1
|
Fan F, Liang Z, Liu Z, Sun P, Hu L, Jia J, Zhang Y, Li J. Association Between Serine Concentration and Coronary Heart Disease: A Case-Control Study. Int J Gen Med 2024; 17:2955-2965. [PMID: 39006911 PMCID: PMC11244634 DOI: 10.2147/ijgm.s467320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Early identification of new residual risk factors for coronary heart disease (CHD) is warranted. In this study, we aim to investigate the association between the serine concentration, an important amino acid in one-carbon metabolism, and CHD in Chinese hospitalized patients. Patients and Methods This case-control study included 428 case-control pairs comprising patients with CHD with a maximum coronary artery stenosis degree of >70% and controls with stenosis of <30%. The individuals were matched by age, sex, and date of coronary angiography at Peking University First Hospital from January 1, 2016, to December 31, 2019. Conditional logistic regression was used to investigate the associations between the serine concentration and CHD. Results Patients with CHD were aged 63.48 ± 10.38 years, and 43.73% were male. Compared with controls, patients with CHD had a slightly lower serine concentration (13.35 ± 4.20 vs 13.77 ± 4.08 μg/mL), but the difference was not significant. In the multivariable conditional logistic regression analysis, for every 1 μg/mL increase in serine concentration, the odds of CHD decreased by 6% (95% confidence interval [CI] 0.90-0.99; P = 0.010). Patients with a serine concentration of ≥13.41 μg/mL had a lower CHD risk than those with a serine concentration of <13.41 μg/mL (odds ratio [OR] 0.57, 95% CI 0.39-0.84; P = 0.004). Subgroup analyses showed that sex interacted with the relationship between serine concentration and CHD (P interaction = 0.039), which was more significant in males (OR 0.93, 95% CI 0.87-0.98; P = 0.013) than in females. Conclusion This study observed an inverse association between the serine concentration and CHD prevalence in Chinese hospitalized patients, which revealed that serine might play a protective role in CHD.
Collapse
Affiliation(s)
- Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People's Republic of China
| | - Zhe Liang
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Pengfei Sun
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People's Republic of China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People's Republic of China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Jiang QL, Li T, Xu Q, Zeng Y, Wang W, Zhang BT, Yao QP, Jiang R, Jiang J. Methyl donor diet attenuates intimal hyperplasia after vascular injury in rats. J Nutr Biochem 2024; 123:109486. [PMID: 37844765 DOI: 10.1016/j.jnutbio.2023.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Environmental factors, particularly dietary habits, play an important role in cardiovascular disease susceptibility and progression through epigenetic modification. Previous studies have shown that hyperplastic vascular intima after endarterectomy is characterized by genome-wide hypomethylation. The purpose of this study was to investigate whether methyl donor diet affects intimal hyperplasia and the possible mechanisms involved. Intimal hyperplasia was induced in SD rats by carotid artery balloon injury. From 8 d before surgery to 28 d after surgery, the animals were fed a normal diet (ND) or a methyl donor diet (MD) supplemented with folic acid, vitamin B12, choline, betaine, and zinc. Carotid artery intimal hyperplasia was observed by histology, the effect of MD on carotid protein expression was analyzed by proteomics, functional clustering, signaling pathway, and upstream-downstream relationship of differentially expressed proteins were analyzed by bioinformatics. Results showed that MD attenuated balloon injury-induced intimal hyperplasia in rat carotid arteries. Proteomic analysis showed that there were many differentially expressed proteins in the common carotid arteries of rats fed with two different diets. The differentially expressed proteins are mainly related to the composition and function of the extracellular matrix (EMC), and changes in the EMC can lead to vascular remodeling by affecting fibrosis and stiffness of the blood vessel wall. Changes in the levels of vasculotropic proteins such as S100A9, ILF3, Serpinh1, Fbln5, LOX, HSPG2, and Fmod may be the reason why MD attenuates intimal hyperplasia. Supplementation with methyl donor nutrients may be a beneficial measure to prevent pathological vascular remodeling after injury.
Collapse
Affiliation(s)
- Qi-Lan Jiang
- Department of Clinical Nutrition, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Xu
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Zeng
- Department of Orthodontics, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Wang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Indumathi B, Oruganti SS, Sreenu B, Kutala VK. Association of Promoter Methylation and Expression of Inflammatory Genes IL-6 and TNF-α with the Risk of Coronary Artery Disease in Diabetic and Obese Subjects among Asian Indians. Indian J Clin Biochem 2022; 37:29-39. [PMID: 35125691 PMCID: PMC8799818 DOI: 10.1007/s12291-020-00932-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
The inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are considered as the most important contributors to the endothelial dysfunction in subjects with type 2 diabetes mellitus (T2DM) and obesity. The hypomethylation of CpG sites in the promoter region of the IL-6 and TNF-α have shown to be associated with the increased expression of IL-6 and TNF-α. However, there are no studies on the methylation and expression of IL-6 and TNF-α with the risk of coronary artery disease (CAD) in subjects with T2DM and obesity in Asian Indians. Hence, the present study was aimed to investigate whether the IL-6, TNF-α promoter methylation and expression in blood leukocyte DNA is associated with the risk of CAD in diabetic and obese subjects in Asian Indians. For this study, we recruited 574 subjects which includes, 207 angiographically confirmed CAD patients, 100 T2DM patients, 82 obese subjects and 185 healthy controls. The methylation status of IL-6 and TNF-α gene loci was determined by methylation specific PCR (MPCR) and gene expression was determined by qPCR. We found significant hypomethylation of IL-6 in CAD and T2DM subjects (OR 1.98 95% CI: 1.32-2.97, p = 0.001, OR: 2.23 95% CI:1.34-3.76, p = 0.001, respectively). Further, a significant increase in the expression of IL-6 in CAD and T2DM subjects (fold change: 26.39 & 14.7, p = 0.0001) compared to the control subjects was observed. A significant increase in the hypomethylation of TNF-α in CAD, T2DM and obese subjects was observed as compared to the control (OR: 2.04 95% CI: 1.36-3.05, p = 0.0005, OR: 1.81 95% CI 1.10-2.96, p = 0.01, and OR: 2.1 95% CI 1.24-3.57, p = 0.007, respectively).We also found an increased expression of TNF-α in CAD, T2DM and obese subjects as compared to controls. In addition, presence of low folate, and hyperhomocysteinemia was observed in the present study, may be the contributing factors for the hypomethylation of IL-6 and TNF-α and oxidative stress. In conclusion, increased expression of IL-6 and TNF-α due to hypomethylation in T2DM and obese individuals may contribute to CAD risk in these subjects. The presence of hyperhomocysteinemia and increased oxidative risk may enhance the CAD risk further.
Collapse
Affiliation(s)
- Bobbala Indumathi
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Sai Satish Oruganti
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, India
| | - Boddupally Sreenu
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| |
Collapse
|
4
|
Griess B, Klinkebiel D, Kueh A, Desler M, Cowan K, Fitzgerald M, Teoh-Fitzgerald M. Association ofSOD3 promoter DNA methylation with its down-regulation in breast carcinomas. Epigenetics 2020; 15:1325-1335. [PMID: 32508251 PMCID: PMC7678930 DOI: 10.1080/15592294.2020.1777666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
Superoxide dismutase 3 (SOD3) is a secreted antioxidant enzyme that regulates reactive oxygen species in the microenvironment. It is also a potential tumour suppressor gene that is significantly downregulated in breast cancer. We have previously shown that its mRNA expression is inversely correlated with relapse free survival in breast cancer patients. This study aimed to investigate the correlation of SOD3 promoter DNA methylation with its expression in different molecular subtypes of breast carcinoma. We found that SOD3 expression was significantly reduced in breast carcinoma samples compared to normal tissues with the lowest levels observed in Luminal B subtype. Pyrosequencing analysis showed significant increase in methylation levels in the SOD3 promoter region (-108 and -19 from the TSS) in tumours vs normal tissues (53.6% vs 25.2%). The highest degree of correlation between methylation and SOD3 expression levels was observed in Luminal B subtype (Spearman's R = -0.540, P < 0.00093). In this subtype, the -78 CpG position is the most significantly methylated site. The Spearman's coefficient analysis also indicated the most significant correlation of DNA methylation at this site with SOD3 gene expression levels in tumours vs. normal tissues (R = -0.5816, P < 6.9E-12). Moreover, copy number variation analysis of TCGA database revealed that the more aggressive Triple Negative and Her2+ subtypes had higher levels of SOD3 gene deletion. The predominantly down-regulated expression pattern of SOD3 and the various genetic and epigenetic deregulations of its expression suggest that loss of this antioxidant promotes an advantageous tumour-promoting microenvironment in breast cancer.
Collapse
Affiliation(s)
- Brandon Griess
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alice Kueh
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Desler
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth Cowan
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew Fitzgerald
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Kuzmina NS, Luong TM, Rubanovich AV. Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L, Qin Z, Xiao R. Dietary intakes and biomarker patterns of folate, vitamin B 6, and vitamin B 12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics 2019; 11:139. [PMID: 31601260 PMCID: PMC6787977 DOI: 10.1186/s13148-019-0741-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND B vitamins in the one-carbon metabolism pathway (folate, vitamin B6, and vitamin B12) have been implicated in DNA methylation, and their deficiency may contribute to cognitive decline through increased homocysteine (Hcy) levels and subsequent oxidative damage. The aim of this study was to investigate whether B vitamin deficiency and increased Hcy could interact with DNA methylation of oxidative-related genes and exacerbate cognitive impairment. METHODS Participants were selected from a large cohort study entitled the Effects and Mechanism Investigation of Cholesterol and Oxysterol on Alzheimer's disease (EMCOA) study. We included 2533 participants who completed a selection of comprehensive cognitive tests and a semiquantitative food frequency questionnaire (FFQ) and were followed for an average of 2.3 years. The longitudinal effects of B vitamin intake on cognitive decline were examined using linear mixed-effect models. Seven mild cognitive impairment (MCI) patients, in the predementia stage of Alzheimer's disease (AD), and fivev healthy controls were selected for the discovery of genome-wide differentially methylated CpG sites. Candidate oxidative stress-related genes significantly correlated with serum levels of B vitamins were selected for validation in 102 MCI patients and 68 controls. The correlations between DNA methylation levels and serum concentrations of B vitamins and oxidative biomarkers were analyzed with Spearman's correlation. The interactive effects of DNA methylation and B vitamins on cognitive performance were further evaluated by multiple linear regression. RESULTS In the prospective analysis, inadequate dietary intake of vitamin B12 was significantly associated with accelerated cognitive decline, whereas adequate folate, vitamin B6, and vitamin B12 intakes were significantly associated with better cognitive reserve. In the case-control analysis, the DNA methylation levels of NUDT15 and TXNRD1 were examined, and significantly hypermethylated sites were identified in MCI patients. Significant correlations of hypermethylated sites with serum levels of folate, homocysteine (Hcy), and oxidative biomarkers were observed, and interactive effects of B vitamins and hypermethylated sites were significantly associated with cognitive performance. CONCLUSION Adequate dietary folate at baseline predicted a better cognitive reserve, while decreased serum levels of B vitamins may contribute to cognitive impairment by affecting methylation levels of specific redox-related genes. TRIAL REGISTRATION EMCOA, ChiCTR-OOC-17011882, Registered 5th, July 2017-Retrospectively registered, http://www.medresman.org/uc/project/projectedit.aspx?proj=2610.
Collapse
Affiliation(s)
- Yu An
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Lingli Feng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Peking University First Hospital, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Ying Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yushan Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Lingwei Tao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | | | - Rong Xiao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.
| |
Collapse
|
7
|
Starr JM. Ageing and epigenetics: linking neurodevelopmental and neurodegenerative disorders. Dev Med Child Neurol 2019; 61:1134-1138. [PMID: 30883719 DOI: 10.1111/dmcn.14210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Epigenetics has classically been recognized as crucial to neurodevelopment and neurodevelopmental disorders. More recently its role in ageing processes, including neurodegenerative disorders has emerged, although far more research is required in this area, particularly in humans. Epigenetic processes that regulate gene expression comprise strata of DNA modification (e.g. methylation), histone modification (e.g. histone acetylation), and mRNA translation (e.g. by microRNAs). These strata are progressively more fluid whereby changes in DNA methylation may persist for many years whilst expression of microRNAs fluctuates over short periods. There is considerable 'cross-talk' between these epigenetic strata. Epigenetic mechanisms are open to parental imprinting and thus they are candidates for linking diseases, not just over the life course, but also intergenerationally. There is a genetic overlap between intellectual disability and cognitive ageing. Epigenetic pathways may strengthen the links between neurodevelopmental disorders and neurodegenerative diseases. WHAT THIS PAPER ADDS: DNA methylation has relevance to both neurological development and neurodegeneration. Links between epigenetics, genotype and phenotype are emerging.
Collapse
Affiliation(s)
- John M Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Xu W, Qian M, Huang C, Cui P, Li W, Du Q, Yi S, Shi X, Guo Y, Zheng J, Liu D, Lin D. Comparison of Mechanisms of Endothelial Cell Protections Between High-Density Lipoprotein and Apolipoprotein A-I Mimetic Peptide. Front Pharmacol 2019; 10:817. [PMID: 31379582 PMCID: PMC6659106 DOI: 10.3389/fphar.2019.00817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptide, D-4F, exhibits anti-atherogenic effects similar to high-density lipoprotein (HDL). However, it remains elusive whether D-4F and HDL share similar molecular mechanisms underlying anti-atherogenic effects and endothelial cell protections. We here compared the metabolic changes in endothelial cells induced by D-4F and HDL against oxidized low-density lipoprotein (ox-LDL), which may be of benefit to understanding the protective mechanisms of HDL and D-4F. Functional assays, including wound healing, transwell migration, and tube formation, were used to evaluate the pro-angiogenic effects of HDL and D-4F. NMR-based metabolomic analysis was employed to explore the protective mechanisms underlying HDL and D-4F. Partial least-squares discriminant analysis (PLS-DA) was performed to assess metabolic profiles, and orthogonal PLS-DA (OPLS-DA) was carried out to identify characteristic metabolites. Moreover, significantly altered metabolic pathways were also analyzed. We found that ox-LDL impaired the migration and tube formation of endothelial cells. Metabolomic analysis showed that ox-LDL triggered oxidative stress, impaired glycolysis, and enhanced glycerophospholipid metabolism. Both HDL and D-4F improved the migration and angiogenesis of endothelial cells, alleviated oxidative stress, and ameliorated disordered glycolysis impaired by ox-LDL. Strikingly, HDL partially attenuated the disturbed glycerophospholipid metabolism, whereas D-4F did not show this effect. In summary, although D-4F shared the similar protective effects with HDL on the migration and angiogenesis of endothelial cells, it could not deduce the molecular mechanisms of HDL completely. Nevertheless, D-4F possesses the potentiality to be exploited as clinically applicable agent for endothelial cell protection and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Wenqi Xu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingming Qian
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology, Xiamen, China
| | - Pengfei Cui
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Li
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Qian Du
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Shenghui Yi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiaohe Shi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College, Fujian Cardiovascular Institute, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, China
| | - Jianlan Zheng
- Department of Ob/Gyn and Neonatal and Reproductive Medicine, The People's Liberation Army 174th Hospital and The Affiliated Hospital of Xiamen University, Xiamen, China
| | - Donghui Liu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College, Fujian Cardiovascular Institute, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Naushad SM, Hussain T, Indumathi B, Samreen K, Alrokayan SA, Kutala VK. Machine learning algorithm-based risk prediction model of coronary artery disease. Mol Biol Rep 2018; 45:901-910. [DOI: 10.1007/s11033-018-4236-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/02/2018] [Indexed: 10/26/2022]
|
10
|
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T. Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease. Diseases 2018; 6:E28. [PMID: 29677102 PMCID: PMC6023281 DOI: 10.3390/diseases6020028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative sickness, where the speed of personal disease progression differs prominently due to genetic and environmental factors such as life style. Alzheimer’s disease is described by the construction of neuronal plaques and neurofibrillary tangles composed of phosphorylated tau protein. Mitochondrial dysfunction may be a noticeable feature of Alzheimer’s disease and increased production of reactive oxygen species has long been described. Superoxide dismutases (SODs) protect from excess reactive oxygen species to form less reactive hydrogen peroxide. It is suggested that SODs can play a protective role in neurodegeneration. In addition, PI3K/AKT pathway has been shown to play a critical role on the neuroprotection and inhibiting apoptosis via the enhancing expression of the SODs. This pathway appears to be crucial in Alzheimer’s disease because it is related to the tau protein hyper-phosphorylation. Dietary supplementation of several ordinary compounds may provide a novel therapeutic approach to brain disorders by modulating the function of the PI3K/AKT pathway. Understanding these systems may offer a better efficacy of new therapeutic approaches. In this review, we summarize recent progresses on the involvement of the SODs and PI3K/AKT pathway in neuroprotective signaling against Alzheimer’s disease.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Atsuko Nakanishi
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8501, Japan.
| | - Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
11
|
Kuzmina NS, Lapteva NS, Rusinova GG, Azizova TV, Vyazovskaya NS, Rubanovich AV. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure - Validation set. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:935-942. [PMID: 29253833 DOI: 10.1016/j.envpol.2017.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Hypermethylation of СpG islands in the promoter regions of several genes with basic protective function in blood leukocytes of individuals exposed to ionizing radiation long time ago (2-46 years), and differential effects of age and radiation exposure on hypermethylation was reported in our previous work. To validate these results, epigenetic modifications were assessed in an independent series of 49 nuclear industry workers from the "Mayak" facility (67-84 years old at sampling) with documented individual accumulated doses from the prolonged external γ-radiation exposure (95.9-409.5 cGy, end of work with radiation:0.3-39 years ago), and in 50 non-exposed persons matched by age. In addition to the genes analyzed before (RASSF1A, p16/INK4A, p14/ARF, GSTP1), four additional loci were analyzed: TP53, ATM, SOD3, ESR1. The frequency of individuals displaying promoter methylation of at least one of the 8 genes (71.4%) was significantly higher in exposed group as compared to the control group (40%), p = .002, OR = 3.75. A significantly elevated frequency of individuals with hypermethylated СpG islands in GSTP1, TP53, SOD3 promoters was revealed among exposed subjects as compared to the control group (p = .012, OR = 8.41; p = .041, OR = 4.02 and p = .009, OR = 3.42, respectively). A similar trend (p = .12, OR = 3.06) was observed for the p16/INK4A gene. As a whole, p16/INK4A and GSTP1 promoter hypermethylation in irradiated subjects from both previously and currently analyzed groups was pronounced. Thus, the direction of the effects was fully confirmed, suggesting the result reproducibility. No statistically significant correlation between promoter methylation and individual radiation dose was found. Further studies are required to create an array of blood epigenetic markers of radiation exposure associating with premature aging and age-related diseases and to accurately evaluate radiation-added effect across the range of doses. SYNTHESIS The results of studies of epigenetic changes in two independent samples of irradiated subjects indicated the significance of radiation factor in the induction of hypermethylation of CpG islands in gene promoters that is revealed in blood cells years and decades after exposure.
Collapse
Affiliation(s)
- Nina S Kuzmina
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Nellya Sh Lapteva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| | | | | | | | - Alexander V Rubanovich
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
12
|
Abstract
Myocardial injury activates inflammatory mediators and provokes the integration of BCL-2/adenovirus E1B 19KD interacting protein 3 (BNIP3) into mitochondrial membranes. Translocation of BNIP3 to mitochondria inexorably causes mitochondrial fragmentation. Heart failure (HF) epitomizes the life-threatening phase of BNIP3-induced mitochondrial dysfunction and cardiomyocyte death. Available data suggest that inflammatory mediators play a key role in cardiac cell demise and have been implicated in the pathogenesis of HF syndrome. In the present study, we reviewed the changes in BNIP3 protein expression levels during inflammatory response and postulated its role in inflammation-mediated HF. We also identified inflammatory mediators' response such as stimulation of TNF-α and NO as potent inducer of BNIP3. Previous studies suggest that the pro-apoptotic protein has a common regulator with IL-1β and induces IL-6-stimulated cardiac hypertrophy. These findings corroborate our contention that interventions designed to functionally modulate BNIP3 activity during inflammatory-mediated HF may prove beneficial in preventing HF. Such a revelation will open new avenue for further research to unravel a novel therapeutic strategy in HF diseases. Moreover, understanding of the relationship between BNIP3 and inflammatory mediators in HF pathologies will not only contribute to the discovery of drugs that can inhibit inflammation-mediated heart diseases, but also enhance the current knowledge on the key role BNIP3 plays during inflammation.
Collapse
|
13
|
Ramanathan N, Tan E, Loh LJ, Soh BS, Yap WN. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr Metab (Lond) 2018; 15:6. [PMID: 29387138 PMCID: PMC5775572 DOI: 10.1186/s12986-018-0244-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Ageing is a nonmodifiable risk factor that is linked to increased likelihood of cardiovascular morbidities. Whilst many pharmacological interventions currently exist to treat many of these disorders such as statins for hypercholesterolemia or beta-blockers for hypertension, the elderly appear to present a greater likelihood of suffering non-related side effects such as increased risk of developing new onset type 2 diabetes (NODM). In some cases, lower efficacy in the elderly have also been reported. Alternative forms of treatment have been sought to address these issues, and there has been a growing interest in looking at herbal remedies or plant-based natural compounds. Oxidative stress and inflammation are implicated in the manifestation of ageing-related cardiovascular disease. Thus, it is natural that a compound that possesses both antioxidative and anti-inflammatory bioactivities would be considered. This review article examines the potential of tocotrienols, a class of Vitamin E compounds with proven superior antioxidative and anti-inflammatory activity compared to tocopherols (the other class of Vitamin E compounds), in ameliorating ageing-related cardiovascular diseases and its associated morbidities. In particular, the potential of tocotrienols in improving inflammaging, dyslipidemia and mitochondrial dysfunction in ageing-related cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- Nardev Ramanathan
- Department of R&D, Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19, Davos, 138623 Singapore
- Department of R&D, Level 8, Menara KLK 1,Jalan Pju 7/6,Mutiara Damansara, 47810, 47800 Petaling Jaya, Selangor Malaysia
| | - Esther Tan
- Disease Modeling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Li Jun Loh
- Disease Modeling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Boon Seng Soh
- Disease Modeling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China
| | - Wei Ney Yap
- Department of R&D, Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19, Davos, 138623 Singapore
- Department of R&D, Level 8, Menara KLK 1,Jalan Pju 7/6,Mutiara Damansara, 47810, 47800 Petaling Jaya, Selangor Malaysia
| |
Collapse
|
14
|
Abstract
In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and genetic variables in influencing homocysteinemetabolism and investigated the influence of life style modulations in controlling homocysteine levels. Total plasma homocysteine levels were measured in fasting samples using reverse phase HPLC. Multiple linear regression (MLR) and neuro-fuzzy models were developed. The MLR model explained 64% variability in homocysteine, while the neurofuzzy model showed higher accuracy in predicting homocysteine with a mean absolute error of 0.00002 μmol/L. Methylene tetrahydrofolate reductase (MTHFR) C677T, 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) A2756G and 5- methyltetrahydrofolate homocysteine methyltransferase reductase (MTRR) A66G were shown to be positively associatiated with homocysteine, while nonvegetarian diet, serine hydroxymethyltransferase 1 (SHMT1) C1420T and TYMS 5'-UTR 28 bp tandem repeat exhibited negative association with homocysteine. The protective role of SHMT1 C1420T was attributed to more H-bonding interactions in the mutant modelled compared to the wild type, as shown through in silico analysis. To conclude, polymorphisms in genes regulating remethylation of homocysteine strongly influence homocysteine levels. The restoration of one-carbon homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to TYMS 5'-UTR 28 bp tandem repeat or nonvegetarian diet can lower homocysteine levels.
Collapse
|
15
|
Griess B, Tom E, Domann F, Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 2017; 112:464-479. [PMID: 28842347 PMCID: PMC5685559 DOI: 10.1016/j.freeradbiomed.2017.08.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are increasingly recognized as critical determinants of cellular signaling and a strict balance of ROS levels must be maintained to ensure proper cellular function and survival. Notably, ROS is increased in cancer cells. The superoxide dismutase family plays an essential physiological role in mitigating deleterious effects of ROS. Due to the compartmentalization of ROS signaling, EcSOD, the only superoxide dismutase in the extracellular space, has unique characteristics and functions in cellular signal transduction. In comparison to the other two intracellular SODs, EcSOD is a relatively new comer in terms of its tumor suppressive role in cancer and the mechanisms involved are less well understood. Nevertheless, the degree of differential expression of this extracellular antioxidant in cancer versus normal cells/tissues is more pronounced and prevalent than the other SODs. A significant association of low EcSOD expression with reduced cancer patient survival further suggests that loss of extracellular redox regulation promotes a conducive microenvironment that favors cancer progression. The vast array of mechanisms reported in mediating deregulation of EcSOD expression, function, and cellular distribution also supports that loss of this extracellular antioxidant provides a selective advantage to cancer cells. Moreover, overexpression of EcSOD inhibits tumor growth and metastasis, indicating a role as a tumor suppressor. This review focuses on the current understanding of the mechanisms of deregulation and tumor suppressive function of EcSOD in cancer.
Collapse
Affiliation(s)
- Brandon Griess
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Eric Tom
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Frederick Domann
- Free Radical and Radiation Biology Program, Radiation Oncology, University of Iowa, Iowa, IA 52242, United States
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
16
|
Zinellu A, Sotgiu E, Fois AG, Zinellu E, Sotgia S, Ena S, Mangoni AA, Carru C, Pirina P. Blood global DNA methylation is decreased in non-severe chronic obstructive pulmonary disease (COPD) patients. Pulm Pharmacol Ther 2017; 46:11-15. [PMID: 28818709 DOI: 10.1016/j.pupt.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alterations in global DNA methylation have been associated with oxidative stress (OS). Since chronic obstructive pulmonary disease (COPD) is characterized by increased oxidative stress we aimed to evaluate the levels of global DNA methylation in this patient group. METHODS We assessed methylcytosine (mCyt) levels in DNA from blood collected in 43 COPD patients (29 with mild and 14 with moderate disease) and 43 age- and sex-matched healthy controls. RESULTS DNA methylation was significantly lower in COPD patients vs. controls (4.20 ± 0.18% mCyt vs. 4.29 ± 0.18% mCyt, p = 0.02). Furthermore, DNA methylation in COPD patients with moderate disease was significantly lower than that in patients with mild disease (4.14 ± 0.15% mCyt vs. 4.23 ± 0.19% mCyt, p < 0.05). Univariate logistic regression analysis showed that lower DNA methylation levels were associated with presence of COPD (crude OR = 0.06, 95% CI 0.00 to 0.67, p = 0.023). This relationship remained significant after adjusting for several confounders (OR 0.03, 95% CI 0.00 to 0.67; p = 0.028). Receiver operating characteristics (ROC) curve analysis demonstrated the area under the curve of mCyt was 0.646, with 46.6% sensitivity and 79.1% specificity for presence of COPD. CONCLUSIONS There were no significant correlations between methylation and OS indices. The presence and severity of COPD is associated with progressively lower DNA methylation in blood. However, this epigenetic alteration seems independent of oxidative stress.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences - University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences - University of Sassari, Sassari, Italy
| | - Alessandro G Fois
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Elisabetta Zinellu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences - University of Sassari, Sassari, Italy
| | - Sara Ena
- Department of Biomedical Sciences - University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences - University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital Sassari (AOU) Sassari, Italy
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy.
| |
Collapse
|
17
|
Methylation of BNIP3 in pancreatic cancer inhibits the induction of mitochondrial-mediated tumor cell apoptosis. Oncotarget 2017; 8:63208-63222. [PMID: 28968982 PMCID: PMC5609914 DOI: 10.18632/oncotarget.18736] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022] Open
Abstract
Bcl-2 interacting protein 3 (BNIP3) is involved in various cellular processes and is considered a key regulator of hypoxia-induced apoptosis. In the present study, the expression of BNIP3 in pancreatic cancer tissues, the correlation with clinicopathological characteristics and prognosis and the regulation of this protein in pancreatic cancer cell lines with regard to the induction of apoptosis were investigated. BNIP3 expression was significantly lower in pancreatic cancer tissues compared with normal epithelia and was associated with tumor size, clinical stage, and lymph node metastasis. The expression of BNIP3 correlated positively to the proapoptotic protein Bax and negatively to the antiapoptotic protein Bcl-2, whereas the induction of apoptosis by BNIP3 was independent of caspase 3 and 9 activation. The restoration of BNIP3 expression in pancreatic cancer cells in vitro, caused loss of ΔΨm, increase in ROS production, and apoptosis induction. The opposite effect was observed in pancreatic cancer cells, following BNIP3 silencing by RNAi. The absence of BNIP3 expression in pancreatic cancer cells was related to gene methylation that suppressed binding of HIF-1α to the BNIP3 promoter, whereas 5-Aza-2'-deoxycytidine (Aza-dC) treatment restored BNIP3 expression and sensitized pancreatic cancer cells to BNIP3-induced apoptosis. The findings indicated that BNIP3 was significantly downregulated in pancreatic cancer resulting in reduced apoptosis induction. Silencing of BNIP3 expression was associated with methylation of the hypoxia-responsive element (HRE) site that in turn inhibited the binding of HIF-1α to the BNIP3 promoter. The data suggest that BNIP3 reactivation is a potential target for therapeutic intervention against pancreatic cancer.
Collapse
|
18
|
Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis 2017; 263:325-333. [PMID: 28577936 DOI: 10.1016/j.atherosclerosis.2017.05.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The aim of this study was to perform a systematic review of the association between DNA methylation and coronary heart disease (CHD) or related atherosclerotic traits. METHODS A systematic review was designed. The condition of interest was DNA methylation, and the outcome was CHD or other atherosclerosis-related traits. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). A functional analysis was undertaken using the Ingenuity Pathway Analysis software. RESULTS In total, 51 articles were included in the analysis: 12 global methylation, 34 candidate-gene and 11 EWAS, with six studies using more than one approach. The results of the global methylation studies were inconsistent. The candidate-gene results were consistent for some genes, suggesting that hypermethylation in ESRα, ABCG1 and FOXP3 and hypomethylation in IL-6 were associated with CHD. The EWAS identified 84 genes showing differential methylation associated with CHD in more than one study. The probability of these findings was <1.37·10-5. One third of these genes have been related to obesity in genome-wide association studies. The functional analysis identified several diseases and functions related to these set of genes: inflammatory, metabolic and cardiovascular disease. CONCLUSIONS Global DNA methylation seems to be not associated with CHD. The evidence from candidate-gene studies was limited. The EWAS identified a set of 84 genes highlighting the relevance of obesity, inflammation, lipid and carbohydrate metabolism in CHD. This set of genes could be prioritized in future studies assessing the role of DNA methylation in CHD.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Irene R Degano
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Barroso M, Handy DE, Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817698994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Madalena Barroso
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Liang W, Zhao YJ, Yang H, Shen LH. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin Exp Res 2017; 29:141-146. [PMID: 27075629 DOI: 10.1007/s40520-016-0564-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate the effects of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) system on the range and severity of coronary artery lesions in patients with abnormal glucose metabolism. METHODS This study included 766 patients with abnormal glucose metabolism. Levels of fasting blood lipids, blood glucose, CAT, SOD, GSH, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) were measured in all the patients. Coronarography was performed, and the degree of the lesions in each coronary artery was quantitatively analyzed using the Gensini scoring system. RESULTS In patients with impaired glucose regulation and diabetes, the number of coronary artery branches with stenosis and the Gensini scores were inversely correlated with the plasma levels of CAT, SOD, GSH, GH, and GSH-Px (P < 0.001). Patients were grouped according to the Gensini scores. As the scores increased, the levels of CAT, SOD, GSH, GSH-Px, and GR gradually decreased. Logistic gradual regression analysis showed that GSH-Px and CAT were independent risk factors associated with the coronary artery lesions in three or more branches. CONCLUSIONS Decreased plasma levels of CAT, SOD, GSH, GR, and GSH-Px were inversely correlated, at least to some extent, with the extent of coronary artery lesions. Particularly, GSH-Px and CAT were independent risk factors associated with coronary artery lesions involving three or more branches. This suggests that long-term hyperglycemia leads to enhancement of oxidative stress.
Collapse
Affiliation(s)
- Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Ya-Jie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Lin-Hui Shen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, China.
| |
Collapse
|
21
|
Procainamide Inhibits DNA Methylation and Alleviates Multiple Organ Dysfunction in Rats with Endotoxic Shock. PLoS One 2016; 11:e0163690. [PMID: 27661616 PMCID: PMC5035080 DOI: 10.1371/journal.pone.0163690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Excessive inflammatory and oxidative stress lead to circulatory failure, multiple organ dysfunction, and high mortality in patients with sepsis. Microbial infection-induced DNA hypermethylation is associated with the augmentation of inflammation and oxidative stress. In our previous study, the antiarrhythmic drug procainamide inhibits the expression of DNA methyltransferase 1 (DNMT1) and diminishes IL-6 levels in rats with rhabdomyolysis. Thus, we further evaluated the effects of procainamide on the development of circulatory failure and multiple organ dysfunction in rats with endotoxic shock. Male Wistar rats were intravenously infused with saline or lipopolysaccharide (LPS) followed by procainamide administration. The changes of hemodynamics, blood glucose, biochemical variables, and plasma nitric oxide (NO) levels were analyzed during the experimental period. At the end of experiments, animal organs were also obtained for examining superoxide production, neutrophil infiltration, and DNA methylation status. Our results showed that LPS induced circulatory failure, multiple organ dysfunction, and high mortality rate in endotoxemic rats. Overt neutrophil infiltration and superoxide production, accompanied by the elevations of DNMT1 and 5-methylcytosine levels in the lung of endotoxemic rats were also observed. Treatment of endotoxemic animals with procainamide not only inhibited the increased levels of DNMT1 and 5-methylcytosine but also ameliorated neutrophil infiltration and superoxide production in the lung. In addition, the anti-inflammatory gene, IL27RA, was down-regulated in the LPS group and up-regulated in the LPS + Procainamide group. Procainamide also diminished IL27RA methylation in the lung of endotoxemic rat. Moreover, both DNMT inhibitors procainamide and hydralazine improved hypotension, hypoglycemia, and multiple organ dysfunction of LPS-treated rats. Thus, we suggest that the beneficial effects of procainamide could be attributed to the suppression of DNA methylation, neutrophil infiltration, superoxide production, and NO formation. It seems that this old drug may have new potential uses in infectious diseases, in particular, associated with endotoxemia.
Collapse
|
22
|
Glutathione S-Transferase T1 (GSTT1) Null Polymorphism, Smoking, and Their Interaction in Coronary Heart Disease: A Comprehensive Meta-Analysis. Heart Lung Circ 2016; 26:362-370. [PMID: 27686690 DOI: 10.1016/j.hlc.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The association between glutathione S-transferase T1 (GSTT1) null polymorphism and coronary heart disease (CHD) is inconsistent among studies, and data on the GSTT1 null genotype-smoking interplay in CHD is lacking. We conducted this meta-analysis to investigate the relationship between GSTT1 null polymorphism and CHD and to assess the potential interaction between GSTT1 null genotype and smoking. METHODS PubMed and EMBASE databases were searched up to 27 January 2016 using the appropriate terms. Odds ratios were pooled using either fixed-effects or random-effects models. RESULTS Twenty-nine articles including 31 studies with 15,004 cases and 35,597 controls were eligible. The random-effects model showed that the GSTT1 null genotype was associated with increased CHD risk (OR=1.213, 95%CI: 1.004-1.467; I2=90.4%). After excluding 10 studies detected by Galbraith plot, the fixed effects summary estimate also showed an increased risk of CHD (OR=1.14, 95% CI: 1.06-1.22; I2=27.7%). A case-only analysis including eight studies showed a statistically significant positive interaction between GSTT1 null polymorphism and smoking status on CHD (OR=1.34, 95% CI: 1.09-1.64; I2=0%). Sensitivity analyses further supported the associations. No publication bias was observed. CONCLUSIONS This meta-analysis suggests that GSTT1 null polymorphism is associated with the risk of CHD. To our knowledge, this is the first meta-analysis to prove a positive effect of the interaction between GSTT1 null genotype and smoking status on the risk of CHD. Future studies with detailed individual information are needed to confirm our findings.
Collapse
|
23
|
Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, McKinsey TA, Domann FE. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L124-34. [PMID: 27233998 PMCID: PMC4967185 DOI: 10.1152/ajplung.00263.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation. We used lung tissue and pulmonary artery smooth muscle cells (PASMC) from subjects with IPAH at transplantation and from failed donors (FD). Lung SOD3 mRNA expression and activity was decreased in IPAH vs. FD. In contrast, mitochondrial SOD (Mn-SOD or SOD2) protein expression was unchanged and intracellular SOD activity was unchanged. Using bisulfite sequencing in genomic lung or PASMC DNA, we found the methylation status of the SOD3 promoter was similar between FD and IPAH. Furthermore, treatment with 5-aza-2'-deoxycytidine did not increase PASMC SOD3 mRNA, suggesting DNA methylation was not responsible for PASMC SOD3 expression. Though total histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity, acetylated histones, and acetylated SP1 were similar between IPAH and FD, treatment with two selective class I HDAC inhibitors increased SOD3 only in IPAH PASMC. Class I HDAC3 siRNA also increased SOD3 expression. Trichostatin A, a pan-HDAC inhibitor, decreased proliferation in IPAH, but not in FD PASMC. These data indicate that histone deacetylation, specifically via class I HDAC3, decreases SOD3 expression in PASMC and HDAC inhibitors may protect IPAH in part by increasing PASMC SOD3 expression.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado;
| | - Crystal Woods
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Robert S Stearman
- Department of Medicine, Indiana University, Indianapolis, Indiana; and
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Bradley S Ferguson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Kalin Swain
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Russell P Bowler
- Department of Medicine, National Jewish Hospital, Denver, Colorado
| | - Mark W Geraci
- Department of Medicine, Indiana University, Indianapolis, Indiana; and
| | - Kaori Ihida-Stansbury
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Timothy A McKinsey
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | | |
Collapse
|
24
|
Gao J, Qiu X, Wang X, Peng C, Zheng F. Associations of ChREBP and Global DNA Methylation with Genetic and Environmental Factors in Chinese Healthy Adults. PLoS One 2016; 11:e0157128. [PMID: 27281235 PMCID: PMC4900669 DOI: 10.1371/journal.pone.0157128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/25/2016] [Indexed: 12/26/2022] Open
Abstract
Age, gender, diet, gene and lifestyle have been reported to affect metabolic status and disease susceptibility through epigenetic pathway. But it remains indistinct that which factors account for certain epigenetic modifications. Our aim was to identify the influencing factors on inter-individual DNA methylation variations of carbohydrate response element binding protein (ChREBP) and global genome in peripheral blood leucocytes (PBLs). ChREBP DNA methylation was determined by bisulfite sequencing, and genomic 5mdC contents were quantified by capillary hydrophilic-interaction liquid chromatography/ in-source fragmentation/ tandem mass spectrometry system in about 300 healthy individuals. Eleven single nucleotide polymorphisms (SNPs) spanning ChREBP and DNA methyltransferase 1 (DNMT1) were genotyped by high resolution melting or PCR-restriction fragment length polymorphism. DNMT1 mRNA expression was analyzed by quantitative PCR. We found ChREBP DNA methylation levels were statistically associated with age (Beta (B) = 0.028, p = 0.006) and serum total cholesterol concentrations (TC) (B = 0.815, p = 0.010), independent of sex, concentrations of triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol (LDL-C), fasting blood glucose and systolic blood pressure, diastolic blood pressure, PBLs counts and classifications. The DNMT1 haplotypes were related to ChREBP (odds ratio (OR) = 0.668, p = 0.029) and global (OR = 0.450, p = 0.015) DNA methylation as well as LDL-C, but not DNMT1 expression. However, only the relation to LDL-C was robust to correction for multiple testing (ORFDR = 1.593, pFDR = 0.013). These results indicated that the age and TC were independent influential factors of ChREBP methylation and DNMT1 variants could probably influence LDL-C to further modify ChREBP DNA methylation. Certainly, sequential comprehensive analysis of the interactions between genetic variants and blood lipid levels on ChREBP and global DNA methylation was required.
Collapse
Affiliation(s)
- Jiajia Gao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunyan Peng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
25
|
The role of epigenetic modifications in cardiovascular disease: A systematic review. Int J Cardiol 2016; 212:174-83. [DOI: 10.1016/j.ijcard.2016.03.062] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023]
|
26
|
Kuzmina NS, Lapteva NS, Rubanovich AV. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. ENVIRONMENTAL RESEARCH 2016; 146:10-17. [PMID: 26708527 DOI: 10.1016/j.envres.2015.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Some human genes known to undergo age-related promoter hypermethylation. These epigenetic modifications are similar to those occurring in the course of certain diseases, e.g. some types of cancer, which in turn may also associate with age. Given external genotoxic factors may additionally contribute to hypermethylation, this study was designed to analyzes, using methylation-sensitive polymerase chain reaction (PCR), the CpG island hypermethylation in RASSF1A, CDKN2A (including p16/INK4A and p14/ARF) and GSTP1 promoters in peripheral blood leukocytes of individuals exposed to ionizing radiation long time ago. One hundred and twenty-four irradiated subjects (24-77 years old at sampling: 83 Chernobyl Nuclear Power Plant clean-up workers, 21 nuclear workers, 20 residents of territories with radioactive contamination) and 208 unirradiated volunteers (19-77 years old at sampling) were enrolled. In addition, 74 non-exposed offspring (2-51 years old at sampling) born to irradiated parents were examined. The frequency of individuals displaying promoter methylation of at least one gene in exposed group was significantly higher as compared to the control group (OR=5.44, 95% CI=2.62-11.76, p=3.9×10(-7)). No significant difference was found between the frequency of subjects with the revealed promoter methylation in the group of offspring born to irradiated parents and in the control group. The increase in the number of methylated loci of RASSF1A and p14/ARF was associated with age (β=0.242; p=1.7×10(-5)). In contrast, hypermethylation of p16/INK4A and GSTP1 genes correlated with the fact of radiation exposure only (β=0.290; p=1.7×10(-7)). The latter finding demonstrates that methylation changes in blood leukocytes of healthy subjects exposed to radiation resemble those reported in human malignancies. Additional studies are required to identify the dose-response of epigenetic markers specifically associating with radiation-induced premature aging and/or with the development of age-associated cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Nina S Kuzmina
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Nellya Sh Lapteva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
27
|
Increased membrane lipid peroxidation and decreased Na+/K+-ATPase activity in erythrocytes of patients with stable coronary artery disease. Coron Artery Dis 2016; 26:239-44. [PMID: 25426658 DOI: 10.1097/mca.0000000000000196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We aimed to determine erythrocyte membrane lipid peroxidation levels and Na/K-ATPase activity in patients with and without coronary artery disease (CAD) documented by coronary angiography. DESIGN AND METHODS A total of 144 patients who had undergone coronary angiography were divided into a CAD group (n=82) and a non-CAD group (control group, n=62) according to the results of coronary angiography. Lipid peroxide levels in plasma and the erythrocyte membrane were measured using a fluorimetric method. Total antioxidant status and Na/K-ATPase activity in plasma were determined using spectrophotometric methods. RESULTS Lipid peroxidation levels were significantly higher in the erythrocyte membrane of CAD patients compared with controls, whereas Na/K-ATPase activity was significantly lower in the erythrocyte membrane of CAD patients compared with controls. The coronary artery scores were correlated positively with membrane lipid peroxidation (r=0.324, P<0.001) and negatively with Na/K-ATPase activity (r=-0.302, P<0.001). CONCLUSION This study shows that the levels of membrane lipid peroxidation and Na/K-ATPase activity are correlated with the severity of CAD.
Collapse
|
28
|
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice. PLoS One 2016; 11:e0151526. [PMID: 27010651 PMCID: PMC4806847 DOI: 10.1371/journal.pone.0151526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.
Collapse
Affiliation(s)
- Albert Nguyen
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Maya Mamarbachi
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
29
|
Shih CC, Hii HP, Tsao CM, Chen SJ, Ka SM, Liao MH, Wu CC. Therapeutic Effects of Procainamide on Endotoxin-Induced Rhabdomyolysis in Rats. PLoS One 2016; 11:e0150319. [PMID: 26918767 PMCID: PMC4769298 DOI: 10.1371/journal.pone.0150319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1) used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS). Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg) accompanied by procainamide therapy (50 mg/kg). During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6) levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, R.O.C., Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Hiong-Ping Hii
- Department of Surgery, Chi Mei Medical Center, Tainan, R.O.C., Taiwan
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, R.O.C., Taiwan
| | - Shiu-Jen Chen
- Department of Physiology, National Defense Medical Center, Taipei, R.O.C., Taiwan
- Departments of Nursing, Kang-Ning Junior College of Medical Care and Management, Taipei, R.O.C., Taiwan
- Departments of Health Management for Elderly Society, Kang-Ning Junior College of Medical Care and Management, Taipei, R.O.C., Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Mei-Hui Liao
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| |
Collapse
|
30
|
Madisetty MK, Kumaraswami K, Katkam S, Saumya K, Satyanarayana Raju Y, Chandra N, Jyotsna M, Patnaik S, Kutala VK. Assessment of Oxidative Stress Markers and Carotid Artery Intima-Media Thickness in Elderly Patients Without and with Coronary Artery Disease. Indian J Clin Biochem 2015; 31:278-85. [PMID: 27382198 DOI: 10.1007/s12291-015-0530-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022]
Abstract
We aimed to assess whether measuring carotid intima-media thickness (CIMT) and oxidative stress markers such as protein carbonyls, malondialdehyde, nitrate and glutathione in plasma of elderly patients without and with coronary artery disease (CAD) identifies early risk for CAD. A total of 50 cases with cardiovascular risk factors over the age of 60 years without CAD, and 50 patients with angiographically documented CAD over the age of 60 years were included in the study. Control group consists of 200 healthy individuals without the risk factors. Demographic details were obtained from all the subjects and CIMT measured by high frequency ultrasound and oxidative stress markers such protein carbonyls, malondialdehyde and total glutathione were determined in plasma by spectrophotometric methods. The distribution of cardiovascular risk factors in without CAD and CAD cases were smokers (16 vs 56 %), hypertension (26 vs 64 %), diabetes (16 vs 56 %) and dyslipidemia (18 vs 58 %) and positive family history (4 vs 38 %). None of the control group had any cardiovascular risk factors. Among the CAD cases, 16 % had single vessel disease, 44 % had double vessel disease and 40 % had triple vessel disease. The CIMT was significantly increased in CAD cases as compared to cases without CAD and healthy controls. On the other hand, CIMT was significantly increased in cases without CAD as compared to healthy controls. CIMT also increased with the duration of diabetes in patients without CAD and severity of disease in CAD cases. The levels of oxidants like plasma malondialdehyde, protein carbonyls, were significantly elevated and antioxidant glutathione levels and nitrate levels were significantly reduced in cases with and without CAD as compared to healthy controls. Oxidative stress markers and CIMT was found to be significantly increased in patients with cardiovascular risk factors like diabetes, family history of CAD, dyslipidemia, hypertension and smoking when compared to patients without risk factors. In patients with diabetes, CIMT increased as duration of disease increases and also in poorly controlled diabetes. In CAD group, when number of vessel involvement (severity of coronary disease) increases, the CIMT also increases confirming that CIMT is a quantifiable risk factor for CAD.
Collapse
Affiliation(s)
- Murali Krishna Madisetty
- Department of General Medicine, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, 500082 India
| | - Konda Kumaraswami
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Punjagutta, Hyderabad, 500082 India
| | - Shivakrishna Katkam
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Punjagutta, Hyderabad, 500082 India
| | - Kankanala Saumya
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Punjagutta, Hyderabad, 500082 India
| | - Y Satyanarayana Raju
- Department of General Medicine, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, 500082 India
| | - Naval Chandra
- Department of General Medicine, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, 500082 India
| | - Maddury Jyotsna
- Department of Cardiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, 500082 India
| | - Sujatha Patnaik
- Department of Radiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, 500082 India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Punjagutta, Hyderabad, 500082 India
| |
Collapse
|
31
|
Naushad SM, Vijayalakshmi SV, Rupasree Y, Kumudini N, Sowganthika S, Naidu JV, Ramaiah MJ, Rao DN, Kutala VK. Multifactor dimensionality reduction analysis to elucidate the cross-talk between one-carbon and xenobiotic metabolic pathways in multi-disease models. Mol Biol Rep 2015; 42:1211-24. [PMID: 25648260 DOI: 10.1007/s11033-015-3856-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/28/2015] [Indexed: 01/14/2023]
Abstract
Putatively functional polymorphisms of one-carbon and xenobiotic metabolic pathways influence susceptibility for wide spectrum of diseases. The current study was aimed to explore gene-gene interactions among these two metabolic pathways in four diseases i.e. breast cancer, systemic lupus erythematosus (SLE), coronary artery disease (CAD) and Parkinson's disease (PD). Multifactor dimensionality reduction analysis was carried out on four case-control datasets. Cross-talk was observed between one-carbon and xenobiotic pathways in breast cancer (RFC 80 G>A, COMT H108L and TYMS 5'-UTR 28 bp tandem repeat) and SLE (CYP1A1 m1, MTRR 66 A>G and GSTT1). Gene-gene interactions within one-carbon metabolic pathway were observed in CAD (GCPII 1561 C>T, SHMT 1420 C>T and MTHFR 677 C>T) and PD (cSHMT 1420 C>T, MTRR 66 A>G and RFC1 80 G>A). These interaction models showed good predictability of risk for PD (The area under the receiver operating characteristic curve (C) = 0.83) and SLE (C = 0.73); and moderate predictability of risk for breast cancer (C = 0.64) and CAD (C = 0.63). Cross-talk between one-carbon and xenobiotic pathways was observed in diseases with female preponderance. Gene-gene interactions within one-carbon metabolic pathway were observed in diseases with male preponderance.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang A, Pinto JT, Froogh G, Kandhi S, Qin J, Wolin MS, Hintze TH, Sun D. Role of homocysteinylation of ACE in endothelial dysfunction of arteries. Am J Physiol Heart Circ Physiol 2014; 308:H92-100. [PMID: 25416191 DOI: 10.1152/ajpheart.00577.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1-0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - John T Pinto
- Department of Biochemistry, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
33
|
Structure, function, and epigenetic regulation of BNIP3: a pathophysiological relevance. Mol Biol Rep 2014; 41:7705-14. [PMID: 25096512 DOI: 10.1007/s11033-014-3664-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/27/2014] [Indexed: 12/31/2022]
Abstract
BCL-2 [B-cell leukemia/lymphoma 2]/adenovirus E1B 19KD interacting protein 3 (BNIP3) is an atypical BH3 domain only containing member of Bcl2 family of proteins. BNIP3 is known to be involved in various cellular processes depending on the cell type and conditions and also shown to play a role in various disease conditions including myocardial ischemia, autophagy and apoptosis. Though its role in autophagy and its pro-death activity have been reported in various studies, recent findings have shown its contradictory role in the regulation of these cellular processes. The various studies have shown its epigenetic regulation in disease development and progression and also found to be cytoprotective. In this review, we have focused on the structural and functional aspects of BNIP3 in relation to recent advances of its role in autophagy and apoptosis. Also its role of epigenetic regulation of several genes involved in various diseases was also discussed.
Collapse
|
34
|
Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One 2014; 9:e89351. [PMID: 24622734 PMCID: PMC3951186 DOI: 10.1371/journal.pone.0089351] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
Although the anti-cancer effects of curcumin has been shown in various cancer cell types, in vitro, pre-clinical and clinical studies showed only a limited efficacy, even at high doses. This is presumably due to low bioavailability in both plasma and tissues, particularly due to poor intracellular accumulation. A variety of methods have been developed to achieve the selective targeting of drugs to cells and mitochondrion. We used a novel approach by conjugation of curcumin to lipophilic triphenylphosphonium (TPP) cation to facilitate delivery of curcumin to mitochondria. TPP is selectively taken up by mitochondria driven by the membrane potential by several hundred folds. In this study, three mitocurcuminoids (mitocurcuminoids-1, 2, and 3) were successfully synthesized by tagging TPP to curcumin at different positions. ESI-MS analysis showed significantly higher uptake of the mitocurcuminoids in mitochondria as compared to curcumin in MCF-7 breast cancer cells. All three mitocurcuminoids exhibited significant cytotoxicity to MCF-7, MDA-MB-231, SKNSH, DU-145, and HeLa cancer cells with minimal effect on normal mammary epithelial cells (MCF-10A). The IC50 was much lower for mitocurcuminoids when compared to curcumin. The mitocurcuminoids induced significant ROS generation, a drop in ΔØm, cell-cycle arrest and apoptosis. They inhibited Akt and STAT3 phosphorylation and increased ERK phosphorylation. Mitocurcuminoids also showed upregulation of pro-apoptotic BNIP3 expression. In conclusion, the results of this study indicated that mitocurcuminoids show substantial promise for further development as a potential agent for the treatment of various cancers.
Collapse
|
35
|
Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:641979. [PMID: 24693336 PMCID: PMC3945289 DOI: 10.1155/2014/641979] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs) and deacetylases (HDACs) are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.
Collapse
|
36
|
A bioluminescent transgenic mouse model: Real-time in vivo imaging of antioxidant EC-SOD gene expression and regulation by interferon gamma. Gene 2013; 530:75-82. [DOI: 10.1016/j.gene.2013.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 06/03/2013] [Accepted: 07/14/2013] [Indexed: 11/21/2022]
|