1
|
Yu M, Liu Q, Rao Y, Wang H, Liu P, Li X, Zhang Y, Fang S. High energy electron beam irradiation on the electrolyte enables fast-charging of lithium metal batteries with long-term cycling stability. Phys Chem Chem Phys 2025. [PMID: 40035751 DOI: 10.1039/d5cp00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Electron beam (E-beam) irradiation serves as a pivotal tool within the realms of materials science, nanotechnology, and microelectronics. Its application is instrumental in altering the physical and chemical properties of materials, thereby enabling the exploration of material characteristics and fostering the advent of novel technological advancements. In this study, we irradiated the commercially available carbonate-based electrolyte LB-085 using a 10 MeV electron beam to examine the effects of electron beam (E-beam) irradiation on the electrolyte of lithium-metal batteries and explore the quantitative relationship between the absorbed radiation dose and battery's electrochemical performance. The applied absorbed radiation doses were 10, 25, and 50 kGy. Among these, the electrolyte irradiated with an absorbed radiation dose of 50 kGy effectively mitigated interfacial side reactions that occurred during the cycles of an electrode, securing a stable solid-state electrolyte interphase (SEI), which was characterized by a high ionic conductivity. This, in turn, facilitated rapid charging performance of the battery. The lithium metal full-cell assembled with LiNi0.91Co0.06Mn0.03O2 (NCM91) demonstrated superior capacity retention, exceeding 80% after 450 cycles at 4C rate (1C = 220 mA g-1, with charge times under 15 min) and also exceeding 80% after 600 cycles at 6C rate with an absorbed radiation dose of 50 kGy on the electrolyte. Thus, this research provides fresh perspectives for electrolyte optimization, focusing on enhancing the rapid charging performance of batteries.
Collapse
Affiliation(s)
- Miaomiao Yu
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Qiaoan Liu
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yuxin Rao
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Huasong Wang
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Pengfei Liu
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xue Li
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yan Zhang
- Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang, 330013, China.
| | - Shan Fang
- School of Physics and Materials Sciencel, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
2
|
Perera R, Pillai SD, Alrubaye A, Jesudhasan P. Leveraging Electron Beam (eBeam) Technology for Advancing the Development of Inactivated Vaccines. Vaccines (Basel) 2025; 13:179. [PMID: 40006726 PMCID: PMC11861765 DOI: 10.3390/vaccines13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This review provides an overview of electron beam (eBeam) technology and its applications across a wide variety of disciplines. More importantly, it discusses this technology's advantages and its benefits in developing inactivated vaccines. eBeam technology is currently being used all around the world for a variety of industrial applications, extending from food pasteurization to the cross-linking of polymers in the wire and cable industries. It is a successful emerging alternative for developing vaccines against bacterial, protozoan, and viral pathogens. This review includes a descriptive account of the mechanism of action of eBeam and how this technology achieves the complete inactivation of pathogens while retaining the integrity of their surface epitopes. This unique advantage is crucial for the production of efficacious vaccines. This review provides a detailed account of the usage of eBeam technology for developing vaccines to protect a multitude of hosts against a wide range of pathogens. eBeam-inactivated vaccines are advantageous over live vaccines, RNA/subunit vaccines, and chemically inactivated vaccines mainly due to the complete inactivation of pathogens, and the presence of intact, highly antigenic epitopes. To conclude, this article descriptively highlights eBeam technology's advantages over other means of vaccine development.
Collapse
Affiliation(s)
- Ruvindu Perera
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Suresh D. Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX 77840, USA;
| | - Adnan Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Palmy Jesudhasan
- Poultry Production and Product Safety Research Unit, USDA-ARS, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Melone L. The Role of the Functionalization of Biomedical Fabrics on Their Ability to Adsorb and Release Drugs. Molecules 2025; 30:552. [PMID: 39942656 PMCID: PMC11819996 DOI: 10.3390/molecules30030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Biomedical cotton gauzes (C0), after a first functionalization with glycidyl methacrylate (GMA) by a Fenton's reaction (material C1), can be further modified in order to make them suitable for the adsorption and next release of drugs. Indeed, either after opening the epoxide ring through the addition of water (material C2) or after the introduction of amino groups through reaction with diamines (1,2-diaminoethane (material C3), 1,6-diaminohexane (material C4) and 1,12-diaminododecane (material C5)), the new gauzes can be uploaded with drugs. Both ibuprofen (IB), a non-steroidal anti-inflammatory, and amoxicillin (AM), a wide-spectrum β-lactam antibiotic, are efficiently adsorbed from their aqueous solutions at 20 °C onto C2-C5 (up to ≈0.8 mmol g-1 for IB and up to 0.4 mmol g-1 for AM) but not onto C0 and C1. The release of both IB and AM is affected by the ionic strength of the medium in which the release takes place. Indeed, kinetic experiments conducted with a physiological solution (NaCl (aq, 0.9% w/v) showed good release efficiencies while only modest or negligible release was observed if deionised water was the release medium. Moreover, the kind of functionalization plays an important role during both the adsorption and the release. The gauzes C3-C5 can be uploaded with a higher amount of drug relative to C2. Conversely, the drug is released quickly and in a higher amount from C2 relative to the gauzes containing the amino groups.
Collapse
Affiliation(s)
- Lucio Melone
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; or
- Department of Theoretical and Applied Sciences, eCampus University, Via Isimbardi 10, 22060 Novedrate, Italy
| |
Collapse
|
4
|
Huang S, Yue C, Uvdal K, Hu Z. Recent advances in irradiation-mediated synthesis and tailoring of inorganic nanomaterials for photo-/electrocatalysis. NANOSCALE ADVANCES 2025; 7:384-418. [PMID: 39610792 PMCID: PMC11601122 DOI: 10.1039/d4na00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Photo-/electrocatalysis serves as a cornerstone in addressing global energy shortages and environmental pollution, where the development of efficient and stable catalysts is essential yet challenging. Despite extensive efforts, it's still a formidable task to develop catalysts with excellent catalytic behaviours, stability, and low cost. Because of its high precision, favorable controllability and repeatability, radiation technology has emerged as a potent and versatile strategy for the synthesis and modification of nanomaterials. Through meticulous control of irradiation parameters, including energy, fluence and ion species, various inorganic photo-/electrocatalysts can be effectively synthesized with tailored properties. It also enables the efficient adjustment of physicochemical characteristics, such as heteroatom-doping, defect generation, heterostructure construction, micro/nanostructure control, and so on, all of which are beneficial for lowering reaction energy barriers and enhancing energy conversion efficiency. This review comprehensively outlines the principles governing radiation effects on inorganic catalysts, followed by an in-depth discussion of recent advancements in irradiation-enhanced catalysts for various photo-/electrocatalytic applications, such as hydrogen and oxygen evolution reactions, oxygen reduction reactions, and photocatalytic applications. Furthermore, the challenges associated with ionizing and non-ionizing radiation are discussed and potential avenues for future development are outlined. By summarizing and articulating these innovative strategies, we aim to inspire further development of sustainable energy and environmental solutions to drive a greener future.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Can Yue
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| |
Collapse
|
5
|
Chae W, Earmme T. Polymerizable Ionic Liquid-Based Gel Polymer Electrolytes Enabled by High-Energy Electron Beam for High-Performance Lithium-Ion Batteries. Gels 2024; 10:798. [PMID: 39727556 DOI: 10.3390/gels10120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm-1 at 25 °C), a lithium transference number of 0.62, and an electrochemical stability exceeding 5 V. E-beam irradiation enabled rapid polymer network formation within a metal-cased battery structure, eliminating the need for initiators and improving the process efficiency. In the NCM811/PIL-GPE/Li cells, PIL-GPE (8:2) delivered an initial discharge capacity of 198.8 mAh g-1 with 82% retention at 100 cycles, demonstrating enhanced thermal stability and cycling performance compared to traditional GPEs. The demonstrated PIL-GPEs demonstrate strong potential for high-stability, high-performance LIB applications.
Collapse
Affiliation(s)
- Wookil Chae
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
6
|
Jeong JJ, Kim JH, Lee JS. Efficient Isolation of Cellulose Nanocrystals from Seaweed Waste via a Radiation Process and Their Conversion to Porous Nanocarbon for Energy Storage System. Molecules 2024; 29:4844. [PMID: 39459212 PMCID: PMC11510201 DOI: 10.3390/molecules29204844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
This article presents an efficient method for isolating cellulose nanocrystals (CNcs) from seaweed waste using a combination of electron beam (E-beam) irradiation and acid hydrolysis. This approach not only reduces the chemical consumption and processing time, but also improves the crystallinity and yield of the CNcs. The isolated CNcs were then thermally annealed at 800 and 1000 °C to produce porous nanocarbon materials, which were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy to assess their structural and chemical properties. Electrochemical testing of electrical double-layer capacitors demonstrated that nanocarbon materials derived from seaweed waste-derived CNcs annealed at 1000 exhibited superior capacitance and stability. This performance is attributed to the formation of a highly ordered graphitic structure with a mesoporous architecture, which facilitates efficient ion transport and enhanced electrolyte accessibility. These findings underscore the potential of seaweed waste-derived nanocarbon as a sustainable and high-performance material for energy storage applications, offering a promising alternative to conventional carbon sources.
Collapse
Affiliation(s)
| | | | - Jung-Soo Lee
- Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
7
|
Ahmed MS, Islam M, Hasan MK, Nam KW. A Comprehensive Review of Radiation-Induced Hydrogels: Synthesis, Properties, and Multidimensional Applications. Gels 2024; 10:381. [PMID: 38920928 PMCID: PMC11203285 DOI: 10.3390/gels10060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Md. Kamrul Hasan
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| |
Collapse
|
8
|
Ko B, Jeon N, Kim J, Kang H, Seong J, Yun S, Badloe T, Rho J. Hydrogels for active photonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:1. [PMID: 38169527 PMCID: PMC10757998 DOI: 10.1038/s41378-023-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| |
Collapse
|
9
|
Zhang T, Zhang Y, Chen C, Tian Y, Wang Y, Cao S, Ma J. Corrosion-resistant SiO2-graphene oxide/epoxy coating reinforced by effective electron beam curing. PROGRESS IN ORGANIC COATINGS 2023; 184:107855. [DOI: 10.1016/j.porgcoat.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
10
|
Park HW, Jang NG, Seo HS, Kwon K, Shin S. Facile Synthesis of Self-Adhesion and Ion-Conducting 2-Acrylamido-2-Methylpropane Sulfonic Acid/Tannic Acid Hydrogels Using Electron Beam Irradiation. Polymers (Basel) 2023; 15:3836. [PMID: 37765690 PMCID: PMC10538098 DOI: 10.3390/polym15183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation. Peel strength of the AMPS hydrogel increased proportionally with TA, but cohesive failure and substrate residue occurred above 1.25 phm (parts per 100 g of AMPS) TA. Tensile strength peaked at 0.25 phm TA but decreased below the control value at 1.25 phm. Tensile elongation exceeded 2000% with TA addition. Peel strength varied significantly with substrate type. The wood substrate had the highest peel strength value of 150 N/m, while pork skin had a low value of 11.5 N/m. However, the addition of TA increased the peel strength by over 300%. The ionic conductivity of the AMPS/TA hydrogel increased from 0.9 S/m to 1.52 S/m with TA content, while the swelling ratio decreased by 50% upon TA addition and increased slightly thereafter.
Collapse
Affiliation(s)
- Hee-Woong Park
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Nam-Gyu Jang
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
- Department of Convergence Manufacturing System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyun-Su Seo
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Kiok Kwon
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (H.-W.P.); (N.-G.J.); (H.-S.S.); (K.K.)
- Department of Convergence Manufacturing System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Leng F, Li T, Li T, Xie C, Jiang X. Electron beam irradiation modified carboxymethyl chitin microsphere-based hemostatic materials with strong blood cell adsorption for hemorrhage control. Biomater Sci 2023; 11:5908-5917. [PMID: 37458611 DOI: 10.1039/d3bm00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Timely control of coagulopathy bleeding can effectively reduce the probability of wound infection and mortality. However, it is still a challenge for microsphere hemostatic agents to achieve timely control of coagulopathy bleeding. In this work, the CCM-g-AA@DA hemostatic agent based on carboxymethyl chitin microspheres, CCM, was synthesized using electron beam irradiation-induced grafting polymerization of acrylic acid and coupling with dopamine. Irradiation grafting endowed the microspheres with excellent adsorption performance and a rough surface. The microspheres showed a strong affinity to blood cells, especially red blood cells. The maximum adsorption of red blood cells is up to approximately 100 times that of the original microspheres, the CCM. The introduction of dopamine increased the tissue adhesion of the microspheres. At the same time, the microspheres still possessed good blood compatibility and biodegradability. Furthermore, the CCM-g-AA@DA with Fe3+ achieved powerful procoagulant effects in the rat anticoagulant bleeding model. The bleeding time and blood loss were both reduced by about 90% compared with the blank group, which was superior to that of the commercially available collagen hemostatic agent Avitene™. In summary, the CCM-g-AA@DA hemostatic agent shows promising potential for bleeding control in individuals with coagulation disorders.
Collapse
Affiliation(s)
- Fan Leng
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Taotao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tongfei Li
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Research and Development Center, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Pizzicato B, Pacifico S, Cayuela D, Mijas G, Riba-Moliner M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023; 28:5954. [PMID: 37630206 PMCID: PMC10458907 DOI: 10.3390/molecules28165954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable alternatives to synthetic ones. This review discusses the topic of natural dyes, providing a description of their main features and differences compared to synthetic dyes, and encompasses a summary of recent research in the field of natural dyes with specific reference to the following areas of sustainable innovation: extraction techniques, the preparation of substrates, the mordanting process, and the dyeing process. The literature review showed that promising new technologies and techniques have been successfully employed to improve the performance and sustainability of natural dyeing processes, but several limitations such as the poor fastness properties of natural dyes, their low affinity with textiles substrates, difficulties in the reproducibility of shades, as well as other factors such as cost-effectiveness considerations, still prevent industry from adopting natural dyes on a larger scale and will require further research in order to expand their use beyond niche applications.
Collapse
Affiliation(s)
- Barbara Pizzicato
- Dipartimento di Ingegneria, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy;
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, Via Antonio Vivaldi 43, 81100 Caserta, Italy;
| | - Diana Cayuela
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| | - Gabriela Mijas
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| | - Marta Riba-Moliner
- School of Industrial, Aeronautical and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, c/Colom 1, 08222 Terrassa, Spain; (D.C.); (G.M.)
| |
Collapse
|
13
|
Shen H, Yan M, Liu Y, Liu X, Ge X, Muratkhan M, Ospankulova G, Zhang G, Li W. Multiscale structure-property relationships of oxidized wheat starch prepared assisted with electron beam irradiation. Int J Biol Macromol 2023; 235:123908. [PMID: 36870652 DOI: 10.1016/j.ijbiomac.2023.123908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.
Collapse
Affiliation(s)
- Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengting Yan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yili Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Guoquan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Abou Elmaaty T, Sofan M, Ayad S, Negm E, Elsisi H. Novel synthesis of reactive disperse dyes for dyeing and antibacterial finishing of cotton fabric under scCO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|