1
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
2
|
Abstract
Arsenic is a naturally occurring hazardous element that is environmentally ubiquitous in various chemical forms. Upon exposure, the human body initiates an elimination pathway of progressive methylation into relatively less bioreactive and more easily excretable pentavalent methylated forms. Given its association with decreasing the internal burden of arsenic with ensuing attenuation of its related toxicities, biomethylation has been applauded for decades as a pure route of arsenic detoxification. However, the emergence of detectable trivalent species with profound toxicity has opened a long-standing debate regarding whether arsenic methylation is a detoxifying or bioactivating mechanism. In this review, we approach the topic of arsenic metabolism from both perspectives to create a complete picture of its potential role in the mitigation or aggravation of various arsenic-related pathologies.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
3
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
4
|
Acharyya N, Deb B, Chattopadhyay S, Maiti S. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12. Biol Trace Elem Res 2015; 168:122-32. [PMID: 25850544 DOI: 10.1007/s12011-015-0324-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Arsenic is a grade I human carcinogen. It acts by disrupting one-carbon (1C) metabolism and cellular methyl (-CH3) pool. The -CH3 group helps in arsenic disposition and detoxification of the biological systems. Vitamin B12 and folate, the key promoters of 1C metabolism were tested recently (daily 0.07 and 4.0 μg, respectively/100 g b.w. of rat for 28 days) to evaluate their combined efficacy in the protection from mutagenic DNA-breakage and tissue damages. The selected tissues like intestine (first-pass site), liver (major xenobiotic metabolizer) and lung (major arsenic accumulator) were collected from arsenic-ingested (0.6 ppm/same schedule) female rats. The hemo-toxicity and liver and kidney functions were monitored. Our earlier studies on arsenic-exposed humans can correlate carcinogenesis with DNA damage. Here, we demonstrate that the supplementation of physiological/therapeutic dose of vitamin B12 and folate protected the rodents significantly from arsenic-induced DNA damage (DNA fragmentation and comet assay) and hepatic and renal tissue degeneration (histo-architecture, HE staining). The level of arsenic-induced free-radical products (TBARS and conjugated diene) was significantly declined by the restored actions of several antioxidants viz. urate, thiol, catalase, xanthine oxidase, lactoperoxidase, and superoxide dismutase in the tissues of vitamin-supplemented group. The alkaline phosphatase, transaminases, urea and creatinine (hepatic and kidney toxicity marker), and lactate dehydrogenase (tissue degeneration marker) were significantly impaired in the arsenic-fed group. But a significant protection was evident in the vitamin-supplemented group. In conclusion, the combined action of folate and B12 results in the restitution in the 1C metabolic pathway and cellular methyl pool. The cumulative outcome from the enhanced arsenic methylation and antioxidative capacity was protective against arsenic induced mutagenic DNA breakages and tissue damages.
Collapse
Affiliation(s)
- Nirmallya Acharyya
- Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and TechnologyVidyasagar University, Midnapore, West Bengal, 721102, India
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Bimal Deb
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Smarajit Maiti
- Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and TechnologyVidyasagar University, Midnapore, West Bengal, 721102, India.
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
- Epidemiology and Human Health Division, Agricure Biotech Research Society, Midnapore, 721101, India.
| |
Collapse
|
5
|
Gribble MO, Voruganti VS, Cole SA, Haack K, Balakrishnan P, Laston SL, Tellez-Plaza M, Francesconi KA, Goessler W, Umans JG, Thomas DC, Gilliland F, North KE, Franceschini N, Navas-Acien A. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. Toxicol Sci 2015. [PMID: 26209557 DOI: 10.1093/toxsci/kfv164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly.
Collapse
Affiliation(s)
- Matthew O Gribble
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California;
| | - Venkata Saroja Voruganti
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina; UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandra L Laston
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center, San Antonio-Regional Academic Health Center, Brownsville, Texas
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Biomedical Research Institute, Hospital Clinic de Valencia-INCLIVA, Valencia, Spain
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Jason G Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia; MedStar Health Research Institute, Hyattsville, Maryland
| | - Duncan C Thomas
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Frank Gilliland
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
6
|
Qi Y, Li H, Zhang M, Zhang T, Frank J, Chen G. Autophagy in arsenic carcinogenesis. ACTA ACUST UNITED AC 2014; 66:163-8. [DOI: 10.1016/j.etp.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
|
7
|
Hernández A, Paiva L, Creus A, Quinteros D, Marcos R. Micronucleus frequency in copper-mine workers exposed to arsenic is modulated by the AS3MT Met287Thr polymorphism. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 759:51-5. [DOI: 10.1016/j.mrgentox.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 08/06/2013] [Accepted: 09/28/2013] [Indexed: 12/18/2022]
|
8
|
Gribble MO, Crainiceanu CM, Howard BV, Umans JG, Francesconi KA, Goessler W, Zhang Y, Silbergeld EK, Guallar E, Navas-Acien A. Body composition and arsenic metabolism: a cross-sectional analysis in the Strong Heart Study. Environ Health 2013; 12:107. [PMID: 24321145 PMCID: PMC3883520 DOI: 10.1186/1476-069x-12-107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/03/2013] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the association between measures of body composition and patterns of urine arsenic metabolites in the 1989-1991 baseline visit of the Strong Heart Study, a cardiovascular disease cohort of adults recruited from rural communities in Arizona, Oklahoma, North Dakota and South Dakota. METHODS We evaluated 3,663 Strong Heart Study participants with urine arsenic species above the limit of detection and no missing data on body mass index, % body fat and fat free mass measured by bioelectrical impedance, waist circumference and other variables. We summarized urine arsenic species patterns as the relative contribution of inorganic (iAs), methylarsonate (MMA) and dimethylarsinate (DMA) species to their sum. We modeled the associations of % arsenic species biomarkers with body mass index, % body fat, fat free mass, and waist circumference categories in unadjusted regression models and in models including all measures of body composition. We also considered adjustment for arsenic exposure and demographics. RESULTS Increasing body mass index was associated with higher mean % DMA and lower mean % MMA before and after adjustment for sociodemographic variables, arsenic exposure, and for other measures of body composition. In unadjusted linear regression models, % DMA was 2.4 (2.1, 2.6) % higher per increase in body mass index category (< 25, ≥25 & <30, ≥30 & <35, ≥35 kg/m2), and % MMA was 1.6 (1.4, 1.7) % lower. Similar patterns were observed for % body fat, fat free mass, and waist circumference measures in unadjusted models and in models adjusted for potential confounders, but the associations were largely attenuated or disappeared when adjusted for body mass index. CONCLUSION Measures of body size, especially body mass index, are associated with arsenic metabolism biomarkers. The association may be related to adiposity, fat free mass or body size. Future epidemiologic studies of arsenic should consider body mass index as a potential modifier for arsenic-related health effects.
Collapse
Affiliation(s)
- Matthew O Gribble
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Kevin A Francesconi
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Ying Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eliseo Guallar
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Muñiz Ortiz JG, Wallace KA, Leinisch F, Kadiiska MB, Mason RP, Kligerman AD. Catalase has a key role in protecting cells from the genotoxic effects of monomethylarsonous acid: a highly active metabolite of arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:317-326. [PMID: 23640787 DOI: 10.1002/em.21780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Although it is widely known that arsenic-contaminated drinking water causes many diseases, arsenic's exact mode of action (MOA) is not fully understood. Induction of oxidative stress has been proposed as an important key event in the toxic MOA of arsenic. The authors' studies are centered on identifying a reactive species involved in the genotoxicity of arsenic using a catalase (CAT) knockout mouse model that is impaired in its ability to breakdown hydrogen peroxide (H2 O2 ). The authors assessed the induction of DNA damage using the Comet assay following exposure of mouse Cat(+/) (+) and Cat(-) (/) (-) primary splenic lymphocytes to monomethylarsonous acid (MMA(III) ) to identify the potential role of H2 O2 in mediating cellular effects of this metalloid. The results showed that the Cat(-) (/) (-) lymphocytes are more susceptible to MMA(III) than the Cat(+/) (+) lymphocytes by a small (1.5-fold) but statistically significant difference. CAT activity assays demonstrated that liver tissue has approximately three times more CAT activity than lymphocytes. Therefore, Comet assays were performed on primary Cat(+/) (+) , Cat(+/) (-) , and Cat(-) (/) (-) hepatocytes to determine if the Cat(-) (/) (-) cells were more susceptible to MMA(III) than lymphocytes. The results showed that the Cat(-) (/) (-) hepatocytes exhibit higher levels of DNA strand breakage than the Cat(+/) (+) (approximately fivefold) and Cat(+/) (-) (approximately twofold) hepatocytes exposed to MMA(III) . Electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide as the spin-trap agent detected the generation of ·OH via MMA(III) when H2 O2 was present. These experiments suggest that CAT is involved in protecting cells against the genotoxic effects of the ·OH generated by MMA(III) .
Collapse
Affiliation(s)
- Jorge G Muñiz Ortiz
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kumar A, Kesari VP, Khan PK. Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 2013; 26:337-46. [DOI: 10.1007/s10534-013-9620-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 01/12/2023]
|
11
|
Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity. A review. ENVIRONMENT INTERNATIONAL 2013; 53:29-40. [PMID: 23314041 DOI: 10.1016/j.envint.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Exposure to chronic arsenic toxicity is associated with cancer. Although unstable genome is a characteristic feature of cancer cells, the mechanisms leading to genomic instability in arsenic-induced carcinogenesis are poorly understood. While there are excellent reviews relating to genomic instability in general, there is no comprehensive review presenting the mechanisms involved in arsenic-induced genomic instability. This review was undertaken to present the current state of research in this area and to highlight the major mechanisms that may involved in arsenic-induced genomic instability leading to cancer. Genomic instability is broadly classified into chromosomal instability (CIN), primarily associated with mitotic errors; and microsatellite instability (MIN), associated with DNA level instability. Arsenic-induced genomic instability is essentially multi-factorial in nature and involves molecular cross-talk across several cellular pathways, and is modulated by a number of endogenous and exogenous factors. Arsenic and its metabolites generate oxidative stress, which in turn induces genomic instability through DNA damage, irreversible DNA repair, telomere dysfunction, mitotic arrest and apoptosis. In addition to genetic alteration; epigenetic regulation through promoter methylation and miRNA expression alters gene expression profiling leading to genome more vulnerable and unstable towards cancer risk. Moreover, mutations or silencing of pro-apoptotic genes can lead to genomic instability by allowing survival of damaged cells that would otherwise die. Although a large body of information is now generated regarding arsenic-induced carcinogenesis; further studies exploring genome-wide association, role of environment and diet are needed for a better understanding of the arsenic-induced genomic instability.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | | | | |
Collapse
|
12
|
Khan PK, Kesari VP, Kumar A. Mouse micronucleus assay as a surrogate to assess genotoxic potential of arsenic at its human reference dose. CHEMOSPHERE 2013; 90:993-997. [PMID: 22906486 DOI: 10.1016/j.chemosphere.2012.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Exposure to high contents of arsenic (a genotoxic carcinogen) in humans through drinking water is one of the most serious concerns in many parts of the world including India. The United States Environmental Protection Agency (USEPA) has recommended a permissible limit of daily exposure in humans to arsenic as its reference dose (0.3 μg kg(-1) d(-1)) with almost no likelihood of any adverse effect. The present work was a quantitative assessment of the genotoxic potential of arsenic at the exposure level of its human reference dose through micronucleus (MN) assay in mice. The animals were exposed to various doses of arsenic through oral gavaging for 15 consecutive days. Significant increases in the frequency of micronucleated erythrocytes were observed in mice upon exposure to arsenic which occurred even at its human reference dose and in a dose-dependent manner. The study of the genotoxic potential of arsenic in humans at lower exposure levels (including its human reference dose) is, therefore, highly desirable for risk assessment and hazard identification.
Collapse
Affiliation(s)
- Parimal K Khan
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna 800 005, India.
| | | | | |
Collapse
|
13
|
Kesari VP, Kumar A, Khan PK. Genotoxic potential of arsenic at its reference dose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:126-131. [PMID: 22421451 DOI: 10.1016/j.ecoenv.2012.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Arsenic, a highly hazardous contaminant in our drinking water, accounts for various toxic effects (including cancer) in human. However, intake of arsenic @0.3 μg kg(-1)day(-1) through drinking water, containing arsenic at its guideline value or maximum contaminant limit (10 μg L(-1)), has been estimated to pose very little or no measurable risk to cancer in humans. The value also appears to be equal to the human reference dose (or index dose) of arsenic based on human skin toxicity data. The present work was a quantitative assessment of the genotoxic potential of arsenic in mice at doses equivalent to its human reference dose as well as its multiples. Significant increases in the frequencies of chromosome abnormalities in the bone marrow cells were registered over the control level upon exposure to all the doses of arsenic including its reference dose (or index dose). The assessment of arsenic genotoxicity in humans at low doses will therefore be highly instrumental in establishing a permissible limit of arsenic in drinking water.
Collapse
Affiliation(s)
- V P Kesari
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna 800 005, India
| | | | | |
Collapse
|
14
|
Zhao Y, Toselli P, Li W. Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:474-95. [PMID: 22470304 PMCID: PMC3315258 DOI: 10.3390/ijerph9020474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/14/2022]
Abstract
To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As³⁺) on microtubule (MT) assembly in vitro (0-40 µM), in cultured rat lung fibroblasts (RFL6, 0-20 µM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As³⁺ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As³⁺ were concomitant with chromosomal disorientations. As³⁺ reduced the binding to tubulin of [³H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As³⁺ action upon tubulin through -SH groups. In response to As³⁺, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As³⁺ and NEM induced MT depolymerization. MT-associated proteins (MAPs) essential for the MT stability were markedly suppressed in As³⁺-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As³⁺ damage to the lung triggering MT disassembly cascades.
Collapse
Affiliation(s)
- Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | | | | |
Collapse
|
15
|
Toxicological Characterization of the Inorganic and Organic Arsenic Metabolite Thio-DMA in Cultured Human Lung Cells. J Toxicol 2011; 2011:373141. [PMID: 22007210 PMCID: PMC3191745 DOI: 10.1155/2011/373141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/08/2011] [Indexed: 01/05/2023] Open
Abstract
We synthesised and toxicologically characterised the arsenic metabolite thiodimethylarsinic acid (thio-DMAV). Successful synthesis of highly pure thio-DMAV was confirmed by state-of-the-art analytical techniques including 1H-NMR, HPLC-FTMS, and HPLC-ICPMS. Toxicological characterization was carried out in comparison to arsenite and its well-known trivalent and pentavalent methylated metabolites. It comprised cellular bioavailability as well as different cytotoxicity and genotoxicity end points in cultured human A549 lung cells. Of all arsenicals investigated, thio-DMAV exerted the strongest cytotoxicity. Moreover, thio-DMAV did not induce DNA strand breaks and an increased induction of both micronuclei and multinucleated cells occurred only at beginning cytotoxic concentrations, indicating that thio-DMAV does not act via a genotoxic mode of action. Finally, to assess potential implications of thio-DMAV for human health, further mechanistic studies are urgently necessary to identify the toxic mode of action of this highly toxic, unusual pentavalent organic arsenical.
Collapse
|
16
|
Lee CH, Liao WT, Yu HS. Aberrant immune responses in arsenical skin cancers. Kaohsiung J Med Sci 2011; 27:396-401. [DOI: 10.1016/j.kjms.2011.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 11/18/2010] [Indexed: 11/30/2022] Open
|
17
|
Singh KP, Kumari R, Treas J, DuMond JW. Chronic Exposure to Arsenic Causes Increased Cell Survival, DNA Damage, and Increased Expression of Mitochondrial Transcription Factor A (mtTFA) in Human Prostate Epithelial Cells. Chem Res Toxicol 2011; 24:340-9. [DOI: 10.1021/tx1003112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - Ragini Kumari
- Department of Environmental Science and Technology, Texas Southern University, Houston, Texas 77004, United States
| | - Justin Treas
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - James W. DuMond
- Department of Environmental Science and Technology, Texas Southern University, Houston, Texas 77004, United States
| |
Collapse
|
18
|
Pearce DC, Dowling K, Gerson AR, Sim MR, Sutton SR, Newville M, Russell R, McOrist G. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2590-9. [PMID: 20067849 DOI: 10.1016/j.scitotenv.2009.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 05/21/2023]
Abstract
Arsenic is naturally associated with gold mineralisation and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 microg/g (n=29) in clipping samples and from 3.3 to 130 microg/g (n=22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r=0.42, P=0.023) when household soil was treated as independent. In clipping thin sections (n=2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10x10 microm microprobe spot locations investigated (<0.1 to 13.3 microg/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As(approximately III)(-S, -CH3)); and a higher oxidation state species (denoted As(approximately V)(-O)). Depth profiling suggested that surface contamination was unlikely (n=4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of historic gold mining activity in Victoria, Australia. Future studies are required to ascertain if adverse health effects are associated with current levels of arsenic uptake.
Collapse
Affiliation(s)
- Dora C Pearce
- School of Science and Engineering, University of Ballarat, Mt Helen Campus, University Drive, Mt Helen, Victoria 3350, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Soriano C, Creus A, Marcos R. Arsenic trioxide mutational spectrum analysis in the mouse lymphoma assay. Mutat Res 2008; 646:1-7. [PMID: 18822301 DOI: 10.1016/j.mrfmmm.2008.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/24/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
It has been well documented that long-term exposure to inorganic arsenic induces cancers and vascular diseases in a dose-response relationship. Nevertheless, arsenic has also demonstrated to have anticancer activity; thus, arsenic trioxide (ATO, As2O3) is an inorganic trivalent arsenic form, currently used in the treatment against acute promyelocytic leukaemia (APL). The open discussion about how arsenic compounds induce genotoxic damage has moved us to evaluate the mutational spectrum induced by ATO in mouse lymphoma cells. Thus, 49 Tk-/- mutant colonies obtained in the mouse lymphoma assay (MLA), after treatments lasting for 4h with 10microM ATO, and 49 spontaneous mutant colonies from independent untreated cultures, were used to analyse and to characterise the mutational spectrum induced by this arsenic compound, to understand its mechanism of action. RT-PCR analysis of Tk cDNA and PCR amplifications of eight selected microsatellite sequences, located on chromosome 11, were used to carry out this screening. Our results show that, in mouse lymphoma cells, ATO is a strong clastogenic compound inducing large deletions, at chromosomal level, covering the Tk gene, as well as other regions of chromosome 11.
Collapse
Affiliation(s)
- Carolina Soriano
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
20
|
Dopp E, von Recklinghausen U, Hartmann LM, Stueckradt I, Pollok I, Rabieh S, Hao L, Nussler A, Katier C, Hirner AV, Rettenmeier AW. Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes. Drug Metab Dispos 2008; 36:971-9. [PMID: 18256204 DOI: 10.1124/dmd.107.019034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Epidemiological studies have indicated that exposure of humans to inorganic arsenic in drinking water is associated with the occurrence of bladder cancer. The mechanisms by which arsenic induces this malignancy are still uncertain; however, arsenic metabolites are suspected to play a pivotal role. The aim of the present study was the investigation of uptake capabilities of human urothelial cells (UROtsa) compared with primary human hepatocytes (phH) as well as the intracellular distribution of the arsenic species. Additionally, we were interested in the cyto- and genotoxic potential (comet assay, radical generation) of the different arsenic compounds in these two cell types. Our results show that UROtsa cells accumulate higher amounts of the arsenic species than the phH. Differential centrifugation revealed that the arsenic compounds are preferentially distributed into nuclei and ribosomes. After 24-h exposure, arsenic is mainly found in the ribosomes of UROtsa cells and in the nuclei and mitochondria of phH. In contrast to the pentavalent arsenic species, the trivalent species induced a 4- to 5-fold increase of DNA damage in hepatocytes. Radical generation, measured by thiobarbituric acid reactive substances, was more pronounced in hepatocytes than in urothelial cells. In summary, the uptake of arsenic compounds appears to be highly dependent upon cell type and arsenic species. The nonmethylating urothelial cells accumulate higher amounts of arsenic species than the methylating hepatocytes. However, cyto- and genotoxic effects are more distinct in hepatocytes. Further studies are needed to define the implications of the observed accumulation in cellular organelles for the carcinogenic activity of arsenic.
Collapse
Affiliation(s)
- Elke Dopp
- Institute of Hygiene and Occupational Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVES Epidemiological data indicate the existence of wide interindividual differences in arsenic metabolism. It has recently been shown that arsenic(III)methyltransferase (AS3MT) enzyme catalyses the methylation of arsenite and monomethylarsonous acid (MMA). Thus, genetic variations in the AS3MT gene could explain, at least partly, the interindividual variation in the response to arsenic exposure. In an earlier study, we have demonstrated that the AS3MT Met(287)Thr (C/T) polymorphism affected the urinary arsenic profile in a Chilean group of men (n=50) occupationally exposed to arsenic. METHODS To confirm, the influence of the Met(287)Thr polymorphism in the metabolism of arsenic, a total of 207 Chilean men working at the copper industry were genotyped and their urinary profiles determined. RESULTS The results confirm that Met(287)Thr polymorphism does influence arsenic metabolism in this population. Those carriers of the variant ((287)Thr) had a higher methylation efficiency, excreting 4.63% more MMA in urine (P=0.0007) and presenting a 2.98 times higher odd of excreting levels of MMA over the standard (P=0.011) than the participants homozygous for the normal allele. CONCLUSION We can conclude that individuals with the (287)Thr variant display increased arsenic methylation; thus, those participants might be at increased risk for the toxic and genotoxic effects of arsenic exposure.
Collapse
|
22
|
McNeely SC, Taylor BF, States JC. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent. Toxicol Appl Pharmacol 2008; 231:61-7. [PMID: 18501396 DOI: 10.1016/j.taap.2008.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/26/2008] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr(161) phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.
Collapse
Affiliation(s)
- Samuel C McNeely
- Department of Pharmacology and Toxicology, Center for Environmental Genomics and Integrative Biology, Center for Genetics and Molecular Medicine and Brown Cancer Center, University of Louisville, 570 S. Preston St. Suite 221, Louisville, KY 40202, USA
| | | | | |
Collapse
|
23
|
Taylor BF, McNeely SC, Miller HL, States JC. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization. Toxicol Appl Pharmacol 2008; 230:235-46. [PMID: 18485433 DOI: 10.1016/j.taap.2008.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of alpha-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of alpha-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. gamma-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.
Collapse
Affiliation(s)
- B Frazier Taylor
- Department of Pharmacology and Toxicology, Center for Environmental Genomics and Integrative Biology, Center for Genetics and Molecular Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
24
|
Kitchin KT, Wallace K. The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 2008; 102:532-9. [DOI: 10.1016/j.jinorgbio.2007.10.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/19/2007] [Accepted: 10/29/2007] [Indexed: 02/01/2023]
|
25
|
Development of a human physiologically based pharmacokinetic (PBPK) model for inorganic arsenic and its mono- and di-methylated metabolites. J Pharmacokinet Pharmacodyn 2007; 35:31-68. [DOI: 10.1007/s10928-007-9075-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
|
26
|
Kligerman AD, Tennant AH. Insights into the carcinogenic mode of action of arsenic. Toxicol Appl Pharmacol 2007; 222:281-8. [PMID: 17118416 DOI: 10.1016/j.taap.2006.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 12/14/2022]
Abstract
That arsenic can induce cancer in humans has been known since the late 17th century, yet how arsenic induces cancer has been the subject of numerous scientific publications. Various modes of action (MOA) have been proposed for arsenic's carcinogenicity. In this paper we review our previous studies on the ability of arsenicals to cause DNA damage, the relative inability of these arsenicals to induce point mutations, and the involvement of arsenicals in spindle disruption. We present new evidence that shows that reduced glutathione (GSH) can chemically reduce inactive pentavalent arsenicals to trivalent arsenicals which can disrupt tubulin polymerization, and show that reactive oxygen species (ROS) are most likely not involved in tubulin disruption. A hypothesis is also presented on how arsenic may induce stable chromosome aberrations (CAs) that can lead to cancer, thus supporting a role for genetic damage in the MOA for arsenic. We then propose promising areas of research that might give insight into the MOA of arsenic.
Collapse
Affiliation(s)
- A D Kligerman
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, B143-06 US Environmental Protection Agency Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
27
|
Klein CB, Leszczynska J, Hickey C, Rossman TG. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol 2007; 222:289-97. [PMID: 17316729 PMCID: PMC1986829 DOI: 10.1016/j.taap.2006.12.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/26/2006] [Accepted: 12/29/2006] [Indexed: 11/18/2022]
Abstract
Arsenic in drinking water, a mixture of arsenite and arsenate, is associated with increased skin and other cancers in Asia and Latin America, but not the United States. Arsenite alone in drinking water does not cause skin cancers in experimental animals; therefore, it is not a complete carcinogen in skin. We recently showed that low concentrations of arsenite enhanced the tumorigenicity of solar UV irradiation in hairless mice, suggesting arsenic cocarcinogenesis with sunlight in skin cancer and perhaps with different carcinogenic partners for lung and bladder tumors. Cocarcinogenic mechanisms could include blocking DNA repair, stimulating angiogenesis, altering DNA methylation patterns, dysregulating cell cycle control, induction of aneuploidy and blocking apoptosis. Arsenicals are documented clastogens but not strong mutagens, with weak mutagenic activity reported at highly toxic concentrations of inorganic arsenic. Previously, we showed that arsenite, but not monomethylarsonous acid (MMA[III]), induced delayed mutagenesis in HOS cells. Here, we report new data on the mutagenicity of the trivalent methylated arsenic metabolites MMA(III) and dimethylarsinous acid [DMA(III)] at the gpt locus in Chinese hamster G12 cells. Both methylated arsenicals seemed mutagenic with apparent sublinear dose responses. However, significant mutagenesis occurred only at highly toxic concentrations of MMA(III). Most mutants induced by MMA(III) and DMA(III) exhibited transgene deletions. Some non-deletion mutants exhibited altered DNA methylation. A critical discussion of cell survival leads us to conclude that clastogenesis occurs primarily at highly cytotoxic arsenic concentrations, casting further doubt as to whether a genotoxic mode of action (MOA) for arsenicals is supportable.
Collapse
Affiliation(s)
- Catherine B. Klein
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - Joanna Leszczynska
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - Christina Hickey
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - Toby G. Rossman
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| |
Collapse
|
28
|
Colognato R, Coppedè F, Ponti J, Sabbioni E, Migliore L. Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 2007; 22:255-61. [PMID: 17369186 DOI: 10.1093/mutage/gem010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work focuses on the analysis of genotoxic effects on human peripheral lymphocytes exposed in vitro to different arsenic (As) compounds by means of the cytokinesis-block micronucleus assay. The study was carried out by challenging peripheral human lymphocytes with six As compounds in trivalent or pentavalent forms such as arsenite (As(III)) and arsenate (As(V)) and organoarsenic species such as monomethylarsonous acid (MMAs(III)), monomethylarsonic acid (MMAs(V)), dimethylarsinic acid (DMAs(V)) and trymethylarsine oxide (TMAO(V)). For As(III) and As(V) at concentrations of 4 and 32 microM, respectively, an increase of micronuclei (MN) frequency was found. MMAs(III) and MMAs(V) induced a statistically significant increase of MN frequency at the dose of 2 and 500 microM, respectively. For DMAs(V), no significant increase of MN was observed, although a decrease of the nuclear division index (NDI) was evident, indicating a cytotoxic effect. The genotoxic mechanism of action of MMAs(III) was further evaluated by means of fluorescence in situ hybridization analysis. Due to a higher percentage of centromere-positive MN, MMAs(III) showed a clear aneuploidogenic property. Finally, for TMAO(V) no genotoxicity was observed up to 1 mM. These results show how speciation is important in determining the genotoxic and cytotoxic effects of As compounds in human peripheral lymphocytes and support the emerging hypothesis that the induction of aneuploidy could be a mechanism by which As exerts its carcinogenic properties.
Collapse
Affiliation(s)
- R Colognato
- Department of Human and Environmental Sciences, University of Pisa, Via S. Giuseppe 22, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
29
|
Hughes MF, Kenyon EM, Kitchin KT. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water. Toxicol Appl Pharmacol 2007; 222:399-404. [PMID: 17379267 DOI: 10.1016/j.taap.2007.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Inorganic arsenic (iAs), an environmental drinking water contaminant, is a human toxicant and carcinogen. The public health community has developed recommendations and regulations that limit human exposure to iAs in drinking water. Although there is a vast amount of information available to regulators on the exposure, disposition and the health-related effects of iAs, there is still critical information about the toxicology of this metalloid that is needed. This necessary information includes identification of the chemical species of arsenic that is (are) the active toxicant(s), the mode(s) of action for its various toxicities and information on potentially susceptible populations. Because of these unknown factors, the risk assessment of iAs still incorporates default assumptions, leading to uncertainties in the overall assessment. The characteristics of a scientifically defensible risk assessment for iAs are that it must: (1) quantitatively link exposure and target tissue dose of active metabolites to key events in the mode of action for major health effects and (2) identify sources of variation in susceptibility to arsenic-induced health effects and quantitatively evaluate their impact wherever possible. Integration of research to address these goals will better protect the health of iAs-exposed populations.
Collapse
Affiliation(s)
- Michael F Hughes
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, MD B143-01, Research Triangle Park, NC 27711, USA.
| | | | | |
Collapse
|