1
|
Pandey S, Madreiter-Sokolowski CT, Mangmool S, Parichatikanond W. High Glucose-Induced Cardiomyocyte Damage Involves Interplay between Endothelin ET-1/ET A/ET B Receptor and mTOR Pathway. Int J Mol Sci 2022; 23:13816. [PMID: 36430296 PMCID: PMC9699386 DOI: 10.3390/ijms232213816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ETA-R/ETB-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ETA-R alone by ambrisentan or ETA-R/ETB-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Refaie MMM, Abdel-Gaber SA, Rahman SAAE, Hafez SMNA, Khalaf HM. Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology 2022; 465:153042. [PMID: 34800596 DOI: 10.1016/j.tox.2021.153042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
5-fluorouracil (5-FU) is a widely used chemotherapeutic agent but cardiotoxicity challenges its clinical usefulness. Thus, searching for more cardioprotective drugs is highly required to prevent the accompanied cardiac hazards. Up to date, the different mechanisms involved in 5-FU cardiotoxicity are still unclear and there is no evaluation of bosentan's role in controlling these cardiac complications. This forced us to deeply study and evaluate the possible cardiopreserving properties of bosentan and different mechanisms involved in mediating it. 32 Wistar albino rats were included in our experiment and induction of cardiotoxicity was performed via administration of 5-FU (150 mg/kg) on 5th day of the experiment by intraperitoneal (i.p.) injection with or without co-administration of bosentan (50 mg/kg/day) orally for 7days. Our data revealed that 5-FU could induce cardiotoxicity which was detected as significant increases of troponin I, lactate dehydrogenase (LDH), creatine kinase- MB (CK-MB), endothelin receptors, malondialdehyde (MDA), toll like receptor4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NFκB), and caspase 3 levels. However, there is marked decrease in endothelial nitric oxide synthase (eNOS), reduced glutathione (GSH) and total antioxidant capacity (TAC). In addition, the histopathological examination showed severe toxic features of cardiac injury. Interestingly, co-administration of bosentan could ameliorate 5-FU-induced cardiotoxicity via improving the detected biochemical and histopathological changes besides modulation of TLR4/MyD88/NFκB signaling pathway, eNOS, and endothelin receptors. Bosentan had a significant cardioprotective effect against 5-FU induced cardiac damage. This effect may be attributed to its ability to inhibit endothelin receptors, stimulates eNOS, anti-oxidant, anti-inflammatory, anti-apoptotic properties with modulation of TLR4/MyD88/NFκB signaling pathway.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| | | | | | - Hanaa Mohamed Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| |
Collapse
|
3
|
Cayir A, Ugan RA, Albayrak A, Kose D, Akpinar E, Cayir Y, Atmaca HT, Bayraktutan Z, Kara M. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus. J Endocrinol Invest 2015; 38:987-98. [PMID: 25847324 DOI: 10.1007/s40618-015-0282-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/24/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE The aim of this study is to show the effect of a new mechanism on endothelin (ET) receptors in the physiopathology of diabetes-related pulmonary injury. We tested the hypothesis that dual ET-1 receptor antagonism via bosentan can reverse diabetes-induced lung injury. METHODS The rats (24 male) were separated into four groups: group 1 (HEALTHY): Control group; group 2 (DM): Streptozotocin 60 mg/kg (i.p.); group 3 (DM + BOS-1): Diabetes + bosentan 50 mg/kg per-os; group 4 (DM + BOS-2): Diabetes + bosentan 100 mg/kg per-os. The bosentan treatment was initiated immediately after the onset of STZ-induced diabetes and continued for 6 weeks. RESULTS In the treatment group, SOD activity was significantly increased, although GSH and MDA levels and TNF-α and TGF-β gene expression were decreased. Bosentan 50 mg/kg and bosentan 100 mg/kg showed a significantly down-regulatory effect on ET-1, ET-A, and ET-B mRNA expression. CONCLUSIONS In conclusion, increased endothelin levels in the lung associated with diabetes may be one cause of endothelial dysfunction, cytokine increase, and oxidant/antioxidant imbalance in the pathogenesis of complications that may develop during diabetes. With its multiple effects, bosentan therapy may be an effective option against complications that may develop in association with diabetes.
Collapse
Affiliation(s)
- A Cayir
- Department of Pediatric Endocrinology, Erzurum Regional Education and Research Hospital, 25100, Erzurum, Turkey,
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Endothelin receptor blocker bosentan inhibits hypertensive cardiac fibrosis in pressure overload-induced cardiac hypertrophy in rats. Cardiovasc Endocrinol 2013. [DOI: 10.1097/xce.0000000000000010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Su Y, Liu W, Ma L, Liu X, Liu Z, Zhu B. Scutellarin inhibits translocation of protein kinase C in diabetic thoracic aorta of the rat. Clin Exp Pharmacol Physiol 2012; 39:136-40. [PMID: 22092277 DOI: 10.1111/j.1440-1681.2011.05645.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aims of the present study were to explore the effects of: (i) scutellarin (Scu) on protein kinase C (PKC) translocation caused by diabetic conditions in diabetic rat thoracic aorta; and (ii) phorbol-12-myristate-13-acetate (PMA) treatment of cultured thoracic aortic smooth muscle cells. Diabetes was induced in rats by streptozotocin and diabetic rats were divided into two groups: (i) an Scu-treated group, administered 0.1 g/kg Scu by gavage; and (ii) an aminoquanidine (AG)-treated group, which received dietary supplementation of 0.1% AG from Week 1 of diabetes induction. After 10 weeks, rats were killed and thoracic aortic smooth muscle cells were isolated and cultured. Cell fractions were obtained by ultracentrifugation and PKC activity was assayed by ELISA, whereas the distribution of PKC was verified by western immunoblotting. The PKC activity in the membrane fraction of thoracic aortic smooth muscle cells was significantly increased in diabetic compared with control rats, whereas the administration of Scu significantly inhibited this increase. Phorbol myristate acetate (100 nmol/L, 10 min) induced the translocation of the PKCα, βI, βII, δ and ε isoforms, whereas 48 h pretreatment of cells with 1 μmol/L Scu significantly inhibited PMA-induced PKCβI, βII and δ translocation. The results of the present study suggest that Scu inhibits the translocation of PKC in vivo and in vitro and may have value as a drug in the treatment of diabetic complications via its inhibition of PKC βI, βII and δ translocation.
Collapse
Affiliation(s)
- Yingxue Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
6
|
Loganathan R, Novikova L, Boulatnikov IG, Smirnova IV. Exercise-induced cardiac performance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylglycerol. J Appl Physiol (1985) 2012; 113:817-26. [PMID: 22797313 DOI: 10.1152/japplphysiol.01626.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear. We investigated the possibility that exercise training modulates PKC-βII signaling to elicit its beneficial effects on the diabetic heart. bio-breeding diabetic resistant rats, a model reminiscent of Type 1 diabetes in humans, were randomly assigned to four groups: 1) nonexercised nondiabetic (NN); 2) nonexercised diabetic (ND); 3) exercised nondiabetic; and 4) exercised diabetic. Treadmill training was initiated upon the onset of diabetes. At the end of 8 wk, left ventricular (LV) hemodynamic assessment revealed compromised function in ND compared with the NN group. LV myocardial histology revealed increased collagen deposition in ND compared with the NN group, while electron microscopy showed a reduction in the viable mitochondrial fraction. Although the PKC-βII levels and activity were unchanged in the diabetic heart, the DAG levels were increased. With exercise training, the deterioration of LV structure and function in diabetes was attenuated. Notably, improved cardiac performance in training was associated with a decrease in myocardial DAG levels in diabetes. Exercise-induced benefits on cardiac performance in diabetes may be mediated by prevention of an increase in myocardial DAG levels.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas 66160-7601, USA
| | | | | | | |
Collapse
|
7
|
Choudhary G, Troncales F, Martin D, Harrington EO, Klinger JR. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J Heart Lung Transplant 2011; 30:827-33. [PMID: 21550822 DOI: 10.1016/j.healun.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Maladaptive right ventricular (RV) hypertrophic responses lead to RV dysfunction and failure in patients with pulmonary arterial hypertension, but the mechanisms responsible for these changes are not well understood. The objective of this study was to evaluate the effect of treatment with bosentan on RV hypertrophy (RVH), fibrosis and expression of protein kinase C (PKC) isoforms in the RV of rats exposed to chronic hypoxia. METHODS Adult Sprague-Dawley rats were housed in normoxia or hypoxia (FIO(2) = 10%) and administered vehicle or 100 mg/kg/day bosentan. After 3 weeks, echocardiographic and hemodynamic assessment was performed. PKC, procollagen-1 and collagen expression levels were assessed using immunoblot or colorimetric assay. RESULTS RV systolic pressure (RVSP) and RVH were higher in hypoxic compared with normoxic animals (RVSP: 72 ± 4 vs 25 ± 2 mm Hg, p < 0.05; RVH: 1.2 ± 0.06 vs 0.5 ± 0.03 mg/g body weight, p < 0.05). Bosentan had no effect on RVSP or mass in normoxic animals, but did attenuate RVH in hypoxic animals (hypoxic/vehicle: 1.2 ± 0.06; hypoxic/bosentan: 1.0 ± 0.05 mg/g body weight; p < 0.05). Hypoxia increased RV procollagen-1, and total collagen expression, effects that were attenuated by bosentan treatment. Hypoxia increased RV total and cytosolic PKC-δ protein expression, but had no effect on PKC-α or -ε isoforms. Administration with bosentan did not affect total PKC-δ protein expression. However, animals treated with bosentan had an increase in membranous PKC-δ when exposed to hypoxia. CONCLUSIONS Bosentan inhibits RVH and RV collagen expression in rats exposed to chronic hypoxia, possibly via alteration of PKC-δ activity.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA.
| | | | | | | | | |
Collapse
|
8
|
Differential expression of protein kinase C isoforms in coronary arteries of diabetic mice lacking the G-protein Gα11. Cardiovasc Diabetol 2010; 9:93. [PMID: 21190563 PMCID: PMC3024287 DOI: 10.1186/1475-2840-9-93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/29/2010] [Indexed: 01/28/2023] Open
Abstract
Background Diabetes mellitus counts as a major risk factor for developing atherosclerosis. The activation of protein kinase C (PKC) is commonly known to take a pivotal part in the pathogenesis of atherosclerosis, though the influence of specific PKC isozymes remains unclear. There is evidence from large clinical trials suggesting excessive neurohumoral stimulation, amongst other pathways leading to PKC activation, as a central mechanism in the pathogenesis of diabetic heart disease. The present study was therefore designed to determine the role of Gq-protein signalling via Gα11 in diabetes for the expression of PKC isozymes in the coronary vessels. Methods The role of Gα11 in diabetes was examined in knockout mice with global deletion of Gα11 compared to wildtype controls. An experimental type 1-diabetes was induced in both groups by injection of streptozotocin. Expression and localization of the PKC isozymes α, βII, δ, ε, and ζ was examined by quantitative immunohistochemistry. Results 8 weeks after induction of diabetes a diminished expression of PKC ε was observed in wildtype animals. This alteration was not seen in Gα11 knockout animals, however, these mice showed a diminished expression of PKCζ. Direct comparison of wildtype and knockout control animals revealed a diminished expression of PKC δ and ε in Gα11 knockout animals. Conclusion The present study shows that expression of the nPKCs δ and ε in coronary vessels is under control of the g-protein Gα11. The reduced expression of PKC ζ that we observed in coronary arteries from Gα11-knockout mice compared to wildtype controls upon induction of diabetes could reduce apoptosis and promote plaque stability. These findings suggest a mechanism that may in part underlie the therapeutic benefit of RAS inhibition on cardiovascular endpoints in diabetic patients.
Collapse
|