1
|
Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA, Thompson MS, Walker LA, Kampourakis T, Campbell KS. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J Gen Physiol 2023; 155:213800. [PMID: 36633584 PMCID: PMC9859763 DOI: 10.1085/jgp.202213200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Mindy S Thompson
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky , Lexington, KY, USA.,Division of Cardiovascular Medicine, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
2
|
Huang AW, Janssen PML. The Case for, and Challenges of, Human Cardiac Tissue in Advancing Phosphoprotein Research. Front Physiol 2022; 13:853511. [PMID: 35399265 PMCID: PMC8984461 DOI: 10.3389/fphys.2022.853511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) and stroke affect over 92 million Americans and account for nearly 1 out of 3 deaths in the US. The use of animal models in cardiovascular research has led to considerable advances in treatment and in our understanding of the pathophysiology of many CVDs. Still, animals may not fully recapitulate human disease states; species differences have long been postulated to be one of the main reasons for a failure of translation between animals and humans in drug discovery and development. Indeed, it has become increasingly clear over the past few decades that to answer certain biomedical questions, like the physiological mechanisms that go awry in many human CVDs, animal tissues may not always be the best option to use. While human cardiac tissue has long been used for laboratory research, published findings often contradict each other, leading to difficulties in interpretation. Current difficulties in utilizing human cardiac tissue include differences in acquisition time, varying tissue procurement protocols, and the struggle to define a human “control” sample. With the tremendous emphasis on translational research that continues to grow, research studies using human tissues are becoming more common. This mini review will discuss advantages, disadvantages, and considerations of using human cardiac tissue in the study of CVDs, paying specific attention to the study of phosphoproteins.
Collapse
|
3
|
Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies. Int J Mol Sci 2021; 22:ijms22041747. [PMID: 33572424 PMCID: PMC7916215 DOI: 10.3390/ijms22041747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
The phosphorylation of proteins modulates various functions of proteins and plays an important role in the regulation of cell signaling. In recent years, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. Despite the great progress, the studies of protein phosphorylation are still limited in throughput, robustness, and reproducibility, hampering analyses that involve multiple perturbations, such as those needed to follow the dynamics of phosphoproteomes. To address these challenges, we introduce here the LFQ phosphoproteomics workflow that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies. We applied this workflow to analyze the whole-cell phosphoproteome of the fission yeast Schizosaccharomyces pombe. Using this strategy, we identified 8353 phosphosites from which 1274 were newly identified. This provides a significant addition to the S. pombe phosphoproteome. The results of our study highlight that combining of PGC and SAX fractionation strategies substantially increases the robustness and specificity of LFQ phosphoproteomics. Overall, the presented LFQ phosphoproteomics workflow opens the door for studies that would get better insight into the complexity of the protein kinase functions of the fission yeast S. pombe.
Collapse
|
4
|
Blair CA, Brundage EA, Thompson KL, Stromberg A, Guglin M, Biesiadecki BJ, Campbell KS. Heart Failure in Humans Reduces Contractile Force in Myocardium From Both Ventricles. JACC Basic Transl Sci 2020; 5:786-798. [PMID: 32875169 PMCID: PMC7452203 DOI: 10.1016/j.jacbts.2020.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Contractile assays were performed using multicellular preparations isolated from the left and right ventricles of organ donors and patients with heart failure. Heart failure reduced maximum force and power by approximately 30% in the myocardium from both ventricles. Heart failure increased the Ca2+ sensitivity of contraction, but the effect was bigger in right ventricular tissue than in left ventricular samples. The changes in Ca2+ sensitivity may reflect ventricle-specific post-translational modifications to sarcomeric proteins.
This study measured how heart failure affects the contractile properties of the human myocardium from the left and right ventricles. The data showed that maximum force and maximum power were reduced by approximately 30% in multicellular preparations from both ventricles, possibly because of ventricular remodeling (e.g., cellular disarray and/or excess fibrosis). Heart failure increased the calcium (Ca2+) sensitivity of contraction in both ventricles, but the effect was bigger in right ventricular samples. The changes in Ca2+ sensitivity were associated with ventricle-specific changes in the phosphorylation of troponin I, which indicated that adrenergic stimulation might induce different effects in the left and right ventricles.
Collapse
Key Words
- Ca2+ sensitivity
- Ca2+, calcium
- Fact, maximum Ca2+-activated force
- Fpas, passive force
- LV, left ventricle
- MyBP-C, myosin binding protein-C
- PKA, protein kinase A
- Pmax, maximum power output
- RLC, regulatory light chain
- RV, right ventricle
- TnI, troponin I
- Vmax, maximum shortening velocity
- heart failure
- human myocardium
- ktr, rate of force recovery
- myofilament proteins
- nH, Hill coefficient
- ventricular function
Collapse
Affiliation(s)
- Cheavar A Blair
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | | | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Nakano SJ, Walker JS, Walker LA, Li X, Du Y, Miyamoto SD, Sucharov CC, Garcia AM, Mitchell MB, Ambardekar AV, Stauffer BL. Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1221-H1230. [PMID: 31625780 DOI: 10.1152/ajpheart.00409.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is the most common cause of heart failure (HF) in children, resulting in high mortality and need for heart transplantation. The pathophysiology underlying pediatric DCM is largely unclear; however, there is emerging evidence that molecular adaptations and response to conventional HF medications differ between children and adults. To gain insight into alterations leading to systolic dysfunction in pediatric DCM, we measured cardiomyocyte contractile properties and sarcomeric protein phosphorylation in explanted pediatric DCM myocardium (N = 8 subjects) compared with nonfailing (NF) pediatric hearts (N = 8 subjects). Force-pCa curves were generated from skinned cardiomyocytes in the presence and absence of protein kinase A. Sarcomeric protein phosphorylation was quantified with Pro-Q Diamond staining after gel electrophoresis. Pediatric DCM cardiomyocytes demonstrate increased calcium sensitivity (pCa50 =5.70 ± 0.0291), with an associated decrease in troponin (Tn)I phosphorylation compared with NF pediatric cardiomyocytes (pCa50 =5.59 ± 0.0271, P = 0.0073). Myosin binding protein C and TnT phosphorylation are also lower in pediatric DCM, whereas desmin phosphorylation is increased. Pediatric DCM cardiomyocytes generate peak tension comparable to that of NF pediatric cardiomyocytes [DCM 29.7 mN/mm2, interquartile range (IQR) 21.5-49.2 vs. NF 32.8 mN/mm2, IQR 21.5-49.2 mN/mm2; P = 0.6125]. In addition, cooperativity is decreased in pediatric DCM compared with pediatric NF (Hill coefficient: DCM 1.56, IQR 1.31-1.94 vs. NF 1.94, IQR 1.36-2.86; P = 0.0425). Alterations in sarcomeric phosphorylation and cardiomyocyte contractile properties may represent an impaired compensatory response, contributing to the detrimental DCM phenotype in children.NEW & NOTEWORTHY Our study is the first to demonstrate that cardiomyocytes from infants and young children with dilated cardiomyopathy (DCM) exhibit increased calcium sensitivity (likely mediated by decreased troponin I phosphorylation) compared with nonfailing pediatric cardiomyocytes. Compared with published values in adult cardiomyocytes, pediatric cardiomyocytes have notably decreased cooperativity, with a further reduction in the setting of DCM. Distinct adaptations in cardiomyocyte contractile properties may contribute to a differential response to pharmacological therapies in the pediatric DCM population.
Collapse
Affiliation(s)
- Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - John S Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Xiaotao Li
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Max B Mitchell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
6
|
Fan XJ, Huang Y, Wu PH, Yin XK, Yu XH, Fu XH, Feng LL, Wang YL, Yi HJ, Chen ZT, Yin JX, Zhang DL, Feng WX, Bai SM, Kim T, Mills GB, Lu YL, Wan XB, Wang L. Impact of Cold Ischemic Time and Freeze-Thaw Cycles on RNA, DNA and Protein Quality in Colorectal Cancer Tissues Biobanking. J Cancer 2019; 10:4978-4988. [PMID: 31598170 PMCID: PMC6775519 DOI: 10.7150/jca.29372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue-derived RNA, DNA and protein samples become more and more crucial for molecular detection in clinical research, personalized and targeted cancer therapy. This study evaluated how to biobanking colorectal tissues through examining the influences of cold ischemic time and freeze-thaw cycles on RNA, DNA and protein integrity. Here, 144 pairs of tumor and normal colorectal tissues were used to investigate the impact of cold ischemic times (0-48h) on RNA, DNA and protein integrity at on ice or room temperature conditions. Additionally, 45 pairs of tissues experienced 0-9 freeze-thaw cycles, and then the RNA, DNA and protein quality were analyzed. On ice, RNA, DNA and protein from colorectal tumor and normal tissues were all stable up to 48h after surgery. At room temperature, RNA in colorectal tumor and normal tissues began to degrade at 8h and 24h, respectively. Meanwhile, the tumor tissues DNA degradation occurred at 24h after surgery at room temperature. Similarly, the protein expression level of tumor and normal tissues began to change at 24h after the surgery at room temperature. Interestingly, tissue RNA and DNA remained stable even after 9 freeze-thaw cycles, whereas the proteins levels were remarkably changed after 7 freeze-thaw cycles. This study provided a useful evidence on how to store human colorectal tissues for biobanking. Preserving the surgical colorectal tissue on ice was an effective way to prevent RNA, DNA and protein degradation. Importantly, more than 7 repeated freeze-thaw cycles were not recommended for colorectal tissues.
Collapse
Affiliation(s)
- Xin-Juan Fan
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Huang Wu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Xin-Ke Yin
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Xi-Hu Yu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin-Hui Fu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Li-Li Feng
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Yun-Long Wang
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Hong-Jun Yi
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Ting Chen
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Jun-Xiang Yin
- China National Center for Biotechnology Development, Beijing, China
| | - Da-Lu Zhang
- China National Center for Biotechnology Development, Beijing, China
| | - Wei-Xing Feng
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Shao-Mei Bai
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Taewan Kim
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gordon B Mills
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi-Ling Lu
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang-Bo Wan
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Radiation Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Gregorich ZR, Cai W, Lin Z, Chen AJ, Peng Y, Kohmoto T, Ge Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J Mol Cell Cardiol 2017; 107:13-21. [PMID: 28427997 DOI: 10.1016/j.yjmcc.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/01/2023]
Abstract
Myosin is the principal component of the thick filaments that, through interactions with the actin thin filaments, mediates force production during muscle contraction. Myosin is a hexamer, consisting of two heavy chains, each associated with an essential (ELC) and a regulatory (RLC) light chain, which bind the lever-arm of the heavy chain and play important modulatory roles in striated muscle contraction. Nevertheless, a comprehensive assessment of the sequences of the ELC and RLC isoforms, as well as their post-translational modifications, in the heart remains lacking. Herein, utilizing top-down high-resolution mass spectrometry (MS), we have comprehensively characterized the sequences and N-terminal modifications of the atrial and ventricular isoforms of the myosin light chains from human and swine hearts, as well as the sites of phosphorylation in the swine proteins. In addition to the correction of disparities in the database sequences of the swine proteins, we show for the first time that, whereas the ventricular isoforms of the ELC and RLC are methylated at their N-termini, which is consistent with previous studies, the atrial isoforms of the ELC and RLC from both human and swine are Nα-methylated and Nα-acetylated, respectively. Furthermore, top-down MS with electron capture dissociation enabled localization of the sites of phosphorylation in swine RLC isoforms from the ventricles and atria to Ser14 and Ser22, respectively. Collectively, these results provide new insights into the sequences and modifications of myosin light chain isoforms in the human and swine hearts, which will pave the way for a better understanding of their functional roles in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Albert J Chen
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
10
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Kampourakis T, Irving M. Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle. J Mol Cell Cardiol 2015; 85:199-206. [PMID: 26057075 PMCID: PMC4535163 DOI: 10.1016/j.yjmcc.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
The effect of phosphorylation on the conformation of the regulatory light chain (cRLC) region of myosin in ventricular trabeculae from rat heart was determined by polarized fluorescence from thiophosphorylated cRLCs labelled with bifunctional sulforhodamine (BSR). Less than 5% of cRLCs were endogenously phosphorylated in this preparation, and similarly low values of basal cRLC phosphorylation were measured in fresh intact ventricle from both rat and mouse hearts. BSR-labelled cRLCs were thiophosphorylated by a recombinant fragment of human cardiac myosin light chain kinase, which was shown to phosphorylate cRLCs specifically at serine 15 in a calcium- and calmodulin-dependent manner, both in vitro and in situ. The BSR-cRLCs were exchanged into demembranated trabeculae, and polarized fluorescence intensities measured for each BSR-cRLC in relaxation, active isometric contraction and rigor were combined with RLC crystal structures to calculate the orientation distribution of the C-lobe of the cRLC in each state. Only two of the four C-lobe orientation populations seen during relaxation and active isometric contraction in the unphosphorylated state were present after cRLC phosphorylation. Thus cRLC phosphorylation alters the equilibrium between defined conformations of the cRLC regions of the myosin heads, rather than simply disordering the heads as assumed previously. cRLC phosphorylation also changes the orientation of the cRLC C-lobe in rigor conditions, showing that the orientation of this part of the myosin head is determined by its interaction with the thick filament even when the head is strongly bound to actin. These results suggest that cRLC phosphorylation controls the contractility of the heart by modulating the interaction of the cRLC region of the myosin heads with the thick filament backbone. The orientation of the phosphorylated cRLC was measured by polarized fluorescence. Phosphorylated myosin heads are not disordered on the level of the cRLC region. cRLC phosphorylation induces a new conformational state of myosin. cRLC phosphorylation controls contractility at the myosin head–backbone interface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
12
|
Utter MS, Warren CM, Solaro RJ. Impact of anesthesia and storage on posttranslational modifications of cardiac myofilament proteins. Physiol Rep 2015; 3:3/5/e12393. [PMID: 25952935 PMCID: PMC4463824 DOI: 10.14814/phy2.12393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although high fidelity measurements of posttranslational modifications (PTMs) of cardiac myofilament proteins exist, important issues remain regarding basic techniques of sample acquisition and storage. We investigated the effects of anesthetic regimen and sample storage conditions on PTMs of major ventricular sarcomeric proteins. Mice were anesthetized with pentobarbital (Nembutal), ketamine/xylazine mixture (Ket/Xyl), or tribromoethanol (Avertin), and the ventricular tissue was prepared and stored for 1, 7, 30, 60, or 90 days at −80°C. Myofilament protein phosphorylation and glutathionylation were analyzed by Pro-Q Diamond stain and Western blotting, respectively. With up to 7 days of storage, phosphorylation of troponin T was stable for samples from mice anesthetized with either Nembutal or Ket/Xyl but not Avertin; while myosin-binding protein C (MyBP-C) phosphorylation was reduced at 7 days with Nembutal and Ket/Xyl, though generally not significant until 90 days. Tropomyosin and regulatory myosin light chain phosphorylation were stable for up to 7 days regardless of the anesthetic regimen employed. In the case of Troponin I, by 7 days of storage there was a significant fall in phosphorylation across all anesthetics. Storage of samples from 30 to 90 days resulted in a general decrease in myofilament phosphorylation independent of the anesthetic. S-glutathionylation of MyBP-C presented a trend in reduced glutathionylation from days 30–90 in all anesthetics, with only day 90 being statistically significant. Our findings suggest that there are alterations in PTMs of major myofilament proteins from both storage and anesthetic selection, and that storage beyond 30 days will likely result in distortion of data.
Collapse
Affiliation(s)
- Megan S Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Lang SE, Schwank J, Stevenson TK, Jensen MA, Westfall MV. Independent modulation of contractile performance by cardiac troponin I Ser43 and Ser45 in the dynamic sarcomere. J Mol Cell Cardiol 2015; 79:264-74. [PMID: 25481661 PMCID: PMC4301988 DOI: 10.1016/j.yjmcc.2014.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) targets cardiac troponin I (cTnI) S43/45 for phosphorylation in addition to other residues. During heart failure, cTnI S43/45 phosphorylation is elevated, and yet there is ongoing debate about its functional role due, in part, to the emergence of complex phenotypes in animal models. The individual functional influences of phosphorylated S43 and S45 also are not yet known. The present study utilizes viral gene transfer of cTnI with phosphomimetic S43D and/or S45D substitutions to evaluate their individual and combined influences on function in intact adult cardiac myocytes. Partial replacement (≤40%) with either cTnIS43D or cTnIS45D reduced the amplitude of contraction, and cTnIS45D slowed contraction and relaxation rates, while there were no significant changes in function with cTnIS43/45D. More extensive replacement (≥70%) with cTnIS43D, cTnIS45D, and cTnIS43/45D each reduced the amplitude of contraction. Additional experiments also showed cTnIS45D reduced myofilament Ca(2+) sensitivity of tension. At the same time, shortening rates returned toward control values with cTnIS45D and the later stages of relaxation also became accelerated in myocytes expressing cTnIS43D and/or S45D. Further studies demonstrated this behavior coincided with adaptive changes in myofilament protein phosphorylation. Taken together, the results observed in myocytes expressing cTnIS43D and/or S45D suggest these 2 residues reduce function via independent mechanism(s). The changes in function associated with the onset of adaptive myofilament signaling suggest the sarcomere is capable of fine tuning PKC-mediated cTnIS43/45 phosphorylation and contractile performance. This modulatory behavior also provides insight into divergent phenotypes reported in animal models with cTnI S43/45 phosphomimetic substitutions.
Collapse
Affiliation(s)
- Sarah E Lang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Schwank
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara K Stevenson
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark A Jensen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret V Westfall
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PML. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev 2014; 6:273-289. [PMID: 28510030 PMCID: PMC4255972 DOI: 10.1007/s12551-014-0143-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and beta-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
15
|
Shimkunas R, Makwana O, Spaulding K, Bazargan M, Khazalpour M, Takaba K, Soleimani M, Myagmar BE, Lovett DH, Simpson PC, Ratcliffe MB, Baker AJ. Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone. Am J Physiol Heart Circ Physiol 2014; 307:H1150-8. [PMID: 25128171 DOI: 10.1152/ajpheart.00463.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction.
Collapse
Affiliation(s)
- Rafael Shimkunas
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Om Makwana
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Kimberly Spaulding
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Mona Bazargan
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Michael Khazalpour
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Kiyoaki Takaba
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Mehrdad Soleimani
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Bat-Erdene Myagmar
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - David H Lovett
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Paul C Simpson
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Mark B Ratcliffe
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, California; and Departments of Medicine and Surgery, University of California-San Francisco (UCSF), Joint University of California-Berkeley/UCSF Bioengineering Group, San Francisco, California
| |
Collapse
|
16
|
The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin Biochem 2014; 47:258-66. [PMID: 24424103 DOI: 10.1016/j.clinbiochem.2014.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 01/19/2023]
Abstract
Well preserved frozen biospecimens are ideal for evaluating the genome, transcriptome, and proteome. While papers reviewing individual aspects of frozen biospecimens are available, we present a current overview of experimental data regarding procurement, storage, and quality assurance that can inform the handling of frozen biospecimens. Frozen biospecimen degradation can be influenced by factors independent of the collection methodology including tissue type, premortem agonal changes, and warm ischemia time during surgery. Rapid stabilization of tissues by snap freezing immediately can mitigate artifactually altered gene expression and, less appreciated, protein phosphorylation profiles. Collection protocols may be adjusted for specific tissue types as cellular ischemia tolerance varies widely. If data is not available for a particular tissue type, a practical goal is snap freezing within 20min. Tolerance for freeze-thaw events is also tissue type dependent. Tissue storage at -80°C can preserve DNA and protein for years but RNA can show degradation at 5years. For -80°C freezers, aliquots frozen in RNAlater or similar RNA stabilizing solutions are a consideration. It remains unresolved as to whether storage at -150°C provides significant advantages relative to that at -80°C. Histologic quality assurance of tissue biospecimens is typically performed at the time of surgery but should also be conducted on the aliquot to be distributed because of tissue heterogeneity. Biobanking protocols for blood and its components are highly dependent on intended use and multiple collection tube types may be needed. Additional quality assurance testing should be dictated by the anticipated downstream applications.
Collapse
|
17
|
Abstract
Powerful technologies critical to personalized medicine and targeted therapeutics require the analysis of carefully validated, procured, stored, and managed biospecimens. Reflecting advancements in biospecimen science, the National Cancer Institute and the International Society for Biological and Environmental Repositories are periodically publishing best practices that can guide the biobanker. The modern biobank will operate more like a clinical laboratory with formal accreditation, standard operating procedures, and quality assurance protocols. This chapter highlights practical issues of consent, procurement, storage, quality assurance, disbursement, funding, and space. Common topics of concern are discussed including the differences between clinical and research biospecimens, stabilization of biospecimens during procurement, optimal storage temperatures, and technical validation of biospecimen content and quality. With quickly expanding biospecimen needs and limited healthcare budgets, biobanks may need to be selective as to what is stored. Furthermore, a shift to room-temperature storage modalities where possible can reduce long-term space and fiscal requirements.
Collapse
Affiliation(s)
- William H Yong
- Translational Pathology Core Laboratory, Brain Tumor Translational Resource, Department of Pathology and Laboratory Medicine, Center for Health Sciences, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 18-161 CHS, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
18
|
Walker LA, Fullerton DA, Buttrick PM. Contractile protein phosphorylation predicts human heart disease phenotypes. Am J Physiol Heart Circ Physiol 2013; 304:H1644-50. [PMID: 23564307 DOI: 10.1152/ajpheart.00957.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human heart failure has been associated with a low level of thin-filament protein phosphorylation and an increase in calcium sensitivity of contraction relative to both "control" human heart tissue and tissue from small animal models. However, diverse strategies of human tissue procurement and the reliance on tissue obtained from subjects with end-stage heart failure suggest this may be an incomplete characterization. Therefore, we evaluated cardiac left ventricular (LV) biopsy samples from patients with aortic stenosis undergoing valve replacement who presented either with LV hypertrophy and preserved systolic function (Hyp) or with LV dilation and reduced ejection fraction (Dil). In Hyp, total troponin I (TnI) phosphorylation was markedly increased and myosin light chain 2 (MLC2) phosphorylation was unchanged relative to a control group of patients with normal LV function. Conversely, in Dil, total TnI phosphorylation was significantly reduced compared with control subjects and MLC2 phosphorylation was increased. Site-specific analysis of TnI phosphorylation revealed phenotype-specific differences such that Hyp samples demonstrated significant increases in phosphorylation at serine 22/23 and Dil samples had significant decreases at serine 43. The ratio of phosphorylation at the two sites was biased toward serine 22/23 in Hyp and toward serine 43/45 in Dil. Western blot analysis showed that protein phosphatase-1 was reduced in Hyp and protein phosphatase-2 was reduced in Dil. These data suggest that posttranslational modifications of sarcomeric proteins, both singly and in combination, are stage specific. Defining these changes in progressive heart disease may provide important diagnostic and treatment information.
Collapse
Affiliation(s)
- Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
19
|
Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol 2012; 22:219-27. [PMID: 23266222 DOI: 10.1016/j.carpath.2012.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The mechanical environment is a key regulator of function in cardiomyocytes. We studied the role of substrate stiffness on the organization of sarcomeres and costameres in adult rat cardiomyocytes and further examined the resulting changes in cell shortening and calcium dynamics. METHODS Cardiomyocytes isolated from adult rats were plated on laminin-coated polydimethylsiloxane substrates of defined stiffness (255 kPa, 117 kPa, 27 kPa, and 7 kPa) for 48 h. Levels of α-actinin and β1 integrins were determined by immunofluoresence imaging and immunoblotting, both in the absence and presence of the phosphatase inhibitor calyculin A. Quantitative reverse transcriptase polymerase chain reaction was used to measure message levels of key structural proteins (α-actinin, α7 integrin, β1 integrin, vinculin). Sarcomere shortening and calcium dynamics were measured at 2, 24, and 48 h. RESULTS Overall cardiomyocyte morphology was similar on all substrates. However, well organized sarcomere structures were observed on only the stiffest (255 kPa) and the most compliant (7 kPa) substrates. Levels of α-actinin in cells were the same on all substrates, while message levels of structural proteins were up-regulated on substrates of intermediate stiffness. Inhibition of phosphatase activity blocked the degradation of contractile structures, but altered overall cardiomyocyte morphology. Shortening and calcium dynamics also were dependent on substrate stiffness; however, there was no clear causative relationship between the phenomena. CONCLUSIONS Extracellular matrix stiffness can affect structural remodeling by adult cardiomyocytes, and the resulting contractile activity. These findings illuminate changes in cardiomyocyte function in cardiac fibrosis, and may suggest cardiac-specific phosphatases as a target for therapeutic intervention.
Collapse
|
20
|
Kuster DWD, Bawazeer AC, Zaremba R, Goebel M, Boontje NM, van der Velden J. Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil 2011; 33:43-52. [PMID: 22127559 PMCID: PMC3351594 DOI: 10.1007/s10974-011-9280-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022]
Abstract
Perturbations in sarcomeric function may in part underlie systolic and diastolic dysfunction of the failing heart. Sarcomeric dysfunction has been ascribed to changes in phosphorylation status of sarcomeric proteins caused by an altered balance between intracellular kinases and phosphatases during the development of cardiac disease. In the present review we discuss changes in phosphorylation of the thick filament protein myosin binding protein C (cMyBP-C) reported in failing myocardium, with emphasis on phosphorylation changes observed in familial hypertrophic cardiomyopathy caused by mutations in MYBPC3. Moreover, we will discuss assays which allow to distinguish between functional consequences of mutant sarcomeric proteins and (mal)adaptive changes in sarcomeric protein phosphorylation.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Heart Failure, Systolic/metabolism
- Heart Failure, Systolic/pathology
- Humans
- Mice
- Mice, Transgenic
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Sarcomeres/metabolism
- Sarcomeres/pathology
Collapse
Affiliation(s)
- Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Ambardekar AV, Walker JS, Walker LA, Cleveland JC, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail 2011; 4:425-32. [PMID: 21540356 DOI: 10.1161/circheartfailure.111.961326] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Unloading a failing heart with a left ventricular assist device (LVAD) can improve ejection fraction (EF) and LV size; however, recovery with LVAD explantation is rare. We hypothesized that evaluation of myocyte contractility and biochemistry at the sarcomere level before and after LVAD may explain organ-level changes. METHODS AND RESULTS Paired LV tissue samples were frozen from 8 patients with nonischemic cardiomyopathy at LVAD implantation (before LVAD) and before cardiac transplantation (after LVAD). These were compared with 8 nonfailing hearts. Isolated skinned myocytes were purified and attached to a force transducer, and dimensions, maximum calcium-saturated force, calcium sensitivity, and myofilament cooperativity were assessed. Relative isoform abundance and phosphorylation levels of sarcomeric contractile proteins were measured. With LVAD support, the unloaded EF improved (10.0±1.0% to 25.6±11.0%, P=0.007), LV size decreased (LV internal dimension at end diastole, 7.6±1.2 to 4.9±1.4 cm; P<0.001), and myocyte dimensions decreased (cross-sectional area, 1247±346 to 638±254 μm(2); P=0.001). Maximum calcium-saturated force improved after LVAD (3.6±0.9 to 7.3±1.8 mN/mm(2), P<0.001) implantation but was still lower than in nonfailing hearts (7.3±1.8 versus 17.6±1.8 mN/mm(2), P<0.001). An increase in troponin I (TnI) phosphorylation after LVAD implantation was noted, but protein kinase C phosphorylation of TnI decreased. Biochemical changes of other sarcomeric proteins were not observed after LVAD. CONCLUSIONS There is significant improvement in LV and myocyte size with LVAD, but there is only partial recovery of EF and myocyte contractility. LVAD support was associated only with biochemical changes in TnI, suggesting that alternate mechanisms might contribute to contractile changes after LVAD and that additional interventions may be needed to alter biochemical remodeling of the sarcomere to further enhance myofilament and organ-level recovery.
Collapse
Affiliation(s)
- Amrut V Ambardekar
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|