1
|
Rashid MU, Coombs KM. Chloride Intracellular Channel Protein 1 (CLIC1) Is a Critical Host Cellular Factor for Influenza A Virus Replication. Viruses 2024; 16:129. [PMID: 38257829 PMCID: PMC10819074 DOI: 10.3390/v16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Influenza A Virus (IAV) uses host cellular proteins during replication in host cells. IAV infection causes elevated expression of chloride intracellular channel protein 1 (CLIC1) in lung epithelial cells, but the importance of this protein in IAV replication is unknown. (2) In this study, we determined the role of CLIC1 in IAV replication by investigating the effects of CLIC1 knockdown (KD) on IAV viral protein translation, genomic RNA transcription, and host cellular proteome dysregulation. (3) Results: CLIC1 KD in A549 human lung epithelial cells resulted in a significant decrease in progeny supernatant IAV, but virus protein expression was unaffected. However, a significantly larger number of viral RNAs accumulated in CLIC1 KD cells. Treatment with a CLIC1 inhibitor also caused a significant reduction in IAV replication, suggesting that CLIC1 is an important host factor in IAV replication. SomaScan®, which measures 1322 proteins, identified IAV-induced dysregulated proteins in wild-type cells and in CLIC1 KD cells. The expression of 116 and 149 proteins was significantly altered in wild-type and in CLIC1 KD cells, respectively. A large number of the dysregulated proteins in CLIC1 KD cells were associated with cellular transcription and predicted to be inhibited during IAV replication. (4) Conclusions: This study suggests that CLIC1 is involved in later stages of IAV replication. Further investigation should clarify mechanism(s) for the development of anti-IAV drugs targeting CLIC1 protein.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E OJ9, Canada
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E OJ9, Canada
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Xia J, Wang Q, Ju F, Luo X, Wang F, Zhou Y, Huang H, Wang H, Bao X. Chloride Intracellular Channel 1 is a Potential Biomarker for Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:247-258. [PMID: 36081926 PMCID: PMC9447450 DOI: 10.2147/bctt.s367519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Purpose Multiple reports have demonstrated that highly expressed chloride intracellular channel 1 (CLIC1) exists in a range of malignant tumors and is involved in proliferation, invasion, and migration of cancer cells. There are few studies on CLIC1 and breast cancer (BC). The purpose of this research was to evaluate the expression level of CLIC1 in BC and its impact on prognosis of BC patients. Patients and Methods Differences in CLIC1 expression levels in 25 pairs of BC and corresponding paracancerous specimens were tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB). Immunohistochemistry (IHC) was performed to discuss the relevance between CLIC1 expression in BC tissue chips and clinicopathological parameters of BC patients. The effect of CLIC1 expression on patient prognosis was evaluated by Kaplan–Meier survival curve and Cox regression analysis. Receiver operating characteristic (ROC) curve assessed the diagnostic performance of CLIC1 for BC. Results The experimental results of qRT-PCR and WB demonstrated that CLIC1 was highly expressed in BC tissues. IHC results showed that overexpression of CLIC1 was strictly correlated with tumor size, TNM classification, pathological grade, lymph node metastasis and Ki67. Patients with lower CLIC1 expression had longer overall survival (OS) and progression-free survival (PFS). Cox regression analysis and ROC curve confirmed that CLIC1 could independently influence the prognosis of BC patients and might have diagnostic efficiency. Conclusion Overexpressed CLIC1 is closely related to the progression of BC and the poor prognosis of the patients, suggesting that it may act as a potential biological diagnostic index for BC.
Collapse
Affiliation(s)
- Jinwen Xia
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
- Clinical Medicine, Medical College, Nantong University, Nantong, People’s Republic of China
| | - Quhui Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Fei Ju
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Xiang Luo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Hua Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
- Clinical Medicine, Medical College, Nantong University, Nantong, People’s Republic of China
- Correspondence: Hua Wang, Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong City, Jiangsu Province, 226001, People’s Republic of China, Tel +86 137 062 92250, Email
| | - Xingli Bao
- Department of Medical Equipment, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
4
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
5
|
Barbieri F, Bosio AG, Pattarozzi A, Tonelli M, Bajetto A, Verduci I, Cianci F, Cannavale G, Palloni LMG, Francesconi V, Thellung S, Fiaschi P, Mazzetti S, Schenone S, Balboni B, Girotto S, Malatesta P, Daga A, Zona G, Mazzanti M, Florio T. Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:53. [PMID: 35135603 PMCID: PMC8822754 DOI: 10.1186/s13046-021-02213-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings.
Methods
We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos).
Results
We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity.
Conclusions
These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.
Collapse
|
6
|
Dishman AF, Peterson FC, Volkman BF. Specific binding-induced modulation of the XCL1 metamorphic equilibrium. Biopolymers 2021; 112:e23402. [PMID: 32986858 PMCID: PMC8004533 DOI: 10.1002/bip.23402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023]
Abstract
The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-β chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-β fold that binds glycosaminoglycans and has antimicrobial activity. Both of these functions are important for the biologic role of XCL1 in the immune system, and each structure is approximately equally populated under near-physiologic conditions. Recent work has begun to illuminate XCL1's role in combatting infection and cancer. However, without a way to control XCL1's dynamic structural interconversion, it is difficult to study the role of XCL1 fold-switching in human health and disease. Thus, a molecular tool that can regulate the fractional population of the two XCL1 structures is needed. Here, we find by heparin affinity chromatography and NMR that an engineered XCL1 variant called CC5 can trigger a dose-dependent shift in XCL1's metamorphic equilibrium such that the receptor binding structure is depleted, and the antimicrobial structure is more heavily populated. This shift likely occurs due to formation of XCL1-CC5 heterodimers in which both protomers occupy the β-sheet structure. These findings lay the groundwork for future studies seeking to understand the functional role of XCL1 metamorphosis, as well as studies screening for a drug-like molecule that can therapeutically target XCL1 by tuning its metamorphic equilibrium. Moreover, the proof of concept presented here suggests that protein metamorphosis is druggable, opening numerous avenues for controlling biological function of metamorphic proteins by altering the population of their multiple native states.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Chen J, Zhang M, Ma Z, Yuan D, Zhu J, Tuo B, Li T, Liu X. Alteration and dysfunction of ion channels/transporters in a hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol (Dordr) 2021; 44:739-749. [PMID: 33856653 PMCID: PMC8338819 DOI: 10.1007/s13402-021-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant cancers in the world and has only few treatment options and, concomitantly, a poor prognosis. It is generally accepted now that the tumor microenvironment, particularly that under hypoxia, plays an important role in cancer development. Hypoxia can regulate the energy metabolism and malignancy of tumor cells by inducing or altering various important factors, such as oxidative stress, reactive oxygen species (ROS), hypoxia-inducible factors (HIFs), autophagy and acidosis. In addition, altered expression and/or dysfunction of ion channels/transporters (ICTs) have been encountered in a variety of human tumors, including GC, and to play an important role in the processes of tumor cell proliferation, migration, invasion and apoptosis. Increasing evidence indicates that ICTs are at least partly involved in interactions between cancer cells and their hypoxic microenvironment. Here, we provide an overview of the different ICTs that regulate or are regulated by hypoxia in GC. CONCLUSIONS AND PERSPECTIVES Hypoxia is one of the major obstacles to cancer therapy. Regulating cellular responses and factors under hypoxia can inhibit GC. Similarly, altering the expression or activity of ICTs, such as the application of ion channel inhibitors, can slow down the growth and/or migration of GC cells. Since targeting the hypoxic microenvironment and/or ICTs may be a promising strategy for the treatment of GC, more attention should be paid to the interplay between ICTs and the development and progression of GC in such a microenvironment.
Collapse
Affiliation(s)
- Junling Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
8
|
Wang H, An J, He S, Liao C, Wang J, Tuo B. Chloride intracellular channels as novel biomarkers for digestive system tumors (Review). Mol Med Rep 2021; 24:630. [PMID: 34278487 DOI: 10.3892/mmr.2021.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Abstract
Digestive system malignant tumors are common tumors, and the traditional treatment methods for these tumors include surgical resection, radiotherapy, chemotherapy, and molecularly targeted drugs. However, diagnosis remains challenging, and the early detection of postoperative recurrence is complicated. Therefore, it is necessary to explore novel biomarkers to facilitate clinical diagnosis and treatment. Accumulating evidence supports the crucial role of chloride channels in the development of multiple types of cancers. Given that chloride channels are widely expressed and involved in cell proliferation, apoptosis and cell cycle, among other processes, they may serve as a promising diagnostic and therapeutic target. Chloride intracellular channels (CLICs) are a class of chloride channels that are upregulated or downregulated in certain types of cancer. Furthermore, in certain cases, during cell cycle progression, the localization and function of the cytosolic form of the transmembrane proteins of CLICs are also altered, which may provide a key target for cancer therapy. The aim of the present review was to focus on CLICs as biomarkers for digestive system tumors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Suyu He
- The Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
9
|
Cianci F, Verduci I. Transmembrane Chloride Intracellular Channel 1 (tmCLIC1) as a Potential Biomarker for Personalized Medicine. J Pers Med 2021; 11:jpm11070635. [PMID: 34357102 PMCID: PMC8307889 DOI: 10.3390/jpm11070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of potential pathological biomarkers has proved to be essential for understanding complex and fatal diseases, such as cancer and neurodegenerative diseases. Ion channels are involved in the maintenance of cellular homeostasis. Moreover, loss of function and aberrant expression of ion channels and transporters have been linked to various cancers, and to neurodegeneration. The Chloride Intracellular Channel 1 (CLIC1), CLIC1 is a metamorphic protein belonging to a partially unexplored protein superfamily, the CLICs. In homeostatic conditions, CLIC1 protein is expressed in cells as a cytosolic monomer. In pathological states, CLIC1 is specifically expressed as transmembrane chloride channel. In the following review, we trace the involvement of CLIC1 protein functions in physiological and in pathological conditions and assess its functionally active isoform as a potential target for future therapeutic strategies.
Collapse
|
10
|
Yamagishi A, Ito F, Nakamura C. Study on Cancer Cell Invasiveness via Application of Mechanical Force to Induce Chloride Ion Efflux. Anal Chem 2021; 93:9032-9035. [PMID: 34152726 DOI: 10.1021/acs.analchem.1c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloride channels regulate cell volume by an efflux of chloride ions in response to osmotic stresses. These have been shown to play a role in cancer invasion. However, their function in cancer metastasis remains unclear. As the internal environment of the human body is rarely exposed to osmotic stress, we presumed that Cl- efflux in cancer cells is induced by mechanical stress caused by their crowded environment and invasion of their narrow interstitial spaces. In this study, we recruited atomic force microscopy to apply mechanical stress to mouse or human breast cancer cells with varying degrees of malignancy and examined their Cl- efflux by N-ethoxycarbonylmethyl-6-methoxyquinolinium bromide (MQAE), which is quenched via collision with Cl- ions. We found that intracellular MQAE fluorescence intensity increased immediately after cell compression, demonstrating induction of Cl- efflux by mechanical force. Furthermore, Cl- efflux ability showed correlation with the cancer metastatic potential. These results suggested that mechanical stress induced Cl- efflux may serve as a potential reporter for estimating the invasion ability of cancer cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Fumie Ito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Chikashi Nakamura
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Francisco MA, Wanggou S, Fan JJ, Dong W, Chen X, Momin A, Abeysundara N, Min HK, Chan J, McAdam R, Sia M, Pusong RJ, Liu S, Patel N, Ramaswamy V, Kijima N, Wang LY, Song Y, Kafri R, Taylor MD, Li X, Huang X. Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. J Exp Med 2020; 217:133839. [PMID: 32097463 PMCID: PMC7201926 DOI: 10.1084/jem.20190971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/27/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.
Collapse
Affiliation(s)
- Michelle A Francisco
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jerry J Fan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Weifan Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ali Momin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Namal Abeysundara
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rochelle McAdam
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marian Sia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronwell J Pusong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nish Patel
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Noriyuki Kijima
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
13
|
Buttacavoli M, Albanese NN, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Proteomic Profiling of Colon Cancer Tissues: Discovery of New Candidate Biomarkers. Int J Mol Sci 2020; 21:ijms21093096. [PMID: 32353950 PMCID: PMC7247674 DOI: 10.3390/ijms21093096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is an aggressive tumor form with a poor prognosis. This study reports a comparative proteomic analysis performed by using two-dimensional differential in-gel electrophoresis (2D-DIGE) between 26 pooled colon cancer surgical tissues and adjacent non-tumoral tissues, to identify potential target proteins correlated with carcinogenesis. The DAVID functional classification tool revealed that most of the differentially regulated proteins, acting both intracellularly and extracellularly, concur across multiple cancer steps. The identified protein classes include proteins involved in cell proliferation, apoptosis, metabolic pathways, oxidative stress, cell motility, Ras signal transduction, and cytoskeleton. Interestingly, networks and pathways analysis showed that the identified proteins could be biologically inter-connected to the tumor-host microenvironment, including innate immune response, platelet and neutrophil degranulation, and hemostasis. Finally, transgelin (TAGL), here identified for the first time with four different protein species, collectively down-regulated in colon cancer tissues, emerged as a top-ranked biomarker for colorectal cancer (CRC). In conclusion, our findings revealed a different proteomic profiling in colon cancer tissues characterized by the deregulation of specific pathways involved in hallmarks of cancer. All of these proteins may represent promising novel colon cancer biomarkers and potential therapeutic targets, if validated in larger cohorts of patients.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Nadia Ninfa Albanese
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Elena Roz
- La Maddalena Hospital III Level Oncological Department, Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Ida Pucci-Minafra
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
- Correspondence:
| |
Collapse
|
14
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
15
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
16
|
Yue X, Cui Y, You Q, Lu Y, Zhang J. MicroRNA‑124 negatively regulates chloride intracellular channel 1 to suppress the migration and invasion of liver cancer cells. Oncol Rep 2019; 42:1380-1390. [PMID: 31364737 PMCID: PMC6718097 DOI: 10.3892/or.2019.7250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) is associated with the development and progression of a variety of cancers, including liver cancer. Aberrant expression of miRNA (miR)-124 has been demonstrated in liver cancer, but its functional mechanism in liver cancer is still largely unknown. Metastasis of liver cancer is one of the most common causes of mortality. The present study showed that miR-124 inhibited the proliferation, migration and invasion of liver cancer cells. Furthermore, chloride intracellular channel 1 (CLIC1) was identified as a novel target of miR-124 in liver cancer cells. Overexpression of miR-124 reduced CLIC1 expression at both the protein and mRNA levels in liver cancer cells. Downregulation of CLIC1 decreased the migration and invasion of liver cancer cells without affecting cell proliferation. Taken together, these results showed that CLIC1 is a critical target for miR-124-mediated inhibitory effects on cell migration and invasion. Thus, miR-124 or suppression of CLIC1 may have diagnostic value and therapeutic potential for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Xupeng Yue
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yuanyuan Cui
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Qi You
- Medical and Nurse College, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, P.R. China
| | - Yanxin Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jufeng Zhang
- School of Life Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
17
|
Lee JR, Lee JY, Kim HJ, Hahn MJ, Kang JS, Cho H. The inhibition of chloride intracellular channel 1 enhances Ca 2+ and reactive oxygen species signaling in A549 human lung cancer cells. Exp Mol Med 2019; 51:1-11. [PMID: 31316050 PMCID: PMC6802611 DOI: 10.1038/s12276-019-0279-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+ and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA double-strand breaks both under control conditions and under treatment with the putative anticancer agent chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+ level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the control of cancer cell survival.
Collapse
Affiliation(s)
- Jae-Rin Lee
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Jong-Yoon Lee
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Ji Kim
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Myong-Joon Hahn
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea
| | - Jong-Sun Kang
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hana Cho
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
18
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
19
|
Kondelin J, Salokas K, Saarinen L, Ovaska K, Rauanheimo H, Plaketti RM, Hamberg J, Liu X, Yadav L, Gylfe AE, Cajuso T, Hänninen UA, Palin K, Ristolainen H, Katainen R, Kaasinen E, Tanskanen T, Aavikko M, Taipale M, Taipale J, Renkonen-Sinisalo L, Lepistö A, Koskensalo S, Böhm J, Mecklin JP, Ongen H, Dermitzakis ET, Kilpivaara O, Vahteristo P, Turunen M, Hautaniemi S, Tuupanen S, Karhu A, Välimäki N, Varjosalo M, Pitkänen E, Aaltonen LA. Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer. EMBO Mol Med 2019; 10:emmm.201708552. [PMID: 30108113 PMCID: PMC6402450 DOI: 10.15252/emmm.201708552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite‐stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV. Somatic point mutation data from the exome kit‐targeted area from 24 exome‐sequenced sporadic MSI CRCs and respective normals, and 12 whole‐genome‐sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well‐established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.
Collapse
Affiliation(s)
- Johanna Kondelin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lilli Saarinen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kristian Ovaska
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Heli Rauanheimo
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Roosa-Maria Plaketti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jiri Hamberg
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Leena Yadav
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandra E Gylfe
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Tatiana Cajuso
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Ulrika A Hänninen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Heikki Ristolainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Tomas Tanskanen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Minna Taipale
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Jussi Taipale
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Science for Life Center, Huddinge, Sweden
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, University of Eastern Finland, Jyväskylä, Finland.,Department Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Halit Ongen
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Outi Kilpivaara
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Pia Vahteristo
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Mikko Turunen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sari Tuupanen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Auli Karhu
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Esa Pitkänen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland .,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Yamagishi A, Susaki M, Takano Y, Mizusawa M, Mishima M, Iijima M, Kuroda S, Okada T, Nakamura C. The Structural Function of Nestin in Cell Body Softening is Correlated with Cancer Cell Metastasis. Int J Biol Sci 2019; 15:1546-1556. [PMID: 31337983 PMCID: PMC6643143 DOI: 10.7150/ijbs.33423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Intermediate filaments play significant roles in governing cell stiffness and invasive ability. Nestin is a type VI intermediate filament protein that is highly expressed in several high-metastatic cancer cells. Although inhibition of nestin expression was shown to reduce the metastatic capacity of tumor cells, the relationship between this protein and the mechanism of cancer cell metastasis remains unclear. Here, we show that nestin softens the cell body of the highly metastatic mouse breast cancer cell line FP10SC2, thereby enhancing the metastasis capacity. Proximity ligation assay demonstrated increased binding between actin and vimentin in nestin knockout cells. Because nestin copolymerizes with vimentin and nestin has an extremely long tail domain in its C-terminal region, we hypothesized that the tail domain functions as a steric inhibitor of the vimentin-actin interaction and suppresses association of vimentin filaments with the cortical actin cytoskeleton, leading to reduced cell stiffness. To demonstrate this function, we mechanically pulled vimentin filaments in living cells using a nanoneedle modified with vimentin-specific antibodies under manipulation by atomic force microscopy (AFM). The tensile test revealed that mobility of vimentin filaments was increased by nestin expression in FP10SC2 cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Moe Susaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuta Takano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mei Mizusawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mari Mishima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- ✉ Corresponding author: Chikashi Nakamura. Tel.: +81-29-861-2445; fax: +81-29-861-3048; E-mail address:
| |
Collapse
|
23
|
Xu Y, Xu J, Feng J, Li J, Jiang C, Li X, Zou S, Wang Q, Li Y. Expression of CLIC1 as a potential biomarker for oral squamous cell carcinoma: a preliminary study. Onco Targets Ther 2018; 11:8073-8081. [PMID: 30519049 PMCID: PMC6239106 DOI: 10.2147/ott.s181936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose CLIC1, a member of the highly conserved class ion-channel protein family, is frequently upregulated in multiple human malignancies and has been demonstrated to play a critical role in cell proliferation, apoptosis, and invasion. However, limited is known about its expression, biological functions, and action mechanism in oral malignancies. We aimed to evaluate whether CLIC1 could be a biomarker for oral squamous cell carcinoma (OSCC). Methods Immunohistochemistry was used to analyze the expression of CLIC1 in tissue. CLIC1 protein and mRNA were measured through Western immunoblotting and quantitative real-time PCR. CLIC1 protein expression in plasma was detected via ELISA. A total of 72 OSCC specimens were recruited in this study for evaluation of correlations of CLIC1 with clinicopathological features and survival. Results CLIC1 was significantly overexpressed in tissue and plasma of OSCC patients. It was found that upregulated CLIC1 was distinctly correlated with histological grade, TNM stage, and tumor size. Meanwhile, Kaplan–Meier survival analysis showed that OSCC patients with high CLIC1 expression had remarkably poorer overall survival rate than those with low CLIC1 expression. Multivariate Cox regression analysis revealed that CLIC1 was the independent prognostic factor for overall survival rate of OSCC patients. In addition, Pearson correlation analysis showed that CLIC1 was associated with multiple tumor-associated genes. Conclusion These results indicated that CLIC1 acts as a molecular target in OSCC and may present a novel diagnostic marker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ying Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jiali Feng
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Xian Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Sihai Zou
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Qian Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| |
Collapse
|
24
|
Thuringer D, Chanteloup G, Winckler P, Garrido C. The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget 2018; 9:33302-33311. [PMID: 30279961 PMCID: PMC6161795 DOI: 10.18632/oncotarget.26048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Gaetan Chanteloup
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Pascale Winckler
- AgroSup Dijon, PAM UMR, DImaCell Imaging Facility, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France.,Centre Georges François Leclerc (CGFL), 21000 Dijon, France
| |
Collapse
|
25
|
Kobayashi T, Shiozaki A, Nako Y, Ichikawa D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. Chloride intracellular channel 1 as a switch among tumor behaviors in human esophageal squamous cell carcinoma. Oncotarget 2018; 9:23237-23252. [PMID: 29796185 PMCID: PMC5955400 DOI: 10.18632/oncotarget.25296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Recent studies have reported important roles for chloride intracellular channel 1 (CLIC1) in various cancers; however, its involvement in esophageal squamous cell carcinoma (ESCC) remains unclear. The aim of the present study was to investigate the role of CLIC1 in human ESCC. Methods: CLIC1 expression in human ESCC cell lines was analyzed by Western blotting. Knockdown experiments were conducted with CLIC1 siRNA, and their effects on cell proliferation, the cell cycle, apoptosis, migration, and invasion were analyzed. The gene expression profiles of cells were analyzed using a microarray analysis. An immunohistochemical analysis was performed on 61 primary tumor samples obtained from ESCC patients who underwent esophagectomy. Results: ESCC cells strongly expressed CLIC1. The depletion of CLIC1 using siRNA inhibited cell proliferation, induced apoptosis, and promoted cell migration and invasion. The results of the microarray analysis revealed that the depletion of CLIC1 regulated apoptosis via the TLR2/JNK pathway. Immunohistochemistry showed that CLIC1 was present in the cytoplasm of carcinoma cells, and that the very strong or very weak expression of CLIC1 was an independent poor prognostic factor. Conclusions: The present results suggest that the very strong expression of CLIC1 enhances tumor survival, while its very weak expression promotes cellular movement. The present study provides an insight into the role of CLIC1 as a switch among tumor behaviors in ESCC.
Collapse
Affiliation(s)
- Toshiyuki Kobayashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Nako
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Gastrointestinal, Breast & Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
26
|
Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells. Oncotarget 2018; 8:37681-37693. [PMID: 28445150 PMCID: PMC5514940 DOI: 10.18632/oncotarget.16949] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying potassium channels (Kir), and especially the barium-sensitive Kir4.1 encoded by KCNJ10, are key regulators of glial functions. A lower expression or mislocation of Kir4.1 is detected in human brain tumors. MicroRNAs participate in the regulation of ionic channels and associated neurologic disorders. Here, we analyze effects of miR-5096 on the Kir4.1 expression and function in two glioblastoma cell lines, U87 and U251. Using whole-cell patch-clamp and western-blot analysis, we show that cell loading with miR-5096 decreases the Kir4.1 protein level and associated K+ current. Cell treatment with barium, a Kir4.1 blocker, or cell loading of miR-5096 both increase the outgrowth of filopodia in glioma cells, as observed by time-lapse microscopy. Knocking-down Kir4.1 expression by siRNA transfection similarly increased both filopodia formation and invasiveness of glioma cells as observed in Boyden chamber assay. MiR-5096 also promotes the release of extracellular vesicles by which it increases its own transfer to surrounding cells, in a Kir4.1-dependent manner in U251 but not in U87. Altogether, our results validate Kir4.1 as a miR-5096 target to promote invasion of glioblastoma cells. Our data highlight the complexity of microRNA effects and the role of K+ channels in cancer.
Collapse
|
27
|
He YM, Zhang ZL, Liu QY, Xiao YS, Wei L, Xi C, Nan X. Effect of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer cells. J Cell Mol Med 2018. [PMID: 29516682 PMCID: PMC5908121 DOI: 10.1111/jcmm.13499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to explore the effects of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer (GBC). GBC and normal gallbladder tissues were extracted for the detection of mRNA and protein expressions of CLIC1. GBC‐SD and NOZ cells in the logarithmic growth phase were selected to conduct the experiment. Three different siRNA recombined expression vectors were established using CLIC1 as a target at different sites. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and Western blotting were, respectively, used to detect the CLIC1 mRNA and protein expressions. MTT assay was performed to detect the cell proliferation. Flow cytometry was applied to measure the cell apoptosis and cell cycle distribution. The variations of cell migration and invasion were evaluated using Transwell assay. GBC tissues showed higher CLIC1 mRNA and protein expressions than normal gallbladder tissues. The CLIC1 mRNA and protein expressions in the CLIC1 siRNA group were significantly lower than those in the NC and blank groups. Compared with the NC and blank groups, the CLIC1 siRNA group showed a significant decrease in cell proliferation but an obvious increase in apoptosis rate in GBC cells. Besides, in the CLIC1 siRNA group, cell percentage in G0/G1 and G2/M phase was gradually increased but decreased in S phases. The migration and invasion abilities in GBC cells were significantly lower than those in the NC and blank groups. Our study demonstrates that CLIC1 gene silencing could promote apoptosis and inhibit proliferation migration and invasion of GBC cells.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Lin Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Quan-Yan Liu
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xi
- College of Life Science, Wuhan University, Wuhan, China
| | - Xiang Nan
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:11.21.1-11.21.17. [PMID: 30040212 PMCID: PMC6060641 DOI: 10.1002/cpph.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non-canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neel J Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Zhu J, Xu Y, Ren G, Hu X, Wang C, Yang Z, Li Z, Mao W, Lu D. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol 2017; 815:427-436. [PMID: 28970012 DOI: 10.1016/j.ejphar.2017.09.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tanshinone IIA Sodium sulfonate (STS) is clinically used for treating cardiovascular diseases in Traditional Chinese Medicine due to its antioxidation and anti-inflammation activities. Intracellular chloride channel 1 (CLIC1) participates in the regulation of oxidative stress and inflammation. This study investigates whether CLIC1 mediates the cardioprotective effects of STS. METHODS STS were used to treat atherosclerosis (AS) induced by feeding Apolipoprotein E-deficient (ApoE-/-) mice with a high-fat, cholesterol-rich diet. In addition, normal and CLIC1-/- human umbilical vein endothelial cells were treated with STS after exposure to H2O2 for 12h. The oxidative status was determined by analyzing reactive oxygen species(ROS) and malondialdehyde (MDA) levels. ELISA, qRT-PCR and Western blot were used to determine the levels of TNF-α, IL-6, ICAM-1 and VCAM-1. CLIC1 cellular localization was examined by immunofluorescence. Chloride ion concentration was detected with chloride ion quenchers (MQAE). RESULTS STS treatment decreased atherosclerotic lesion area by 3.5 times (P = 0.001) in vivo. Meanwhile, STS reduced MDA production (13.6%, P = 0.008), increased SOD activity (113.6%, P = 0.008), decreased TNF-α (38.6%, P = 0.008) and IL-6 (43.0%, P = 0.03) levels, and downregulated the expression of CLIC1, ICAM-1, and VCAM-1 in the atherosclerotic mice. The dose-dependent anti-oxidative and anti-inflammatory effects of STS were further confirmed in vitro. Furthermore, CLIC1 depletion abolished the STS-mediated decrease of ROS and MDA production in HUVEC cells. Additionally, STS inhibited both CLIC1 membrane translocation and chloride ion concentration. CONCLUSION The anti-oxidant, and anti-inflammation properties of STS in preventing AS is mediated by its inhibition of CLIC1 expression and membrane translocation.
Collapse
Affiliation(s)
- Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingling Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangyan Ren
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoyu Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Mao
- Cardiovascular department,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
30
|
Ek WE, Tobi EW, Ahsan M, Lampa E, Ponzi E, Kyrtopoulos SA, Georgiadis P, Lumey L, Heijmans BT, Botsivali M, Bergdahl IA, Karlsson T, Rask-Andersen M, Palli D, Ingelsson E, Hedman ÅK, Nilsson LM, Vineis P, Lind L, Flanagan JM, Johansson Å. Tea and coffee consumption in relation to DNA methylation in four European cohorts. Hum Mol Genet 2017; 26:3221-3231. [PMID: 28535255 PMCID: PMC6455036 DOI: 10.1093/hmg/ddx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/29/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023] Open
Abstract
Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea have been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation. To investigate if DNA methylation in blood is associated with coffee and tea consumption, we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed. After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated with men or with the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption.
Collapse
Affiliation(s)
- Weronica E. Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Elmar W. Tobi
- Department of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Muhammad Ahsan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Erik Lampa
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Erica Ponzi
- Department of Evolutionary Biology and Environmental Studies
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Soterios A. Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - L.H. Lumey
- Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Ingvar A. Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa K. Hedman
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena M. Nilsson
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC-HPA Centre for Environment and Health, Imperial College London, St Mary's Campus, London, UK
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - James M. Flanagan
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | | |
Collapse
|
31
|
Dehghan-Nayeri N, Eshghi P, Pour KG, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2017; 80:177-185. [PMID: 28585036 DOI: 10.1007/s00280-017-3347-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
Dexamethasone is considered as a direct chemotherapeutic agent in the treatment of pediatric acute lymphoblastic leukemia (ALL). Beside the advantages of the drug, some problems arising from the dose-related side effects are challenging issues during the treatment. Accordingly, the classification of patients to dexamethasone sensitive and resistance groups can help to select optimizing the therapeutic dose with the lowest adverse effects particularly in sensitive cases. For this purpose, we investigated inhibited proliferation and induced cytotoxicity in NALM-6 cells, as sensitive cells, after dexamethasone treatment. In addition, comparative protein expression analysis using the 2DE-MALDI-TOF MS technique was performed to identify the specific altered proteins. In addition, we evaluated mRNA expression levels of the identified proteins in bone-marrow samples from pediatric ALL patients using the real-time q-PCR method. Eventually, proteomic analysis revealed a combination of biomarkers, including capping proteins (CAPZA1 and CAPZB), chloride channel (CLIC1), purine nucleoside phosphorylase (PNP), and proteasome activator (PSME1), in response to the dexamethasone treatment. In addition, our results indicated low expression of identified proteins at both the mRNA and protein expression levels after drug treatment. Moreover, quantitative real-time PCR data analysis indicated that independent of the molecular subtypes of the leukemia, CAPZA1, CAPZB, CLIC1, and PNP expression levels were lower in ALL samples than normal samples, although PSME1 expression level was higher in ALL samples than normal samples. Furthermore, the expression level of all proteins (except PSME1) was different between high-risk and standard-risk patients that suggesting the prognostic value of them. In conclusion, our study suggests a panel of biomarkers comprising CAPZA1, CAPZB, CLIC1, PNP, and PSME1 as early diagnosis and treatment evaluation markers that may differentiate cancer cells which are presumably to benefit from dexamethasone-based chemotherapy and may facilitate the prediction of clinical outcome.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Child
- Child, Preschool
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Male
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Proteomics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Nasrin Dehghan-Nayeri
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kourosh Goudarzi Pour
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Xu Y, Zhu J, Hu X, Wang C, Lu D, Gong C, Yang J, Zong L. CLIC1 Inhibition Attenuates Vascular Inflammation, Oxidative Stress, and Endothelial Injury. PLoS One 2016; 11:e0166790. [PMID: 27861612 PMCID: PMC5115793 DOI: 10.1371/journal.pone.0166790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/03/2016] [Indexed: 01/26/2023] Open
Abstract
Endothelial dysfunction, which includes endothelial oxidative damage and vascular inflammation, is a key initiating step in the pathogenesis of atherosclerosis (AS) and an independent risk factor for this disorder. Intracellular chloride channel 1 (CLIC1), a novel metamorphic protein, acts as a sensor of cell oxidation and is involved in inflammation. In this study, we hypothesize that CLIC1 plays an important role in AS. Apolipoprotein E-deficient mice were supplied with a normal diet or a high-fat and high-cholesterol diet for 8 weeks. Overexpressed CLIC1 was associated with the accelerated atherosclerotic plaque development, amplified oxidative stress, and in vivo release of inflammatory cytokines. We subsequently examined the underlying molecular mechanisms through in vitro experiments. Treatment of cultured human umbilical vein endothelial cells (HUVECs) with H2O2 induced endothelial oxidative damage and enhanced CLIC1 expression. Suppressing CLIC1 expression through gene knocked-out (CLIC1-/-) or using the specific inhibitor indanyloxyacetic acid-94 (IAA94) reduced ROS production, increased SOD enzyme activity, and significantly decreased MDA level. CLIC1-/- HUVECs exhibited significantly reduced expression of TNF-α and IL-1β as well as ICAM-1 and VCAM-1 at the protein levels. In addition, H2O2 promoted CLIC1 translocation to the cell membrane and insertion into lipid membranes, whereas IAA94 inhibited CLIC1 membrane translocation induced by H2O2. By contrast, the majority of CLIC1 did not aggregate on the cell membrane in normal HUVECs, and this finding is consistent with the changes in cytoplasmic chloride ion concentration. This study demonstrates for the first time that CLIC1 is overexpressed during AS development both in vitro and in vivo and can regulate the accumulation of inflammatory cytokines and production of oxidative stress. Our results also highlight that deregulation of endothelial functions may be associated with the membrane translocation of CLIC1 and active chloride-selective ion channels in endothelial cells.
Collapse
Affiliation(s)
- Yingling Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail:
| | - Chenxue Gong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhuan Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Zong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, Beznoussenko G, Mironov A, Rappa G, Cuomo A, Faretta M, Bonaldi T, Lorico A, Pelicci G. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget 2016; 6:31413-27. [PMID: 26429879 PMCID: PMC4741615 DOI: 10.18632/oncotarget.5105] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023] Open
Abstract
Little progresses have been made in the treatment of glioblastoma (GBM), the most aggressive and lethal among brain tumors. Recently we have demonstrated that Chloride Intracellular Channel-1 (CLIC1) is overexpressed in GBM compared to normal tissues, with highest expression in patients with poor prognosis. Moreover, CLIC1-silencing in cancer stem cells (CSCs) isolated from human GBM patients negatively influences proliferative capacity and self-renewal properties in vitro and impairs the in vivo tumorigenic potential. Here we show that CLIC1 exists also as a circulating protein, secreted via extracellular vesicles (EVs) released by either cell lines or GBM-derived CSCs. Extracellular vesicles (EVs), comprising exosomes and microvesicles based on their composition and biophysical properties, have been shown to sustain tumor growth in a variety of model systems, including GBM. Interestingly, treatment of GBM cells with CLIC1-containing EVs stimulates cell growth both in vitro and in vivo in a CLIC1-dose dependent manner. EVs derived from CLIC1-overexpressing GBM cells are strong inducers of proliferation in vitro and tumor engraftment in vivo. These stimulations are significantly attenuated by treatment of GBM cells with EVs derived from CLIC1-silenced cells. However, CLIC1 modulation appears to have no direct role in EV structure, biogenesis and secretion. These findings reveal that, apart from the function of CLIC1 cellular reservoir, CLIC1 contained in EVs is a novel regulator of GBM growth.
Collapse
Affiliation(s)
- Matteo Setti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Barbara Ortensi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Galina Beznoussenko
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Alexandre Mironov
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Germana Rappa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Aurelio Lorico
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, NV, USA
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
34
|
Zhao W, Lu M, Zhang Q. Chloride intracellular channel 1 regulates migration and invasion in gastric cancer by triggering the ROS-mediated p38 MAPK signaling pathway. Mol Med Rep 2015; 12:8041-7. [PMID: 26497050 PMCID: PMC4758331 DOI: 10.3892/mmr.2015.4459] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/24/2015] [Indexed: 01/10/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) has been demonstrated to be overexpressed in gastric cancer, and elevated CLIC1 expression levels are markedly associated with the processes of tumor cell migration and invasion. However, the regulatory mechanism and signaling pathway underlying these processes have remained to be elucidated. The present study examined the impact of N-acetyl cysteine (NAC), indanyloxyacetic acid (IAA)-94 and SB203580, inhibitors of reactive oxygen species (ROS), as well as CLIC1 and p38 mitogen-activated protein kinase (MAPK) on the migration and invasion of SGC-7901 gastric cancer cells in a hypoxia-reoxygenation (H-R) microenvironment. The results demonstrated that intracellular ROS and CLIC1 levels were increased under H-R conditions, and that functional inhibition of CLIC1 significantly decreased the H-R-elevated ROS generation and p-p38 MAPK levels in SGC-7901 cells, as well as inhibited the migration and invasion of SGC-7901 cells. In addition, the expression levels of MMP-2 and MMP-9 were inhibited by NAC, IAA-94 and SB203580. These results indicated that CLIC1 regulates gastric cancer-cell migration and invasion via the ROS-mediated p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Wei Zhao
- Department of General Surgery, People's Hospital of Laiwu, Laiwu, Shandong 271100, P.R. China
| | - Mingshu Lu
- Department of General Surgery, People's Hospital of Laiwu, Laiwu, Shandong 271100, P.R. China
| | - Qiwen Zhang
- Department of General Surgery, People's Hospital of Laiwu, Laiwu, Shandong 271100, P.R. China
| |
Collapse
|
35
|
Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells. PLoS One 2015; 10:e0138581. [PMID: 26390131 PMCID: PMC4577111 DOI: 10.1371/journal.pone.0138581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.
Collapse
|
36
|
Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 2015; 5:11252-68. [PMID: 25361004 PMCID: PMC4294381 DOI: 10.18632/oncotarget.2617] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
Collapse
|
37
|
Jia L, Liu W, Guan L, Lu M, Wang K. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer. PLoS One 2015; 10:e0136584. [PMID: 26305547 PMCID: PMC4549304 DOI: 10.1371/journal.pone.0136584] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.
Collapse
Affiliation(s)
- Linghan Jia
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Wen Liu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Lizhao Guan
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Min Lu
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - KeWei Wang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
38
|
Lu J, Dong Q, Zhang B, Wang X, Ye B, Zhang F, Song X, Gao G, Mu J, Wang Z, Ma F, Gu J. Chloride intracellular channel 1 (CLIC1) is activated and functions as an oncogene in pancreatic cancer. Med Oncol 2015; 32:616. [PMID: 25920608 DOI: 10.1007/s12032-015-0616-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 01/12/2023]
Abstract
Chloride intracellular channel 1 (CLIC1), a newly discovered member of the chloride channel protein family, has been implicated in multiple human cancers. However, little is known with regard to its expression and biological functions in pancreatic cancer. In this study, we focused on the clinical significance and biological functions of CLIC1 in pancreatic cancer and found that this protein was overexpressed in pancreatic cancer tissues. Patients with CLIC1-positive tumours had worse overall survival than those with CLIC1-negative tumours. Furthermore, the treatment of pancreatic cancer cell lines with CLIC1-targeting siRNA oligonucleotides significantly reduced cell proliferation and diminished anchorage-independent growth on both soft agar and cell migration. These data indicate that CLIC1 acts as a putative oncogene in pancreatic cancer and may represent a novel diagnostic and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jianhua Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Romani R, Fallarino F, Pirisinu I, Calvitti M, Caselli A, Fiaschi T, Gamberi T, Matino D, Talesa VN, Donti E, Puccetti P, Modesti A, Magherini F. Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. MOLECULAR BIOSYSTEMS 2015; 11:1622-32. [PMID: 25811139 DOI: 10.1039/c5mb00018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human amniotic fluid (AF) contains a variety of stem cells of embryonic and extra-embryonic origins. We characterized two distinct types of stem cells isolated from residual AF material derived from prenatal diagnostic amniocentesis. The two types of cells differed in their morphology and growth kinetics, showing fast (fast human amniotic stem cells; fHASCs) or slow (slow human amniotic stem cells; sHASCs) population-doubling times. Both fHASCs and sHASCs expressed pluripotent stem-cell markers, yet unlike sHASCs, clonogenic fHASCs would generate embryoid bodies and maintain their original phenotype during prolonged in vitro passaging. fHASCs - but not sHASCs - expressed the KLF4, SSEA-4 and CD117 markers. Differential proteomic analysis allowed us to identify the protein patterns specific for either cell type as potentially contributing to their distinct phenotypes. We found thirty-six proteins that were differentially expressed by the two cell types, and those proteins were classified according to their biological and molecular functions. Bioinformatic cluster analysis revealed differential occurrence of cytoskeletal proteins, such as vimentin, F-actin-binding protein, and chloride intracellular channel protein 1. Selected proteins differentially expressed by fHASCs and sHASCs were further characterized by Western blot analysis and confocal microscopy.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Takemoto K, Shiozaki A, Ichikawa D, Komatsu S, Konishi H, Nako Y, Murayama Y, Kuriu Y, Nakanishi M, Fujiwara H, Okamoto K, Sakakura C, Nakahari T, Marunaka Y, Otuji E. Evaluation of the efficacy of peritoneal lavage with distilled water in colorectal cancer surgery: in vitro and in vivo study. J Gastroenterol 2015; 50:287-97. [PMID: 24908098 DOI: 10.1007/s00535-014-0971-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peritoneal lavage with distilled water has been performed during colorectal cancer surgery. This study investigated the cytocidal effects of hypotonic shock in vitro and in vivo in colorectal cancer cells. METHODS Three human colorectal cancer cell lines, DLD1, HT29, and CACO2, were exposed to distilled water, and morphological changes were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes were assessed using a high-resolution flow cytometer. Re-incubation experiments were performed to investigate the cytocidal effects of distilled water. In the in vivo experiment, cancer cells after hypotonic shock were injected intraperitoneally into mice and the degree of established peritoneal metastasis was subsequently evaluated. The effects of the blockade of Cl(-) channels on these cells during hypotonic shock were also analyzed. RESULTS Morphological observations revealed a rapid cell swelling followed by cell rupture. Measurements of cell volume changes showed that mild hypotonic shock induced regulatory volume decrease (RVD) while severe hypotonic shock broke cells into fragments. Re-incubation experiments demonstrated the cytocidal effects of hypotonicity. In vivo experiments revealed the absence of peritoneal dissemination in mice in the distilled water group, and its presence in all mice in the control group. The blockade of Cl(-) channels increased cell volume by inhibiting RVD and enhanced cytocidal effects during mild hypotonic shock. CONCLUSIONS These results clearly support the efficacy of peritoneal lavage with distilled water during colorectal cancer surgery and suggest that regulating of Cl(-) transport may enhance the cytocidal effects of hypotonic shock.
Collapse
Affiliation(s)
- Kenichi Takemoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
42
|
Wei X, Li J, Xie H, Wang H, Wang J, Zhang X, Zhuang R, Lu D, Ling Q, Zhou L, Xu X, Zheng S. Chloride intracellular channel 1 participates in migration and invasion of hepatocellular carcinoma by targeting maspin. J Gastroenterol Hepatol 2015; 30:208-16. [PMID: 24989236 DOI: 10.1111/jgh.12668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Our previous proteomic research found that chloride intracellular channel 1 (CLIC1) was upregulated in hepatocellular carcinoma (HCC) tissues with portal vein tumor thrombus. The present study aimed to determine the role of CLIC1 in HCC invasion. METHODS Immunohistochemistry was used to explore protein expression of CLIC1 in 15 cirrhotic tissues and 69 pairs of HCC and paracarcinoma tissues. Small interfering RNA (siRNA) and plasmids were transfected into HepG2 and SMMC7721 cells, and the in vitro function of CLIC1 in these cells were assessed with cell counting kit-8 assays, cell apoptosis assays, scratch assays, and transwell assays. Microarray analysis was also performed to further explore the candidate genes related to CLIC1. RESULTS Our results confirmed that upregulated CLIC1 expression was significantly correlated with vascular invasion (P = 0.034) in HCC tissues. Knockdown of CLIC1 decreased cell viability and the invasive potency of HepG2 cells, whereas CLIC1 overexpression resulted in an opposite effect in SMMC7721 cells. Microarray analysis identified 618 genes that were differentially expressed (fold change ≥ 2, P < 0.05) between HepG2 cells transfected with CLIC1 siRNA and the negative control. Further studies indicate that knockdown of CLIC1 increased maspin expression and reduced vascular endothelial growth factor (VEGF), matrixmetalloproteinase-2 (MMP2), MMP9, MMP11, and MMP12 expression. In contrast, overexpression of CLIC1 decreased maspin expression and increased VEGF, MMP2, MMP12, and MMP13 expression. CONCLUSIONS CLIC1 protein expression is significantly correlated with vascular invasion, and the present study suggests a previously unknown mechanism of CLIC1-mediated control of HCC invasiveness by targeting maspin.
Collapse
Affiliation(s)
- Xuyong Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2523-31. [PMID: 25546839 DOI: 10.1016/j.bbamem.2014.12.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers."
Collapse
Affiliation(s)
- Marta Peretti
- Department of Life Science, University of Milan, Milano I-20133, Italy
| | - Marina Angelini
- Department of Life Science, University of Milan, Milano I-20133, Italy
| | - Nicoletta Savalli
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90075, USA
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genova, Italy
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Michele Mazzanti
- Department of Life Science, University of Milan, Milano I-20133, Italy.
| |
Collapse
|
44
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
45
|
Tian Y, Guan Y, Jia Y, Meng Q, Yang J. Chloride Intracellular Channel 1 Regulates Prostate Cancer Cell Proliferation and Migration Through the MAPK/ERK Pathway. Cancer Biother Radiopharm 2014; 29:339-44. [PMID: 25279971 DOI: 10.1089/cbr.2014.1666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yudong Tian
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbin Guan
- School of Pharmacy, Henan University of Tradition Chinese Medicine, Zhengzhou, China
| | - Yongyan Jia
- School of Pharmacy, Henan University of Tradition Chinese Medicine, Zhengzhou, China
| | - Qingjun Meng
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjian Yang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Sund J, Palomäki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics 2014; 108:469-83. [PMID: 24972317 DOI: 10.1016/j.jprot.2014.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 01/24/2023]
Abstract
UNLABELLED Nano-sized titanium dioxide (nTiO2) is one of the most produced engineered nanomaterials and therefore carries a high risk for workplace exposure. In several nanosafety studies, exposure to nTiO2 has been shown to trigger inflammation in mice lung and to cause oxidative stress. Here, cytoplasmic proteome changes in human monocyte derived macrophages were investigated with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry to evaluate the adverse cellular effects after exposure to different types of TiO2 nanoparticles (NPs). Both studied TiO2 NPs (rutile TiO2 with or without silica coating) evoked similar proteome alterations. The identified proteins were linked to metabolic homeostasis, cytoskeleton remodeling and oxidative stress. The abundances of chloride intracellular channel protein 1 and cathepsin D changed only after exposure to nTiO2 as compared to a coarse particle analog. Enrichment analysis revealed that 70% of the proteins with changed intensities contained known acetylation sites, and it was possible to confirm a significant induction of cytoplasmic protein acetylation after nTiO2 exposure. The course of the events during phagocytosis could account for the observed membrane maintenance, metabolic and cytoskeletal protein expression changes. Lysine acetylation of cytoplasmic proteins in macrophages is emerging as a major cell regulation mechanism after nTiO2 exposure. BIOLOGICAL SIGNIFICANCE While the amount of nanosafety research conducted in recent years has been constantly increasing, proteomics has not yet been utilized widely in this field. In addition, reversible protein post-translational modifications (PTMs) such as acetylation and phosphorylation have not been investigated in-depth in nanomaterial exposed cells. Proteome changes observed in nanomaterial exposed macrophages revealed active phagocytosis of the particles and provided new insights into underlying mechanisms of biological responses to nTiO2 exposures. Moreover, reversible protein acetylation might be a major cellular regulation event occurring in nanomaterial exposed cells.
Collapse
Affiliation(s)
- Jukka Sund
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland; Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland
| | - Jaana Palomäki
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland; Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland
| | - Niina Ahonen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland
| | - Kai Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland; Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland
| | - Anne Puustinen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland; Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a b, FIN-00250 Helsinki, Finland.
| |
Collapse
|
47
|
Murray E, Hernychová L, Scigelova M, Ho J, Nekulova M, O’Neill JR, Nenutil R, Vesely K, Dundas SR, Dhaliwal C, Henderson H, Hayward RL, Salter DM, Vojtěšek B, Hupp TR. Quantitative Proteomic Profiling of Pleomorphic Human Sarcoma Identifies CLIC1 as a Dominant Pro-Oncogenic Receptor Expressed in Diverse Sarcoma Types. J Proteome Res 2014; 13:2543-59. [DOI: 10.1021/pr4010713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Euan Murray
- University of Edinburgh, Institute of Genetics and
Molecular Medicine, Edinburgh Cancer Research Centre, South Crewe Road, Edinburgh EH4 2XR, United Kingdom
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Lenka Hernychová
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Michaela Scigelova
- Thermo Fisher Scientific, Hanna-Kunath-Strasse
11, 28199 Bremen, Germany
| | - Jenny Ho
- Thermo Fisher Scientific, 1
Boundary Park, Hemel Hempstead HP2 7GE, United Kingdom
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - John Robert O’Neill
- University of Edinburgh, Institute of Genetics and
Molecular Medicine, Edinburgh Cancer Research Centre, South Crewe Road, Edinburgh EH4 2XR, United Kingdom
| | - Rudolf Nenutil
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Karel Vesely
- Masaryk University and St. Annés University Hospital, First Department of Pathological Anatomy, Pekařská 53, 656 91 Brno, Czech Republic
| | - Sinclair R. Dundas
- Department
of Pathology, University of Aberdeen, University Medical Buildings, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Catharine Dhaliwal
- Department
of Pathology, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SA, United Kingdom
| | - Hannah Henderson
- Department
of Pathology, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SA, United Kingdom
| | - Richard L. Hayward
- University of Edinburgh, Institute of Genetics and
Molecular Medicine, Edinburgh Cancer Research Centre, South Crewe Road, Edinburgh EH4 2XR, United Kingdom
| | - Donald M. Salter
- University of Edinburgh, Institute of Genetics and
Molecular Medicine, Edinburgh Cancer Research Centre, South Crewe Road, Edinburgh EH4 2XR, United Kingdom
| | - Bořivoj Vojtěšek
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Ted R. Hupp
- University of Edinburgh, Institute of Genetics and
Molecular Medicine, Edinburgh Cancer Research Centre, South Crewe Road, Edinburgh EH4 2XR, United Kingdom
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
48
|
Wang P, Zeng Y, Liu T, Zhang C, Yu PW, Hao YX, Luo HX, Liu G. Chloride intracellular channel 1 regulates colon cancer cell migration and invasion through ROS/ERK pathway. World J Gastroenterol 2014; 20:2071-2078. [PMID: 24587680 PMCID: PMC3934477 DOI: 10.3748/wjg.v20.i8.2071] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
METHODS: Fluorescent probes were used to detect reactive oxygen species (ROS) in LOVO cells. Wound healing assay and transwell assay were performed to examine the migration and invasion of LOVO cells. Expression of CLIC1 mRNA and protein, p-ERK, MMP-2 and MMP-9 proteins was analyzed by reverse transcription-polymerase chain reaction and Western blot.
METHODS: H-R treatment increased the intracellular ROS level in LOVO cells. The mRNA and protein expression of CLIC1 was elevated under H-R conditions. Functional inhibition of CLIC1 markedly decreased the H-R-enhanced ROS generation, cell migration, invasion and phosphorylation of ERK in treated LOVO cells. Additionally, the expression of MMP-2 and MMP-9 could be regulated by CLIC1-mediated ROS/ERK pathway.
CONCLUSION: Our results suggest that CLIC1 protein is involved in the metastasis of colon cancer LOVO cells via regulating the ROS/ERK pathway in the H-R process.
Collapse
|
49
|
Nanaware PP, Ramteke MP, Somavarapu AK, Venkatraman P. Discovery of multiple interacting partners of gankyrin, a proteasomal chaperone and an oncoprotein--evidence for a common hot spot site at the interface and its functional relevance. Proteins 2014; 82:1283-300. [PMID: 24338975 DOI: 10.1002/prot.24494] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 12/27/2022]
Abstract
Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Padma P Nanaware
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | | | | | | |
Collapse
|
50
|
Wang L, He S, Tu Y, Ji P, Zong J, Zhang J, Feng F, Zhao J, Zhang Y, Gao G. Elevated expression of chloride intracellular channel 1 is correlated with poor prognosis in human gliomas. J Exp Clin Cancer Res 2012; 31:44. [PMID: 22578365 PMCID: PMC3441274 DOI: 10.1186/1756-9966-31-44] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chloride intracellular channel 1 (CLIC1) is expressed ubiquitously in human tissues and is involved in the regulation of cell cycle, cell proliferation and differentiation. Recent studies have shown that CLIC1 is highly expressed in several human malignant tumors. However, its roles in human gliomas are still unclear. The aim of this study was to investigate the clinicopathological significance and prognostic value of CLIC1 expression in human gliomas. METHODS CLIC1 expression in human gliomas and nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay and immunohistochemistry. Its association with clinicopathological factors or prognosis in patients with gliomas was statistically analyzed. RESULTS The expression of CLIC1 at both mRNA and protein levels was significantly increased in high-grade (Grade III~IV) glioma tissues compared with that in low-grade (Grade I~II) and nonneoplastic brain tissues, and was up-regulated with ascending tumor World Health Organization (WHO) grades. The elevated expression of CLIC1 protein was also significantly correlated with low Karnofsky performance score (KPS) (P=0.008). Moreover, both univariate and multivariate analysis shown that high CLIC1 expression was significantly associated with poor prognosis in patients with gliomas (P<0.001 and P=0.01, respectively). In particular, the elevated CLIC1 expression also correlated with shorter overall survival in different glioma subgroups stratified according to the WHO grading. CONCLUSIONS Our data provide the first evidence that CLIC1 expression might play an important role in the regulation of aggressiveness in human gliomas. The elevated expression of CLIC1 might represent a valuable prognostic marker for this disease.
Collapse
Affiliation(s)
- Liang Wang
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University of PLA, No,569, Xinsi Road, Baqiao District, Xi'an City, 710038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|