1
|
Liang F, Zhao H, Liu G, Huang M, Peng Z. Hsa_circ_ROBO1 competes with miR-324-3p and upregulates NME1 to promote tumor metastasis in nasopharyngeal carcinoma. Discov Oncol 2024; 15:398. [PMID: 39222250 PMCID: PMC11369130 DOI: 10.1007/s12672-024-01220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This work aims to explore circ_ROBO1's function in nasopharyngeal carcinoma (NPC). METHODS circ_ROBO1 expression in NPC tissues and cell lines was measured. The regulation of circ_ROBO1 and/or miR-324-3p on the proliferation, migration, invasion, and apoptosis of NPC cells was investigated by functional experiments. The interplay between circ_ROBO1, miR-324-3p, and NME1 was explored. Tumor growth and metastasis were studied in mice. RESULTS circ_ROBO1 was overexpressed in NPC. Knockdown of circ_ROBO1 repressed proliferation, migration, and invasion and induced apoptosis of NPC cells. Loss of circ_ROBO1 reduced tumor growth and metastasis in mice. circ_ROBO1 competed with miR-324-3p to upregulate NME1. Lowering miR-324-3p expression impaired the effect of knockdown of circ_ROBO1on NPC cells. CONCLUSION Overexpressed circ_ROBO1 promotes NPC development by modifying the miR-324-3p/NME1 axis.
Collapse
Affiliation(s)
- FenFeng Liang
- Department of Otolaryngology and Head Surgery, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - Hai Zhao
- Department of Otolaryngology and Head Surgery, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - GengChun Liu
- Department of Radiotherapy, Xiangtan Central Hospital, No.120, Heping Road, Yuhu District, Xiangtan, 411100, Hunan, China
| | - MeiLing Huang
- Department of Otolaryngology and Head Surgery, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - ZhengJia Peng
- Department of Otolaryngology and Head Surgery, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China.
| |
Collapse
|
2
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
3
|
Watanabe M, Sasaki N. Mechanisms and Future Research Perspectives on Mitochondrial Diseases Associated with Isoleucyl-tRNA Synthetase Gene Mutations. Genes (Basel) 2024; 15:894. [PMID: 39062673 PMCID: PMC11276352 DOI: 10.3390/genes15070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for the accurate translation of genetic information. IARS1 and IARS2 are isoleucyl-tRNA synthetases functioning in the cytoplasm and mitochondria, respectively, with genetic mutations in these enzymes causing diverse clinical phenotypes in specific organs and tissues. Mutations in IARS1 and IARS2 have recently been linked to mitochondrial diseases. This review aims to explore the relationship between IARS1 and IARS2 and these diseases, providing a comprehensive overview of their association with mitochondrial diseases. Mutations in IARS1 cause weak calf syndrome in cattle and mitochondrial diseases in humans, leading to growth retardation and liver dysfunction. Mutations in IARS2 are associated with Leigh syndrome, craniosynostosis and abnormal genitalia syndrome. Future research is expected to involve genetic analysis of a larger number of patients, identifying new mutations in IARS1 and IARS2, and elucidating their impact on mitochondrial function. Additionally, genetically modified mice and the corresponding phenotypic analysis will serve as powerful tools for understanding the functions of these gene products and unraveling disease mechanisms. This will likely promote the development of new therapies and preventive measures.
Collapse
Affiliation(s)
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Kitasato University, 35-1, Higashi-23, Towada 034-8628, Aomori, Japan
| |
Collapse
|
4
|
Luxton GG. The bioenergetics of nucleocytoplasmic transport. J Cell Biol 2024; 223:e202405121. [PMID: 38847483 PMCID: PMC11157339 DOI: 10.1083/jcb.202405121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
How nucleocytoplasmic transport (NCT) rates change due to cellular physiology-mediated fluctuations in GTP availability remains unclear. In this issue, Scott et al. (https://doi.org/10.1083/jcb.202308152) demonstrate that cell migration, spreading, and nucleocytoskeletal coupling impact GTP levels, thereby regulating NCT, RNA export, and protein synthesis.
Collapse
Affiliation(s)
- G.W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. J Cell Biol 2024; 223:e202308152. [PMID: 38683248 PMCID: PMC11059771 DOI: 10.1083/jcb.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
6
|
Ferrucci V, Lomada S, Wieland T, Zollo M. PRUNE1 and NME/NDPK family proteins influence energy metabolism and signaling in cancer metastases. Cancer Metastasis Rev 2024; 43:755-775. [PMID: 38180572 PMCID: PMC11156750 DOI: 10.1007/s10555-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany.
- Medical Faculty Mannheim, Ludolf Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'AOU' Federico II Policlinico, 80131, Naples, Italy.
| |
Collapse
|
7
|
Ullah Khan S, Daniela Hernández-González K, Ali A, Shakeel Raza Rizvi S. Diabetes and the fabkin complex: A dual-edged sword. Biochem Pharmacol 2024; 223:116196. [PMID: 38588831 DOI: 10.1016/j.bcp.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Fabkin complex, composed of FABP4, ADK, and NDPKs, emerges as a novel regulator of insulin-producing beta cells, offering promising prospects for diabetes treatment. Our approach, which combines literature review and database analysis, sets the stage for future research. These findings hold significant implications for both diabetes treatment and research, as they present potential therapeutic targets for personalized treatment, leading to enhanced patient outcomes and a deeper comprehension of the disease. The multifaceted role of the Fabkin complex in glucose metabolism, insulin resistance, anti-inflammation, beta cell proliferation, and vascular function underscores its therapeutic potential, reshaping diabetes management and propelling advancements in the field.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan
| | - Karla Daniela Hernández-González
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000 Xalapa, Veracruz, México
| | - Amir Ali
- Nanoscience and Nanotechnology Program, Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan.
| |
Collapse
|
8
|
Mao X, Li L, Abubakar YS, Li Y, Luo Z, Chen M, Zheng W, Wang Z, Zheng H. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9637-9646. [PMID: 38642053 DOI: 10.1021/acs.jafc.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zenghong Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
9
|
Wang C, Zhao F, Wu Z, Cai X, Zhou M, Hou Y. Mitochondria-Associated Protein FgNdk1 Regulates the Development, Pathogenicity, and SDHI Fungicide Sensitivity of Fusarium graminearum by Interacting with Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3913-3925. [PMID: 38355300 DOI: 10.1021/acs.jafc.3c07934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nucleoside diphosphate kinase (NDK) plays an important role in many cellular processes in all organisms. In this study, we functionally characterized a nucleoside diphosphate kinase (FgNdk1) in Fusarium graminearum, a causal agent of Fusarium head blight (FHB). FgNdk1 was involved in the generation of energy in the electron-transfer chain by interacting with succinate dehydrogenase (FgSdhA, FgSdhC1, and FgSdhC2). Deletion of FgNdk1 not only resulted in abnormal mitochondrial morphology, decreased ATP content, defective fungal development, and impairment in the formation of the toxisome but also led to the suppressed expression level of DON biosynthesis enzymes, decreased DON biosynthesis, and declined pathogenicity as well. Furthermore, deletion of FgNdk1 caused increasing transcriptional levels of FgSdhC1 and FgdhC2, in the presence of pydiflumetofen, related to the decreased sensitivity to SDHI fungicides. Overall, this study identified a new regulatory mechanism of FgNdk1 in the pathogenicity and SDHI fungicide sensitivity of Fusarium graminearum.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - ZhiWen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaowei Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
10
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573651. [PMID: 38234722 PMCID: PMC10793428 DOI: 10.1101/2023.12.29.573651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
11
|
Prunier C, Chavrier P, Boissan M. Mechanisms of action of NME metastasis suppressors - a family affair. Cancer Metastasis Rev 2023; 42:1155-1167. [PMID: 37353690 PMCID: PMC10713741 DOI: 10.1007/s10555-023-10118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.
Collapse
Affiliation(s)
- Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie - Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
- Laboratoire de Biochimie Endocrinienne Et Oncologique, Oncobiologie Cellulaire Et Moléculaire, APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
12
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
13
|
Watanabe M, Shishido K, Kanehira N, Hiura K, Nakano K, Okamura T, Ando R, Sasaki H, Sasaki N. Molecular and Pathological Analyses of IARS1-Deficient Mice: An IARS Disorder Model. Int J Mol Sci 2023; 24:ijms24086955. [PMID: 37108118 PMCID: PMC10138339 DOI: 10.3390/ijms24086955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Most mitochondrial diseases are hereditary and highly heterogeneous. Cattle born with the V79L mutation in the isoleucyl-tRNA synthetase 1 (IARS1) protein exhibit weak calf syndrome. Recent human genomic studies about pediatric mitochondrial diseases also identified mutations in the IARS1 gene. Although severe prenatal-onset growth retardation and infantile hepatopathy have been reported in such patients, the relationship between IARS mutations and the symptoms is unknown. In this study, we generated hypomorphic IARS1V79L mutant mice to develop an animal model of IARS mutation-related disorders. We found that compared to wild-type mice, IARSV79L mutant mice showed a significant increase in hepatic triglyceride and serum ornithine carbamoyltransferase levels, indicating that IARS1V79L mice suffer from mitochondrial hepatopathy. In addition, siRNA knockdown of the IARS1 gene decreased mitochondrial membrane potential and increased reactive oxygen species in the hepatocarcinoma-derived cell line HepG2. Furthermore, proteomic analysis revealed decreased levels of the mitochondrial function-associated protein NME4 (mitochondrial nucleoside diphosphate kinase). Concisely, our mutant mice model can be used to study IARS mutation-related disorders.
Collapse
Affiliation(s)
- Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Koya Shishido
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Nao Kanehira
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Ryo Ando
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| |
Collapse
|
14
|
Lu Y, Liu Q, Fu B, Li P, Xu W. Label-free MIP-SERS biosensor for sensitive detection of colorectal cancer biomarker. Talanta 2023; 258:124461. [PMID: 36963151 DOI: 10.1016/j.talanta.2023.124461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Early diagnosis of colorectal cancer can significantly improve the overall survival rate of patients, thus selective and sensitive detection of biomarkers in serum samples is vital for early detection and dynamic monitoring of cancer. Nucleoside diphosphate kinase NM23-H2 (NDKB) is an important biomarker and therapeutic target for the diagnosis of colorectal cancer (CRC). Here, a label-free and ultrasensitive biosensor for NDKB protein markers is presented for the first time, combining the characteristic capture selectivity of molecularly imprinted polymers (MIPs) and the ultrasensitivity of surface-enhanced Raman Spectroscopy (SERS) technique. The imprinted cavity serves as the only channel for Raman reporter to approach the SERS substrate, providing highly complementary non-covalent binding sites that selectively capture the target protein based on ionic, hydrogen bonding or hydrophobic interactions. Specific recognition of the NDKB protein will perfectly fill the imprinted cavity, which makes it difficult for the Raman reporter to get close to the SERS substrate, and the Raman signal decreases significantly, while the proteins of other structural sizes can not match the imprinted cavity. Through the change of the Raman signal, the proposed biosensor can realize the ultra-sensitive detection of NDKB, and the limit of detection (LOD) is 0.82 pg/mL. Compared with the traditional immunoassay technology, this combined approach with the advantages of low cost, fast response, high sensitivity and selectivity, provides clinical application potential for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Yulin Lu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qunshan Liu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bangguo Fu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiping Xu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui, Hefei, 230001, China.
| |
Collapse
|
15
|
Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase. DNA Repair (Amst) 2022; 119:103408. [PMID: 36179537 DOI: 10.1016/j.dnarep.2022.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.
Collapse
|
16
|
Extracellular Vesicle-Mediated Metastasis Suppressors NME1 and NME2 Modify Lipid Metabolism in Fibroblasts. Cancers (Basel) 2022; 14:cancers14163913. [PMID: 36010906 PMCID: PMC9406105 DOI: 10.3390/cancers14163913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Communication between cancer and stromal cells involves paracrine signalling mediated by extracellular vesicles (EVs). EVs transmit essential factors among cells of the tumour microenvironment. EVs derived from both cancer and stromal cells have been implicated in tumour progression. In this study, we focused on the first identified metastasis suppressor NME1, and on its close homolog NME2, and investigated their function in EVs in the interplay between cancer and stromal cells. Abstract Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
Collapse
|
17
|
Tantawy E, Schwermann N, Ostermeier T, Garbe A, Bähre H, Vital M, Winstel V. Staphylococcus aureus Multiplexes Death-Effector Deoxyribonucleosides to Neutralize Phagocytes. Front Immunol 2022; 13:847171. [PMID: 35355997 PMCID: PMC8960049 DOI: 10.3389/fimmu.2022.847171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Adenosine synthase A (AdsA) is a key virulence factor of Staphylococcus aureus, a dangerous microbe that causes fatal diseases in humans. Together with staphylococcal nuclease, AdsA generates deoxyadenosine (dAdo) from neutrophil extracellular DNA traps thereby igniting caspase-3-dependent cell death in host immune cells that aim at penetrating infectious foci. Powered by a multi-technological approach, we here illustrate that the enzymatic activity of AdsA in abscess-mimicking microenvironments is not restricted to the biogenesis of dAdo but rather comprises excessive biosynthesis of deoxyguanosine (dGuo), a cytotoxic deoxyribonucleoside generated by S. aureus to eradicate macrophages of human and animal origin. Based on a genome-wide CRISPR-Cas9 knock-out screen, we further demonstrate that dGuo-induced cytotoxicity in phagocytes involves targeting of the mammalian purine salvage pathway-apoptosis axis, a signaling cascade that is concomitantly stimulated by staphylococcal dAdo. Strikingly, synchronous targeting of this route by AdsA-derived dGuo and dAdo boosts macrophage cell death, indicating that S. aureus multiplexes death-effector deoxyribonucleosides to maximize intra-host survival. Overall, these data provide unique insights into the cunning lifestyle of a deadly pathogen and may help to design therapeutic intervention strategies to combat multidrug-resistant staphylococci.
Collapse
Affiliation(s)
- Eshraq Tantawy
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tjorven Ostermeier
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Annette Garbe
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Han J, Ma S, Liang B, Bai T, Zhao Y, Ma Y, MacHugh DE, Ma L, Jiang L. Transcriptome Profiling of Developing Ovine Fat Tail Tissue Reveals an Important Role for MTFP1 in Regulation of Adipogenesis. Front Cell Dev Biol 2022; 10:839731. [PMID: 35350385 PMCID: PMC8957931 DOI: 10.3389/fcell.2022.839731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Fat-tail sheep exhibit a unique trait whereby substantial adipose tissue accumulates in the tail, a phenotype that is advantageous in many agroecological environments. In this study, we conducted histological assays, transcriptome analysis and functional assays to examine morphogenesis, characterize gene expression, and elucidate mechanisms that regulate fat tail development. We obtained the microstructure of tail before and after fat deposition, and demonstrated that measurable fat deposition occurred by the 80-day embryo (E80) stage, earlier than other tissues. Transcriptome profiling revealed 1,058 differentially expressed genes (DEGs) with six markedly different expression trends. GSEA enrichment and other downstream analyses showed important roles for genes and pathways involving in metabolism and that mitochondrial components were specifically overexpressed in the fat tail tissue of the 70-day embryo (E70). One hundred and eighty-three genes were further identified by leading edge gene analysis, among which, 17 genes have been reported in previous studies, including EEF1D, MTFP1, PPP1CA, PDGFD. Notably, the MTFP1 gene was highly correlated with the expression of other genes and with the highest enrichment score and gene expression change. Knockdown of MTFP1 in isolated adipose derived stem cells (ADSCs) inhibited cell proliferation and migration ability, besides, promoted the process of adipogenesis in vitro.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Sijia Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Benmeng Liang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tianyou Bai
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuhetian Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
19
|
Miranda MR, Sayé M, Reigada C, Galceran F, Rengifo M, Maciel BJ, Digirolamo FA, Pereira CA. Revisiting trypanosomatid nucleoside diphosphate kinases. Mem Inst Oswaldo Cruz 2022; 116:e210339. [PMID: 35170678 PMCID: PMC8833001 DOI: 10.1590/0074-02760210339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles. OBJETIVE Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention. METHODS The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets. FINDINGS Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets. MAIN CONCLUSIONS NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.
Collapse
Affiliation(s)
- Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina,+ Corresponding author: /
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Facundo Galceran
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Marcos Rengifo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Belen J Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
20
|
Gomez Barroso JA, Miranda MR, Pereira CA, Garratt RC, Aguilar CF. X-ray diffraction and in vivo studies reveal the quinary structure of Trypanosoma cruzi nucleoside diphosphate kinase 1: a novel helical oligomer structure. Acta Crystallogr D Struct Biol 2022; 78:30-42. [PMID: 34981759 DOI: 10.1107/s2059798321011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan parasite that causes Chagas disease, which represents a serious health problem in the Americas. Nucleoside diphosphate kinases (NDPKs) are key enzymes that are implicated in cellular energy management. TcNDPK1 is the canonical isoform in the T. cruzi parasite. TcNDPK1 has a cytosolic, perinuclear and nuclear distribution. It is also found in non-membrane-bound filaments adjacent to the nucleus. In the present work, X-ray diffraction and in vivo studies of TcNDPK1 are described. The structure reveals a novel, multi-hexameric, left-handed helical oligomer structure. The results of directed mutagenesis studies led to the conclusion that the microscopic TcNDPK1 granules observed in vivo in T. cruzi parasites are made up by the association of TcNDPK1 oligomers. In the absence of experimental data, analysis of the interactions in the X-ray structure of the TcNDPK1 oligomer suggests the probable assembly and disassembly steps: dimerization, assembly of the hexamer as a trimer of dimers, hexamer association to generate the left-handed helical oligomer structure and finally oligomer association in a parallel manner to form the microscopic TcNDPK1 filaments that are observed in vivo in T. cruzi parasites. Oligomer disassembly takes place on the binding of substrate in the active site of TcNDPK1, leading to dissociation of the hexamers. This study constitutes the first report of such a protein arrangement, which has never previously been seen for any protein or NDPK. Further studies are needed to determine its physiological role. However, it may suggest a paradigm for protein storage reflecting the complex mechanism of action of TcNDPK1.
Collapse
Affiliation(s)
- Juan Arturo Gomez Barroso
- Laboratorio de Biología Molecular Estructural, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Mariana Reneé Miranda
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Alejandro Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense No. 400, São Carlos, São Paulo 13566-590, Brazil
| | - Carlos Fernando Aguilar
- Laboratorio de Biología Molecular Estructural, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
21
|
Min SH, Zheng QQ. Clinicopathological and prognostic significance of NM23 expression in patients with non-small cell lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27919. [PMID: 34964763 PMCID: PMC8615335 DOI: 10.1097/md.0000000000027919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND There is a heated debate on the clinicopathological features and prognostic significance with non-metastasis 23 (NM23) expression in patients with non-small cell lung cancer (NSCLC). Thus, we conducted this meta-analysis to evaluate the clinicopathological features and prognostic significance of NM23 for NSCLC patients. METHODS Pubmed, Embase, and Web of Science were exhaustively searched to identify relevant studies published prior to March, 2020. Odds radios (ORs) and hazard radios with 95% confidence intervals (CIs) were calculated to summarize the statistics of clinicopathological and prognostic assessments. Q-test and I2-statistic were utilized to assess heterogeneity across the included studies. We also performed subgroup analyses and meta-regression analyses to identify the source of heterogeneity. Publication bias was detected by Begg and Egger tests. Sensitivity analysis was used to value the stability of our results. All the data were analyzed using statistical packages implemented in R version 4.0.5. RESULTS Data from a total of 3170 patients from 36 studies were extracted. The meta-analysis revealed that low expression of NM23 was correlated with higher risk of NSCLC (OR = 4.35; 95% CI: 2.76-6.85; P < .01), poorer tumor node metastasis (TNM) staging (OR = 1.39; 95% CI: 1.01-1.90; P = .04), poorer differentiation degree (OR = 1.37; 95% CI: 1.01-1.86; P = .04), positive lymph node metastasis (OR = 1.83; 95% CI: 1.22-2.74; P < .01), lung adenocarcinoma (OR = 1.45; 95% CI: 1.20-1.75; P < .01), and poorer 5-year overall survival (OS) rate (hazard radio = 2.33; 95%CI: 1.32-4.11; P < .01). The subgroup analyses and meta-regression analyses suggested that the "Publication year", "Country", "Sample size", and "Cutoff value" might be the source of heterogeneity in TNM staging, differentiation degree, and lymph node metastasis. Both Begg test and Egger test verified that there were publication bias in 5-year OS rate. Sensitivity analysis supported the credibility of the results. CONCLUSION The reduced NM23 expression is strongly associated with higher risk of NSCLC, higher TNM staging, poorer differentiation degree, positive lymph node metastasis, lung adenocarcinoma, and poorer 5-year OS rate in NSCLC patients, which indicated that NM23 could serve as a biomarker predicating the clinicopathological and prognostic significance of NSCLC.
Collapse
Affiliation(s)
- Shi-hui Min
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qiang-qiang Zheng
- Department of Thoracic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
Lacombe ML, Lamarche F, De Wever O, Padilla-Benavides T, Carlson A, Khan I, Huna A, Vacher S, Calmel C, Desbourdes C, Cottet-Rousselle C, Hininger-Favier I, Attia S, Nawrocki-Raby B, Raingeaud J, Machon C, Guitton J, Le Gall M, Clary G, Broussard C, Chafey P, Thérond P, Bernard D, Fontaine E, Tokarska-Schlattner M, Steeg P, Bièche I, Schlattner U, Boissan M. The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biol 2021; 19:228. [PMID: 34674701 PMCID: PMC8529772 DOI: 10.1186/s12915-021-01155-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01155-5.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Frederic Lamarche
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Alyssa Carlson
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Sophie Vacher
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Céline Desbourdes
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Stéphane Attia
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Béatrice Nawrocki-Raby
- Reims Champagne Ardenne University, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, Reims, France
| | - Joël Raingeaud
- INSERM U1279, Gustave Roussy Institute, Villejuif, France
| | - Christelle Machon
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Jérôme Guitton
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Morgane Le Gall
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Cedric Broussard
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Philippe Chafey
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Patrice Thérond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.,EA7537, Paris Saclay University, Châtenay-Malabry, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Patricia Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Uwe Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Institut Universitaire de France (IUF), Grenoble, France.
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France. .,AP-HP, Laboratory of Biochemistry and Hormonology, Tenon Hospital, Paris, France.
| |
Collapse
|
23
|
Zhao G, Zhang X, Guo D, Wang H, Guo H, Tian M, Sun Q, Li H, Xu B, Guo X. Identification and characterization of an Apis cerana cerana nucleoside diphosphate kinase (AccNDPK) associated with oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104926. [PMID: 34446202 DOI: 10.1016/j.pestbp.2021.104926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) are widespread nucleotide-metabolizing enzymes that are involved in a variety of biological processes, including responses to oxidative stress. Although studies have been conducted on NDPKs in mammals and some plants, there is scant research on insect NDPKs, especially in honey bees. In the present study, we isolated AccNDPK from Apis cerana cerana. Sequence analysis showed that AccNDPK has high homology with many NDPKs and contains a highly conserved NDPK active site motif. Based on phylogenetic analysis, AccNDPK has a relatively recent evolutionary relationship with NDPKs in other hymenopteran insects. AccNDPK was found to be highly expressed in newly emerged honey bees and muscle tissues, and RT-qPCR analysis and bacteriostatic assays showed that the expression level of AccNDPK is affected by abnormal temperature, UV light, H2O2, heavy metals, and various pesticides. After AccNDPK knockdown, antioxidant-related genes, including AccCAT, AccCYP4G11, AccGSTS4, AccTpx1 and AccMsrA, were upregulated, whereas AccGSTD, AccGST1, AccHSP22.6 and AccTrx1 were downregulated. Furthermore, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities were significantly increased, and the tolerance of bees to oxidative stress caused by cyhalothrin was reduced by silencing of AccNDPK. Given these findings, we speculate that AccNDPK plays an important role in the oxidative stress response of A. cerana cerana.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
24
|
Dong Y, Han H, Li Y, Guo L. [Roles of Histidine Kinases and Histidine Phosphatases in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:646-652. [PMID: 34455734 PMCID: PMC8503980 DOI: 10.3779/j.issn.1009-3419.2021.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
蛋白磷酸化修饰是最常见、最重要的蛋白质翻译后修饰方式。磷酸化修饰在细胞的增殖、分化、发育和代谢等生物学过程中发挥了重要的调控功能,与肿瘤的发生和发展也密切相关。蛋白激酶和磷酸酶对蛋白磷酸化修饰具有普遍的开/关调控作用。真核生物的蛋白磷酸化主要发生在丝氨酸、苏氨酸和酪氨酸残基,他们在肿瘤发生和发展中的作用已经得到了广泛的研究。但关于组氨酸磷酸化的研究受限于质谱分析和富集技术的发展研究较少。近年来,随着相关技术的快速发展和新的组氨酸磷酸酶的发现,使得研究人员越来越多关注到组氨酸磷酸化在肿瘤中的作用。因此,本文旨在对组氨酸磷酸化调控相关的组氨酸激酶和组氨酸磷酸酶在肿瘤中的作用作一综述。
Collapse
Affiliation(s)
- Yafang Dong
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Huimin Han
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Yafeng Li
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Lili Guo
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
25
|
Gupta A, Sinha KM, Abdin MZ, Puri N, Selvapandiyan A. NDK/NME proteins: a host-pathogen interface perspective towards therapeutics. Curr Genet 2021; 68:15-25. [PMID: 34480234 DOI: 10.1007/s00294-021-01198-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, 122413, India
| | - Malik Z Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
26
|
Yu BYK, Tossounian MA, Hristov SD, Lawrence R, Arora P, Tsuchiya Y, Peak-Chew SY, Filonenko V, Oxenford S, Angell R, Gouge J, Skehel M, Gout I. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol 2021; 44:101978. [PMID: 33903070 PMCID: PMC8212152 DOI: 10.1016/j.redox.2021.101978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
The metastasis suppressor protein NME1 is an evolutionarily conserved and multifunctional enzyme that plays an important role in suppressing the invasion and metastasis of tumour cells. The nucleoside diphosphate kinase (NDPK) activity of NME1 is well recognized in balancing the intracellular pools of nucleotide diphosphates and triphosphates to regulate cytoskeletal rearrangement and cell motility, endocytosis, intracellular trafficking, and metastasis. In addition, NME1 was found to function as a protein-histidine kinase, 3′-5′ exonuclease and geranyl/farnesyl pyrophosphate kinase. These diverse cellular functions are regulated at the level of expression, post-translational modifications, and regulatory interactions. The NDPK activity of NME1 has been shown to be inhibited in vitro and in vivo under oxidative stress, and the inhibitory effect mediated via redox-sensitive cysteine residues. In this study, affinity purification followed by mass spectrometric analysis revealed NME1 to be a major coenzyme A (CoA) binding protein in cultured cells and rat tissues. NME1 is also found covalently modified by CoA (CoAlation) at Cys109 in the CoAlome analysis of HEK293/Pank1β cells treated with the disulfide-stress inducer, diamide. Further analysis showed that recombinant NME1 is efficiently CoAlated in vitro and in cellular response to oxidising agents and metabolic stress. In vitro CoAlation of recombinant wild type NME1, but not the C109A mutant, results in the inhibition of its NDPK activity. Moreover, CoA also functions as a competitive inhibitor of the NME1 NDPK activity by binding non-covalently to the nucleotide binding site. Taken together, our data reveal metastasis suppressor protein NME1 as a novel binding partner of the key metabolic regulator CoA, which inhibits its nucleoside diphosphate kinase activity via non-covalent and covalent interactions. NME1 is a major CoA-binding protein. CoA can bind NME1 through covalent and non-covalent interactions. NME1 CoAlation is induced by oxidative and metabolic stress in mammalian cells. CoA inhibits the NDPK activity of NME1 in vitro.
Collapse
Affiliation(s)
- Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ryan Lawrence
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Pallavi Arora
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Sally Oxenford
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Richard Angell
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, United Kingdom
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
27
|
Huna A, Nawrocki-Raby B, Padilla-Benavides T, Gavard J, Coscoy S, Bernard D, Boissan M. Loss of the Metastasis Suppressor NME1, But Not of Its Highly Related Isoform NME2, Induces a Hybrid Epithelial-Mesenchymal State in Cancer Cells. Int J Mol Sci 2021; 22:3718. [PMID: 33918324 PMCID: PMC8038181 DOI: 10.3390/ijms22073718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is important for the initial steps of metastasis. Although it is well accepted that the nucleoside diphosphate kinase NME1 is a metastasis suppressor, its effect on EMT remains poorly documented, as does that of its closely related isoform, NME2. Here, by using gene silencing, inactivation and overexpression strategies in a variety of cellular models of cancer, we show that NME1 is a powerful inhibitor of EMT. Genetic manipulation of NME2, by contrast, had no effect on the EMT phenotype of cancer cells, indicating a specific function of NME1 in EMT regulation. Loss of NME1 in epithelial cancer cells resulted in a hybrid phenotype intermediate between epithelial and mesenchymal cells, which is known to be associated with cells with a highly metastatic character. Conversely, overexpression of NME1 in mesenchymal cancer cells resulted in a more epithelial phenotype. We found that NME1 expression was negatively associated with EMT markers in many human cancers and was reduced in human breast tumor cell lines with the aggressive 'triple-negative' phenotype when compared to human breast tumor cell lines positive for estrogen receptor. We show that NME1, but not NME2, is an inhibitor of essential concerted intracellular signaling pathways involved in inducing EMT, including the AKT and MAPK (ERK, p38, and JNK) pathways. Additionally, NME1 depletion considerably altered the distribution of E-cadherin, a gatekeeper of the epithelial phenotype, shifting it from the plasma membrane to the cytosol and resulting in less E-cadherin on the cell surface than in control cells. Functional aggregation and dispersion assays demonstrated that inactivation of NME1 decreases E-cadherin-mediated cell-cell adhesion. We conclude that NME1, but not NME2, acts specifically to inhibit EMT and prevent the earliest stages of metastasis.
Collapse
Affiliation(s)
- Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, 69008 Lyon, France; (A.H.); (D.B.)
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, 51097 Reims, France;
| | | | - Julie Gavard
- Team SOAP, CRCINA, Inserm, CNRS, Université de Nantes, Université d’Angers, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France;
- Equipe Labellisée «Ligue Contre le Cancer», 75006 Paris, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, 69008 Lyon, France; (A.H.); (D.B.)
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012 Paris, France
- Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, 75020 Paris, France
| |
Collapse
|
28
|
Wang YF, Lin YK, Lin CP, Chen YJ, Chang CJ. NM23-H1 Expression of Head and Neck Squamous Cell Carcinoma in Association With the Response to Irradiation. Front Oncol 2021; 11:646167. [PMID: 33859945 PMCID: PMC8042278 DOI: 10.3389/fonc.2021.646167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
A low NM23-H1 expression in head and neck squamous cell carcinoma (HNSCC) was found to be associated with poor clinical outcome. Therefore, we investigated the role of NM23-H1 in the susceptibility of HNSCC cells to irradiation and its clinical significance. An in vitro study was also conducted to validate the results. Furthermore, we used immunohistochemistry to analyze NM23-H1 expression found in specimens of 50 HNSCC patients with cervical metastases receiving postoperative radiotherapy. Low tumor NM23-H1 expression was associated with locoregional recurrence of HNSCC (p=0.040; Hazard ratio=5.62) and poor clinical outcome (p=0.001; Hazard ratio=4.90). To confirm the effect of NM23-H1 on radiation-induced cytotoxicity, we generated several stable clones derived from a human HNSCC cell line (SAS) using knockdown and overexpression of NM23-H1. Knockdown of NM23-H1 decreased the radio-sensitivity of SAS cells, possibly associated with a decrease in the radiation-induced G2/M-phase accumulation and upregulation of cyclin B1. On the contrary, overexpression of NM23-H1 can reverse the aforementioned adverse results. Consequently, we suggest that NM23-H1 expression may be considered as a potential therapeutic treatment option for HNSCC patients.
Collapse
Affiliation(s)
- Yi-Fen Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ke Lin
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Ping Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Ju Chang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
29
|
Emerging Molecular Connections between NM23 Proteins, Telomeres and Telomere-Associated Factors: Implications in Cancer Metastasis and Ageing. Int J Mol Sci 2021; 22:ijms22073457. [PMID: 33801585 PMCID: PMC8036570 DOI: 10.3390/ijms22073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
The metastasis suppressor function of NM23 proteins is widely understood. Multiple enzymatic activities of NM23 proteins have also been identified. However, relatively less known interesting aspects are being revealed from recent developments that corroborate the telomeric interactions of NM23 proteins. Telomeres are known to regulate essential physiological events such as metastasis, ageing, and cellular differentiation via inter-connected signalling pathways. Here, we review the literature on the association of NM23 proteins with telomeres or telomere-related factors, and discuss the potential implications of emerging telomeric functions of NM23 proteins. Further understanding of these aspects might be instrumental in better understanding the metastasis suppressor functions of NM23 proteins.
Collapse
|
30
|
Wong KM, Song J, Wong YH. CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep 2021; 11:491. [PMID: 33436746 PMCID: PMC7804126 DOI: 10.1038/s41598-020-79869-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
Tumor metastasis remains an obstacle in cancer treatment and is responsible for most cancer-related deaths. Nm23-H1 is one of the first metastasis suppressor proteins discovered with the ability to inhibit metastasis of many cancers including breast, colon, and liver cancer. Although loss of Nm23-H1 is observed in aggressive cancers and correlated with metastatic potential, little is known regarding the mechanisms that regulate its cellular level. Here, we examined the mechanisms that control Nm23-H1 expression in breast cancer cells. Initial studies in aggressive MDA-MB-231 cells (expressing low Nm23-H1) and less invasive MCF-7 cells (expressing high Nm23-H1) revealed that mRNA levels correlated with protein expression, suggesting that transcriptional mechanisms may control Nm23-H1 expression. Truncational analysis of the Nm23-H1 promoter revealed a proximal and minimal promoter that harbor putative binding sites for transcription factors including CTCF and EGR1. CTCF and EGR1 induced Nm23-H1 expression and reduced cell migration of MDA-MB-231 cells. Moreover, CTCF and EGR1 were recruited to the Nm23-H1 promoter in MCF-7 cells and their expression correlated with Nm23-H1 levels. This study indicates that loss of Nm23-H1 in aggressive breast cancer is apparently caused by downregulation of CTCF and EGR1, which potentially drive Nm23-H1 expression to promote a less invasive phenotype.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. .,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
31
|
Yu L, Wang X, Zhang W, Khan E, Lin C, Guo C. The multiple regulation of metastasis suppressor NM23-H1 in cancer. Life Sci 2021; 268:118995. [PMID: 33421524 DOI: 10.1016/j.lfs.2020.118995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Metastasis is one of the leading causes of mortality in cancer patients. As the firstly identified metastasis suppressor, NM23-H1 has been endowed with expectation as a potent target in metastatic cancer therapy during the past decades. However, many challenges impede its clinical use. Accumulating evidence shows that NM23-H1 has a dichotomous role in tumor metastasis as a suppressor and promoter. It has potentially attributed to its versatile biochemical characteristics such as nucleoside diphosphate kinase (NDPK) activity, histidine kinase activity (HPK), exonuclease activity, and protein scaffold, which further augment the complexity and uncertainty of its physiological function. Simultaneously, tumor cells have evolved multiple ways to regulate the expression and function of NM23-H1 during tumorigenesis and metastasis. This review summarized and discussed the regulatory mechanisms of NM23-H1 in cancer including transcriptional activation, subcellular location, enzymatic activity, and protein degradation, which significantly modulate its anti-metastatic function.
Collapse
Affiliation(s)
- Liting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xindong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wanheng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China; School of Engineering, China Pharmaceutical University, Nanjing, PR China
| | - Eshan Khan
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Chenyu Lin
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
32
|
Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. Int J Mol Sci 2020; 21:ijms21218040. [PMID: 33126676 PMCID: PMC7662248 DOI: 10.3390/ijms21218040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.
Collapse
|
33
|
Negative Effect of Reduced NME1 Expression on Recurrence-Free Survival in Early Stage Non-Small Cell Lung Cancer. J Clin Med 2020; 9:jcm9103067. [PMID: 32977620 PMCID: PMC7598190 DOI: 10.3390/jcm9103067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
This study aimed to understand whether the effect of non-metastatic cells 1 (NME1) on recurrence-free survival (RFS) in early stage non-small cell lung cancer (NSCLC) can be modified by β-catenin overexpression and cisplatin-based adjuvant chemotherapy. Expression levels of NME1 and β-catenin were analyzed using immunohistochemistry in formalin-fixed paraffin-embedded tissues from 425 early stage NSCLC patients. Reduced NME1 expression was found in 39% of samples. The median duration of follow-up was 56 months, and recurrence was found in 186 (44%) of 425 patients. The negative effect of reduced NME1 expression on RFS was worsened by cisplatin-based adjuvant chemotherapy (adjusted hazard ratio = 3.26, 95% CI = 1.16–9.17, p = 0.03). β-catenin overexpression exacerbated the effect of reduced NME1 expression on RFS and the negative effect was greater when receiving cisplatin-based adjuvant chemotherapy: among patients treated with cisplatin-based adjuvant chemotherapy, hazard ratios of patients with reduced NME1 expression increased from 5.59 (95% confidence interval (CI) = 0.62–50.91, p = 0.13) to 15.52 (95% CI = 2.94–82.38, p = 0.001) by β-catenin overexpression, after adjusting for confounding factors. In conclusion, the present study suggests that cisplatin-based adjuvant chemotherapy needs to be carefully applied to early stage NSCLC patients with overexpressed β-catenin in combination with reduced NME1 expression.
Collapse
|
34
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
35
|
Rajagopal T, Seshachalam A, Akshaya RL, Rathnam KK, Talluri S, Jothi A, Dunna NR. Association of HOTAIR (rs920778 and rs1899663) and NME1 (rs16949649 and rs2302254) gene polymorphisms with breast cancer risk in India. Gene 2020; 762:145033. [PMID: 32781191 DOI: 10.1016/j.gene.2020.145033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Until now, no study has reported the combined effect of genetic variants of HOTAIR and NME1 towards breast cancer (BC) pathogenesis. Hence, the aim of the present study is to determine the risk of breast cancer development with HOTAIR (rs920778 C > T and rs1899663 G > T) and NME1 (rs16949649 T > C and rs2302254 C > T) genetic polymorphisms in the Indian population for the first time. MATERIALS AND METHODS To investigate the genetic association of these four SNPs, we conducted a population-based case-control study involving 1011 subjects (502 histologically confirmed BC patients and 509 disease-free controls) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS HOTAIR rs920778 TC genotype elevated the risk of BC (OR = 1.39, 95% CI = 1.06-1.83, p = 0.018) and individuals carrying the mutant allele (T) of rs1899663 had increased BC risk (OR = 1.23, 95% CI = 1.02-1.47, p = 0.026). The presence of the NME1 rs16949649 CC genotype increased the risk of BC (OR = 1.76, 95% CI = 1.15-2.71, p = 0.009). Moreover, the HOTAIR rs920778 variant (TC + CC) increased the risk of BC in pre-menopausal women (OR = 5.86; p < 0.0001). Women carrying 2 or 3 mutant alleles for the investigated SNPs were observed to have an elevated risk of BC. CONCLUSION The results of the present study highlight the presence of significant associations between NME1 rs16949649 and HOTAIR (rs920778 and rs1899663) polymorphisms and breast cancer development in Indian women.
Collapse
Affiliation(s)
- Taruna Rajagopal
- Cancer Genomics Laboratory, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, India
| | - Arun Seshachalam
- Department of Medical and Paediatric Oncology, Dr.G.V.N Cancer Institute, Trichy, India
| | - R L Akshaya
- Cancer Genomics Laboratory, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, India
| | - Krishna Kumar Rathnam
- Department of Hemato Oncology - Medical Oncology and Bone Marrow Transplantation, Meenakshi Mission Hospital & Research Centre, Madurai, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA, USA
| | - Arunachalam Jothi
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, India.
| |
Collapse
|
36
|
Li Y, Liu W, Saini V, Wong YH. Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Mol Cell Biochem 2020; 474:95-112. [PMID: 32705629 DOI: 10.1007/s11010-020-03836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
Abstract
The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly22 and Lys39 affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser131 and/or Lys124/135 affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and β-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.,Eye Center of Xiangya Hospital, Hunan Key Laboratory of Opthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Liu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China. .,State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
37
|
Domestication is associated with differential expression of pikeperch egg proteins involved in metabolism, immune response and protein folding. Animal 2020; 14:2336-2350. [PMID: 32525470 DOI: 10.1017/s1751731120001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Domestication is a condition in which the breeding, care and feeding of animals are, at least in part, controlled by humans. Information regarding the changes in the protein composition of eggs in response to domestication is very limited. Such data are prerequisite for improvements in the reproduction of domesticated fish. The aim of this study was to examine the impact of domestication on the proteome of pikeperch eggs using two-dimensional differential in-gel electrophoresis. We analysed high-quality eggs from domesticated and wild pikeperch fish to reveal proteins that were presumably only related to the domestication process and not to the quality of eggs. Here, we show that domestication has a profound impact on the protein profile of pikeperch eggs. We identified 66 differentially abundant protein spots, including 27 spots that were more abundant in wild-caught pikeperch eggs and 39 spots that were enriched in eggs collected from domesticated females. Eggs originating from wild-caught females showed higher expression levels of proteins involved in folding, apoptotic process, purine metabolism and immune response, whereas eggs of domesticated females showed higher expression levels of proteins that participated mainly in metabolism. The changes in metabolic proteins in eggs from domesticated females can reflect the adaptation of pikeperch to commercial diets, which have profoundly distinct compositions compared with natural diets. The decrease in the abundance of proteins related to immune response in eggs from the domesticated population suggests that domestication may lead to disturbances in defence mechanisms. In turn, the lower abundance of heat shock proteins in eggs of domesticated fish may indicate their adaptation to stable farming conditions and reduced environmental stressors or their better tolerance of stress from breeding. The proteins identified in this study can increase our knowledge concerning the mechanism of the pikeperch domestication process.
Collapse
|
38
|
Zheng S, Liu T, Liu Q, Yang L, Zhang Q, Han X, Shen T, Zhang X, Lu X. Widely targeted metabolomic analyses unveil the metabolic variations after stable knock-down of NME4 in esophageal squamous cell carcinoma cells. Mol Cell Biochem 2020; 471:81-89. [PMID: 32504364 DOI: 10.1007/s11010-020-03768-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023]
Abstract
NME4, also designated nm23-H4 or NDPK-D, has been known for years for its well-established roles in the synthesis of nucleoside triphosphates, though; little has been known regarding the differential metabolites involved as well as the biological roles NME4 plays in proliferation and invasion of esophageal squamous cell carcinoma (ESCC) cells. To understand the biological roles of NME4 in ESCC cells, lentiviral-based short hairpin RNA interference (shRNA) vectors were constructed and used to stably knock down NME4. Then, the proliferative and invasive variations were assessed using MTT, Colony formation and Transwell assays. To understand the metabolites involved after silencing of NME4 in ESCC cells, widely targeted metabolomic screening was taken. It was discovered that silencing of NME4 can profoundly suppress the proliferation and invasion in ESCC cells in vitro. Metabolically, a total of 11 differential metabolites were screened. KEGG analyses revealed that Tryptophan, Riboflavin, Purine, Nicotinate, lysine degradation, and Linoleic acid metabolism were also involved in addition to the well-established nucleotides metabolism. Some of these differential metabolites, say, 2-Picolinic Acid, Nicotinic Acid and Pipecolinic Acid were suggested to be associated with tumor immunomodulation. The data we described here support the idea that metabolisms occurred in mitochondrial was closely related to tumor immunity.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tao Liu
- Health Management Center, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Lifei Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiujuan Han
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tongxue Shen
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiao Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
| |
Collapse
|
39
|
Gong L, Yu L, Gong X, Wang C, Hu N, Dai X, Peng C, Li Y. Exploration of anti-inflammatory mechanism of forsythiaside A and forsythiaside B in CuSO 4-induced inflammation in zebrafish by metabolomic and proteomic analyses. J Neuroinflammation 2020; 17:173. [PMID: 32493433 PMCID: PMC7271515 DOI: 10.1186/s12974-020-01855-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is a general pathological phenomenon during severe disturbances to the homeostasis. Forsythiaside A (FA) and forsythiaside B (FB), isolated from the dried fruit of Forsythia suspensa (Thunb.) Vahl, are phenylethanoid compounds that show a significant anti-inflammatory effect. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. METHODS In this study, the anti-inflammatory effects of FA and FB were investigated in CuSO4-induced inflammation in zebrafish larvae. Intracellular generation of reactive oxygen species (ROS) and nitric oxide (NO) was investigated using fluorescence probes. Metabolomic and proteomic analyses using liquid chromatography-mass spectrometry were carried out to identify the expressions of metabolites and proteins associated with the anti-inflammatory mechanism of FA and FB. Quantitative polymerase chain reaction (PCR) was performed to detect the progressive changes in gene expression. RESULTS FA and FB inhibited neutrophils migration to the damaged neuromasts and remarkably reduced CuSO4-induced ROS and NO generation in zebrafish larvae. Metabolomic analysis pointed to the involvement of nicotinate and nicotinamide metabolism, energy metabolism, pyrimidine metabolism, and purine metabolism. Proteomic analysis identified 146 differentially expressed proteins between the control and model groups. These included collagen [collagen type II alpha 1b precursor (col2a1b), collagen alpha-2(IX) chain precursor (col9a2), collagen type IX alpha I precursor (col9a1b)], nucleoside diphosphate kinase 3 isoform X1 (Nme3), WD repeat-containing protein 3 (Wdr3), and 28S ribosomal protein S7 mitochondrial precursor (Mrps7). FA and FB were shown to reverse the abnormal expressions of potential metabolite and protein biomarkers and alleviate CuSO4-induced damage to the neuromasts in the zebrafish lateral line. CONCLUSIONS Our results indicate that FA and FB possess remarkable anti-inflammatory properties, protecting against CuSO4-induced neuromasts damage in zebrafish larvae. The results also suggest a multi-component and multi-regulatory therapeutic mechanism for FA and FB.
Collapse
Affiliation(s)
- Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Linyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
40
|
Adam K, Lesperance J, Hunter T, Zage PE. The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. Int J Mol Sci 2020; 21:ijms21093319. [PMID: 32392889 PMCID: PMC7247550 DOI: 10.3390/ijms21093319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| |
Collapse
|
41
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
42
|
Ye J, Ding W, Chen Y, Zhu X, Sun J, Zheng W, Zhang B, Zhu S. A nucleoside diphosphate kinase gene OsNDPK4 is involved in root development and defense responses in rice (Oryza sativa L.). PLANTA 2020; 251:77. [PMID: 32152790 DOI: 10.1007/s00425-020-03355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Dysfunctional mutation of OsNDPK4 resulted in severe defects in root development of rice. However, the resistance of Osndpk4 against bacterial blight was significantly enhanced. Nucleoside diphosphate kinases (NDPKs) are an evolutionarily conserved family of important enzymes balancing the energy currency nucleoside triphosphates by catalyzing the transfer of their phosphate groups. The aim of this study was to elucidate the function of OsNDPK4 in rice. A dysfunctional rice mutant was employed to characterize the function of OsNDPK4. Its expression and subcellular localization were examined. The transcriptomic change in roots of Osndpk4 was analyzed by RNA-seq. The rice mutant Osndpk4 showed severe defects in root development from the early seedling stage. Further analysis revealed that meristematic activity and cell elongation were significantly inhibited in primary roots of Osndpk4, together with reduced accumulation of reactive oxygen species (ROS). Map-based cloning identified that the mutation occurred in the OsNDPK4 gene. OsNDPK4 was found to be expressed in a variety of tissues throughout the plant and OsNDPK4 was located in the cytosol. Osndpk4 showed enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and up-regulation of pathogenesis-related marker genes. In addition, transcriptomic analysis showed that OsNDPK4 was significantly associated with a number of biological processes, including translation, protein modification, metabolism, biotic stress response, etc. Detailed analysis revealed that the dysfunction of OsNDPK4 might reorchestrate energy homeostasis and hormone metabolism and signalling, resulting in repression of translation, DNA replication and cell cycle progression, and priming of biotic stress defense. Our results demonstrate that OsNDPK4 plays important roles in energy homeostasis, development process, and defense responses in rice.
Collapse
Affiliation(s)
- Jin Ye
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yujie Chen
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xinni Zhu
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jiutong Sun
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Wenjuan Zheng
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Shihua Zhu
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
43
|
Nucleoside Diphosphate Kinase B Contributes to Arrhythmogenesis in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Arrhythmogenic Right Ventricular Cardiomyopathy. J Clin Med 2020; 9:jcm9020486. [PMID: 32050722 PMCID: PMC7073527 DOI: 10.3390/jcm9020486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare, inheritable cardiac disorder characterized by ventricular tachyarrhythmias, progressive loss of cardiomyocytes with fibrofatty replacement and sudden cardiac death. The exact underlying mechanisms are unclear. Methods: This study investigated the possible roles of nucleoside diphosphate kinase B (NDPK-B) and SK4 channels in the arrhythmogenesis of ARVC by using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Results: In hiPSC-CMs from a patient with ARVC, the expression levels of NDPK-B and SK4 channels were upregulated, the cell automaticity was increased and the occurrence rate of arrhythmic events was enhanced. Recombinant NDPK-B applied into hiPSC-CMs from either healthy donors or the patient enhanced SK4 channel current (ISK4), cell automaticity and the occurrence of arrhythmic events, whereas protein histidine phosphatase 1 (PHP-1), a counter actor of NDPK-B, prevented the NDPK-B effect. Application of PHP-1 alone or a SK4 channel blocker also reduced cell automaticity and arrhythmic events. Conclusion: This study demonstrated that the elevated NDPK-B expression, via activating SK4 channels, contributes to arrhythmogenesis in ARVC, and hence, NDPK-B may be a potential therapeutic target for treating arrhythmias in patients with ARVC.
Collapse
|
44
|
Mátyási B, Farkas Z, Kopper L, Sebestyén A, Boissan M, Mehta A, Takács-Vellai K. The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis. Pathol Oncol Res 2020; 26:49-61. [PMID: 31993913 PMCID: PMC7109179 DOI: 10.1007/s12253-020-00797-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Metastasis suppressor genes (MSGs) inhibit different biological processes during metastatic progression without globally influencing development of the primary tumor. The first MSG, NM23 (non-metastatic clone 23, isoform H1) or now called NME1 (stands for non-metastatic) was identified some decades ago. Since then, ten human NM23 paralogs forming two groups have been discovered. Group I NM23 genes encode enzymes with evolutionarily highly conserved nucleoside diphosphate kinase (NDPK) activity. In this review we summarize how results from NDPKs in model organisms converged on human NM23 studies. Next, we examine the role of NM23-H1 and its homologs within the metastatic cascade, e.g. cell migration and invasion, proliferation and apoptosis. NM23-H1 homologs are well known inhibitors of cell migration. Drosophila studies revealed that AWD, the fly counterpart of NM23-H1 is a negative regulator of cell motility by modulating endocytosis of chemotactic receptors on the surface of migrating cells in cooperation with Shibire/Dynamin; this mechanism has been recently confirmed by human studies. NM23-H1 inhibits proliferation of tumor cells by phosphorylating the MAPK scaffold, kinase suppressor of Ras (KSR), resulting in suppression of MAPK signalling. This mechanism was also observed with the C. elegans homolog, NDK-1, albeit with an inverse effect on MAPK activation. Both NM23-H1 and NDK-1 promote apoptotic cell death. In addition, NDK-1, NM23-H1 and their mouse counterpart NM23-M1 were shown to promote phagocytosis in an evolutionarily conserved manner. In summary, inhibition of cell migration and proliferation, alongside actions in apoptosis and phagocytosis are all mechanisms through which NM23-H1 acts against metastatic progression.
Collapse
Affiliation(s)
- Barbara Mátyási
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - László Kopper
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Mathieu Boissan
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
- Service de Biochimie et Hormonologie, AP- HP, Hôpital Tenon, Paris, France
| | - Anil Mehta
- Division of Medical Sciences, Centre for CVS and Lung Biology, Ninewells Hospital Medical School, DD19SY, Dundee, UK
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
45
|
Abstract
Histidine phosphorylation of proteins is increasingly recognised as an important regulatory posttranslational modification in eukaryotes as well as prokaryotes. The HP (Histidine Phosphatase) superfamily, named for a key catalytic His residue, harbors two known groups of protein phosphohistidine phosphatases (PPHPs). The bacterial SixA protein acts as a regulator of His-Asp phosphorelays with two substrates characterized in vitro and/or in vivo. The recently characterized eukaryotic PHPP PGAM5 only has one currently known substrate, NDPK-B, through which it helps regulate T-cell signaling. SixA and PGAM5 appear to share no particular sequence or structural features relating to their PPHP activity suggesting that PHPP activity has arisen independently in different lineages of the HP superfamily. Further members of the HP superfamily may thus harbor (additional) unsuspected PHPP activity.
Collapse
|
46
|
Characterization of Nme5-Like Gene/Protein from the Red Alga Chondrus Crispus. Mar Drugs 2019; 18:md18010013. [PMID: 31877804 PMCID: PMC7024210 DOI: 10.3390/md18010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.
Collapse
|
47
|
Prognostic significance of metastasis-suppressor gene NM23 in gastric carcinoma. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.582954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Wang W, Dong M, Cui J, Xu F, Yan C, Ma C, Yi L, Tang W, Dong J, Wei Y. NME4 may enhance non‑small cell lung cancer progression by overcoming cell cycle arrest and promoting cellular proliferation. Mol Med Rep 2019; 20:1629-1636. [PMID: 31257488 PMCID: PMC6625391 DOI: 10.3892/mmr.2019.10413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Nucleoside diphosphate kinase 4 (NME4) is abnormally expressed in a variety of cancer types. However, the function of the NME4 gene in non-small cell lung cancer (NSCLC) remains to be elucidated. In order to investigate the role of NME4 in NSCLC, the present study detected the expression of the NME4 gene in the Cancer Genome Atlas database, and in BEAS-2B, NCI-H1299 and A549 cell lines. NME4 was significantly overexpressed in NSCLC tissues and NSCLC cell lines. Furthermore, lentivirus-mediated knockdown vector infection, cell proliferation, cell cycle, apoptosis, colony formation and MTT assays were conducted to explore the effect of NME4 on NSCLC in vitro. After knockdown of NME4 with short hairpin RNA, the cell cycle was arrest at the G1 phase, and proliferation and colony formation were inhibited in the NCI-H1299 and A549 cell lines. The present results suggested that NME4 may serve as a novel tumor promoter, capable of enhancing NSCLC progression by overcoming cell cycle arrest and promoting proliferation.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ming Dong
- Gumei Community Health Center of Minhang District of Shanghai, Shanghai 201102, P.R. China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Cheng Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
49
|
Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proc Natl Acad Sci U S A 2018; 116:566-574. [PMID: 30587587 DOI: 10.1073/pnas.1818629116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.
Collapse
|
50
|
Lu S, Wang Y. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Commun (Lond) 2018; 38:63. [PMID: 30367676 PMCID: PMC6235390 DOI: 10.1186/s40880-018-0336-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Metabolism is a fundamental biological process composed of a series of reactions catalyzed by metabolic enzymes. Emerging evidence demonstrates that the aberrant signaling in cancer cells induces nonmetabolic functions of metabolic enzymes in many instrumental cellular activities, which involve metabolic enzyme-mediated protein post-translational modifications, such as phosphorylation, acetylation, and succinylation. In the most well-researched literatures, metabolic enzymes phosphorylate proteins rather than their metabolites as substrates. Some metabolic enzymes have altered subcellular localization, which allows their metabolic products to directly participate in nonmetabolic activities. This review discusses how these findings have deepened our understanding on enzymes originally classified as metabolic enzymes, by highlighting the nonmetabolic functions of several metabolic enzymes responsible for the development of cancer, and evaluates the potential for targeting these functions in cancer treatment.
Collapse
Affiliation(s)
- Sean Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|