1
|
Jeong JJ, Kim JH, Lee JS. Efficient Isolation of Cellulose Nanocrystals from Seaweed Waste via a Radiation Process and Their Conversion to Porous Nanocarbon for Energy Storage System. Molecules 2024; 29:4844. [PMID: 39459212 PMCID: PMC11510201 DOI: 10.3390/molecules29204844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
This article presents an efficient method for isolating cellulose nanocrystals (CNcs) from seaweed waste using a combination of electron beam (E-beam) irradiation and acid hydrolysis. This approach not only reduces the chemical consumption and processing time, but also improves the crystallinity and yield of the CNcs. The isolated CNcs were then thermally annealed at 800 and 1000 °C to produce porous nanocarbon materials, which were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy to assess their structural and chemical properties. Electrochemical testing of electrical double-layer capacitors demonstrated that nanocarbon materials derived from seaweed waste-derived CNcs annealed at 1000 exhibited superior capacitance and stability. This performance is attributed to the formation of a highly ordered graphitic structure with a mesoporous architecture, which facilitates efficient ion transport and enhanced electrolyte accessibility. These findings underscore the potential of seaweed waste-derived nanocarbon as a sustainable and high-performance material for energy storage applications, offering a promising alternative to conventional carbon sources.
Collapse
Affiliation(s)
| | | | - Jung-Soo Lee
- Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Ahmed MS, Islam M, Hasan MK, Nam KW. A Comprehensive Review of Radiation-Induced Hydrogels: Synthesis, Properties, and Multidimensional Applications. Gels 2024; 10:381. [PMID: 38920928 PMCID: PMC11203285 DOI: 10.3390/gels10060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Md. Kamrul Hasan
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| |
Collapse
|
3
|
Ko B, Jeon N, Kim J, Kang H, Seong J, Yun S, Badloe T, Rho J. Hydrogels for active photonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:1. [PMID: 38169527 PMCID: PMC10757998 DOI: 10.1038/s41378-023-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| |
Collapse
|
4
|
Park HW, Jang NG, Seo HS, Kwon K, Shin S. Facile Synthesis of Self-Adhesion and Ion-Conducting 2-Acrylamido-2-Methylpropane Sulfonic Acid/Tannic Acid Hydrogels Using Electron Beam Irradiation. Polymers (Basel) 2023; 15:3836. [PMID: 37765690 PMCID: PMC10538098 DOI: 10.3390/polym15183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation. Peel strength of the AMPS hydrogel increased proportionally with TA, but cohesive failure and substrate residue occurred above 1.25 phm (parts per 100 g of AMPS) TA. Tensile strength peaked at 0.25 phm TA but decreased below the control value at 1.25 phm. Tensile elongation exceeded 2000% with TA addition. Peel strength varied significantly with substrate type. The wood substrate had the highest peel strength value of 150 N/m, while pork skin had a low value of 11.5 N/m. However, the addition of TA increased the peel strength by over 300%. The ionic conductivity of the AMPS/TA hydrogel increased from 0.9 S/m to 1.52 S/m with TA content, while the swelling ratio decreased by 50% upon TA addition and increased slightly thereafter.
Collapse
Affiliation(s)
- Hee-Woong Park
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Nam-Gyu Jang
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
- Department of Convergence Manufacturing System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyun-Su Seo
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Kiok Kwon
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
- Department of Convergence Manufacturing System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Leng F, Li T, Li T, Xie C, Jiang X. Electron beam irradiation modified carboxymethyl chitin microsphere-based hemostatic materials with strong blood cell adsorption for hemorrhage control. Biomater Sci 2023; 11:5908-5917. [PMID: 37458611 DOI: 10.1039/d3bm00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Timely control of coagulopathy bleeding can effectively reduce the probability of wound infection and mortality. However, it is still a challenge for microsphere hemostatic agents to achieve timely control of coagulopathy bleeding. In this work, the CCM-g-AA@DA hemostatic agent based on carboxymethyl chitin microspheres, CCM, was synthesized using electron beam irradiation-induced grafting polymerization of acrylic acid and coupling with dopamine. Irradiation grafting endowed the microspheres with excellent adsorption performance and a rough surface. The microspheres showed a strong affinity to blood cells, especially red blood cells. The maximum adsorption of red blood cells is up to approximately 100 times that of the original microspheres, the CCM. The introduction of dopamine increased the tissue adhesion of the microspheres. At the same time, the microspheres still possessed good blood compatibility and biodegradability. Furthermore, the CCM-g-AA@DA with Fe3+ achieved powerful procoagulant effects in the rat anticoagulant bleeding model. The bleeding time and blood loss were both reduced by about 90% compared with the blank group, which was superior to that of the commercially available collagen hemostatic agent Avitene™. In summary, the CCM-g-AA@DA hemostatic agent shows promising potential for bleeding control in individuals with coagulation disorders.
Collapse
Affiliation(s)
- Fan Leng
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Taotao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tongfei Li
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Research and Development Center, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Pizzicato B, Pacifico S, Cayuela D, Mijas G, Riba-Moliner M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023; 28:5954. [PMID: 37630206 PMCID: PMC10458907 DOI: 10.3390/molecules28165954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable alternatives to synthetic ones. This review discusses the topic of natural dyes, providing a description of their main features and differences compared to synthetic dyes, and encompasses a summary of recent research in the field of natural dyes with specific reference to the following areas of sustainable innovation: extraction techniques, the preparation of substrates, the mordanting process, and the dyeing process. The literature review showed that promising new technologies and techniques have been successfully employed to improve the performance and sustainability of natural dyeing processes, but several limitations such as the poor fastness properties of natural dyes, their low affinity with textiles substrates, difficulties in the reproducibility of shades, as well as other factors such as cost-effectiveness considerations, still prevent industry from adopting natural dyes on a larger scale and will require further research in order to expand their use beyond niche applications.
Collapse
Affiliation(s)
- Barbara Pizzicato
- Dipartimento di Ingegneria, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy;
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, Via Antonio Vivaldi 43, 81100 Caserta, Italy;
| | - Diana Cayuela
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| | - Gabriela Mijas
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| | - Marta Riba-Moliner
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| |
Collapse
|
7
|
Shen H, Yan M, Liu Y, Liu X, Ge X, Muratkhan M, Ospankulova G, Zhang G, Li W. Multiscale structure-property relationships of oxidized wheat starch prepared assisted with electron beam irradiation. Int J Biol Macromol 2023; 235:123908. [PMID: 36870652 DOI: 10.1016/j.ijbiomac.2023.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.
Collapse
Affiliation(s)
- Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengting Yan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yili Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Guoquan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Abou Elmaaty T, Sofan M, Ayad S, Negm E, Elsisi H. Novel synthesis of reactive disperse dyes for dyeing and antibacterial finishing of cotton fabric under scCO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|