| | | |
Collapse
|
13
|
Rashid CP, Jyothibabu R, Arunpandi N, Abhijith VT, Josna MP, Vidhya V, Gupta GVM, Ramanamurty MV. Microplastics in zooplankton in the eastern Arabian Sea: The threats they pose to fish and corals favoured by coastal currents. MARINE POLLUTION BULLETIN 2021; 173:113042. [PMID: 34655907 DOI: 10.1016/j.marpolbul.2021.113042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 05/21/2023]
Abstract
The baseline study of Microplastics (MPs) in zooplankton (copepods, chaetognaths, decapods, and fish larvae) from six different zones along India's west coast (off Kanyakumari/Cape Comorin, Kochi, Mangalore, Goa, Mumbai, and Okha) in the Eastern Arabian Sea (EAS) is presented here with their vast ecosystem impacts. This investigation revealed that zooplankton in all six zones accumulated MPs pellets (52.14%), fibres (28.40%), films (10.51%), and fragments (8.95%). The highest average retention of MPs (MPs/individual) was found in fish larvae (av. 0.57 ± 0.18) while copepods had the lowest (av. 0.03 ± 0.01). The presence of low-density polyethylene, polypropylene, polystyrene, and polyethylene terephthalate was confirmed by Raman Spectra of MPs. The MPs in zooplankton found in this study (av. 22 ± 7 pieces/m3) were nearly 2-fold greater than those found in some of the world's most densely populated areas. It is shown that the strong southerly coastal currents could advect the MPs contaminated water mass too far away, having the potential to affect the fish and corals.
Collapse
Affiliation(s)
- C P Rashid
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - R Jyothibabu
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India.
| | - N Arunpandi
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - V T Abhijith
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - M P Josna
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - V Vidhya
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, India
| | - M V Ramanamurty
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, India
| |
Collapse
|
14
|
Xu J, Rong Y, Liu W, Zhang T, Xin G, Huang Y, Wu C. Temperature Field-Assisted Ultraviolet Nanosecond Pulse Laser Processing of Polyethylene Terephthalate (PET) Film. MICROMACHINES 2021; 12:mi12111356. [PMID: 34832768 PMCID: PMC8621989 DOI: 10.3390/mi12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022]
Abstract
Understanding the mechanism of and how to improve the laser processing of polymer films have been important issues since the advent of the procedure. Due to the important role of a photothermal mechanism in the laser ablation of polymer films, especially in transparent polymer films, it is both important and effective to adjust the evolution of heat and temperature in time and space during laser processing by simply adjusting the ambient environment so as to improve and understand the mechanism of this procedure. In this work, studies on the pyrolysis of PET film and on temperature field-assisted ultraviolet nanosecond (UV-ns) pulse laser processing of polyethylene terephthalate (PET) film were performed to investigate the photothermal ablation mechanism and the effects of temperature on laser processing. The results showed that the UV-ns laser processing of PET film was dominated by the photothermal process, in which PET polymer chains decomposed, melted, recomposed and reacted with the ambient gases. The ambient temperature changed the heat transfer and temperature distribution in the laser processing. Low ambient temperature reduced the thermal effect and an increase in ambient temperature improved its efficiency (kerf width: 39.63 μm at −25 °C; 48.30 μm at 0 °C; 45.81 μm at 25 °C; 100.70 μm at 100 °C) but exacerbated the thermal effect.
Collapse
Affiliation(s)
- Jun Xu
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Youmin Rong
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Weinan Liu
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Tian Zhang
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guoqiang Xin
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yu Huang
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Congyi Wu
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; (J.X.); (Y.R.); (W.L.); (T.Z.); (G.X.); (Y.H.)
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Correspondence:
| |
Collapse
|
15
|
Stackhouse CA, Yan S, Wang L, Kisslinger K, Tappero R, Head AR, Tallman KR, Takeuchi ES, Bock DC, Takeuchi KJ, Marschilok AC. Characterization of Materials Used as Face Coverings for Respiratory Protection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47996-48008. [PMID: 34582689 DOI: 10.1021/acsami.1c11200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.
Collapse
Affiliation(s)
- Chavis A Stackhouse
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Killian R Tallman
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Yan S, Stackhouse CA, Waluyo I, Hunt A, Kisslinger K, Head AR, Bock DC, Takeuchi ES, Takeuchi KJ, Wang L, Marschilok AC. Reusing Face Covering Masks: Probing the Impact of Heat Treatment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:13545-13558. [PMID: 35855909 DOI: 10.1021/acssuschemeng.1c04530/suppl_file/sc1c04530_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS).
Collapse
Affiliation(s)
- Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chavis A Stackhouse
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David C Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
17
|
Yan S, Stackhouse CA, Waluyo I, Hunt A, Kisslinger K, Head AR, Bock DC, Takeuchi ES, Takeuchi KJ, Wang L, Marschilok AC. Reusing Face Covering Masks: Probing the Impact of Heat Treatment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:13545-13558. [PMID: 35855909 PMCID: PMC9284677 DOI: 10.1021/acssuschemeng.1c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS).
Collapse
Affiliation(s)
- Shan Yan
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Chavis A. Stackhouse
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Iradwikanari Waluyo
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Ashley R. Head
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - David C. Bock
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Esther S. Takeuchi
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Kenneth J. Takeuchi
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lei Wang
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Amy C. Marschilok
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
18
|
In Vitro Destruction of Pathogenic Bacterial Biofilms by Bactericidal Metallic Nanoparticles via Laser-Induced Forward Transfer. NANOMATERIALS 2020; 10:nano10112259. [PMID: 33203093 PMCID: PMC7697692 DOI: 10.3390/nano10112259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
A novel, successful method of bactericidal treatment of pathogenic bacterial biofilms in vitro by laser-induced forward transfer of metallic nanoparticles from a polyethylene terephthalate polymeric substrate was suggested. Transferred nanoparticles were characterized by scanning and transmission electron microscopy, energy-dispersive X-ray and Raman spectroscopy. The antibacterial modality of the method was tested on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas Aeruginosa) bacterial biofilms in vitro, revealing their complete destruction. The proposed simple, cost-effective and potentially mobile biofilm treatment method demonstrated its high and broad bactericidal efficiency.
Collapse
|
19
|
Poly(ethylene Terephthalate) Carbon-Based Nanocomposites: A Crystallization and Molecular Orientation Study. Polymers (Basel) 2020; 12:polym12112626. [PMID: 33171669 PMCID: PMC7695265 DOI: 10.3390/polym12112626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Hybrid polymeric materials incorporating carbon nanostructures or inorganic constituents stand as a promising class of materials exhibiting distinct but also complementary features. Carbon nanotubes have been proposed as unique candidates for polymer reinforcement; however, sustained efforts are further needed in order to make full use of their potential. The final properties of the reinforced polymer are controlled in part by the morphology and the eventual molecular orientation of the polymer matrix. In the present study, multiwall carbon nanotubes (MWCNTs) were utilized in order to reinforce polyethylene terephthalate (PET) composites. The effect of CNTs on the crystallization and the orientation of the structurally hybridized polymeric material has been investigated from the perspective of assessing their impact on the final properties of a relevant nanocomposite product. Functionalized MWCNTs were used to achieve their optimal dispersion in the polymer matrix. The physical properties of the composites (i.e., crystallinity and orientation) were characterized via differential scanning calorimetry, X-ray diffraction, and polarized Raman microscopy. The addition of well-dispersed CNTs acted as a nucleation agent, increasing the crystallization of the polyethylene terephthalate matrix and differentiating the orientation of both CNTs and macromolecular chains.
Collapse
|
20
|
Hager E, Farber C, Kurouski D. Forensic identification of urine on cotton and polyester fabric with a hand-held Raman spectrometer. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Todros S, Pavan PG, Pachera P, Pace G, Di Noto V, Natali AN. Interplay between physicochemical and mechanical properties of poly(ethylene terephthalate) meshes for hernia repair. J Appl Polym Sci 2017. [DOI: 10.1002/app.46014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Silvia Todros
- Department of Industrial Engineering; Centre for Mechanics of Biological Materials, University of Padova; Via Venezia 1, Padova PD 35131 Italy
| | - Piero Giovanni Pavan
- Department of Industrial Engineering; Centre for Mechanics of Biological Materials, University of Padova; Via Venezia 1, Padova PD 35131 Italy
| | - Paola Pachera
- Department of Industrial Engineering; Centre for Mechanics of Biological Materials, University of Padova; Via Venezia 1, Padova PD 35131 Italy
| | | | - Vito Di Noto
- Section of Chemistry for Technology, Department of Industrial Engineering; University of Padua; Via Marzolo 1, Padova PD 35131 Italy
| | - Arturo Nicola Natali
- Department of Industrial Engineering; Centre for Mechanics of Biological Materials, University of Padova; Via Venezia 1, Padova PD 35131 Italy
| |
Collapse
|
22
|
Lazri H, Ogam E, Amar B, Fellah ZEA, Oduor AO, Baki P. Identification of the mechanical moduli of flexible thermoplastic thin films using reflected ultrasonic waves: Inverse problem. ULTRASONICS 2017; 81:10-22. [PMID: 28570856 DOI: 10.1016/j.ultras.2017.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
A method for the identification of the mechanical moduli and density of flexible, supple thermoplastic thin films placed on elastic substrates using ultrasonic waves has been developed. The composite medium immersed in a fluid host medium (water) was excited using a 50MHz transducer operating at normal incidence in reflection mode. Inverse problems involving experimental data pertaining to elastic wave propagation in the thin films on their substrates and theoretical fluid-solid interaction models for stratified media using elasticity theory were solved. Two configurations having different interface boundary conditions (BC) were modeled, transverse slip for the sliding contact interface in the case where the thin films were placed on the substrate without bonding; a bonded interface condition. The inverse problem for the recovery of the mechanical parameters were solved for the thin films under the bonded and slip BCs. Substrates made of different elastic materials having different geometries were also evaluated and their advantages discussed.
Collapse
Affiliation(s)
- Hacene Lazri
- Laboratoire d'Elaboration et d' Analyse des Matériaux, Université BADJI Mokhtar Annaba, Algeria
| | - Erick Ogam
- Laboratoire de Mécanique et d'Acoustique, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13453 Marseille Cedex 13, France.
| | - Boudour Amar
- Laboratoire de Mécanique et d'Acoustique, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13453 Marseille Cedex 13, France
| | - Z E A Fellah
- Laboratoire de Mécanique et d'Acoustique, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13453 Marseille Cedex 13, France
| | - Andrew O Oduor
- Maseno University, Department of Physics and Material Sciences, Maseno, Kenya
| | - Paul Baki
- Technical University of Kenya, Faculty of Applied Science and Technology, Haile Selassie Ave, Nairobi, Kenya
| |
Collapse
|
23
|
Razavi-Nouri M, Sabet A, Tayefi M. Effect of dynamic curing time on thermal, mechanical and rheological behavior of organoclay-containing nanocomposite based on ethylene-octene copolymer. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1262-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Karaca E, Omeroglu S, Akcam O. Investigation of the effects of perlite additive on some comfort and acoustical properties of polyester fabrics. J Appl Polym Sci 2016. [DOI: 10.1002/app.43128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Esra Karaca
- Department of Textile Engineering; Uludag University; 16059 Gorukle Bursa Turkey
| | - Sunay Omeroglu
- Department of Textile Engineering; Uludag University; 16059 Gorukle Bursa Turkey
| | - Okan Akcam
- Department of Textile Engineering; Uludag University; 16059 Gorukle Bursa Turkey
| |
Collapse
|