1
|
Kudo M, Gao M, Hayashi M, Kobayashi Y, Yang J, Liu T. Ilex paraguariensis A.St.-Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024; 68:10307. [PMID: 38327997 PMCID: PMC10845893 DOI: 10.29219/fnr.v68.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Background Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein β (C/EBPβ), insulin receptor b (IRβ), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Ming Gao
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd., Sakura, Chiba, Japan
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Li J, Zhao W, Zhu J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z. Temperature Elevation during Semen Delivery Deteriorates Boar Sperm Quality by Promoting Apoptosis. Animals (Basel) 2023; 13:3203. [PMID: 37893927 PMCID: PMC10603671 DOI: 10.3390/ani13203203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semen delivery practice is crucial to the efficiency of artificial insemination using high-quality boar sperm. The present study aimed to evaluate the effect of a common semen delivery method, a Styrofoam box, under elevated temperatures on boar sperm quality and functionality and to investigate the underlying molecular responses of sperm to the temperature rise. Three pooled semen samples from 10 Duroc boars (3 ejaculates per boar) were used in this study. Each pooled semen sample was divided into two aliquots. One aliquot was stored at a constant 17 °C as the control group. Another one was packaged in a well-sealed Styrofoam box and placed in an incubator at 37 °C for 24 h to simulate semen delivery on hot summer days and subsequently transferred to a refrigerator at 17 °C for 3 days. The semen temperature was continuously monitored. The semen temperature was 17 °C at 0 h of storage and reached 20 °C at 5 h, 30 °C at 14 h, and 37 °C at 24 h. For each time point, sperm quality and functionality, apoptotic changes, expression levels of phosphorylated AMPK, and heat shock proteins HSP70 and HSP90 were determined by CASA, flow cytometry, and Western blotting. The results showed that elevated temperature during delivery significantly deteriorated boar sperm quality and functionality after 14 h of delivery. Storage back to 17 °C did not recover sperm motility. An increased temperature during delivery apparently promoted the conversion of sperm early apoptosis to late apoptosis, showing a significant increase in the expression levels of Bax and Caspase 3. The levels of phosphorylated AMPK were greatly induced by the temperature rise to 20 °C during delivery but reduced thereafter. With the temperature elevation, expression levels of HSP70 and HSP90 were notably increased. Our results indicate that a temperature increase during semen delivery greatly damages sperm quality and functionality by promoting sperm apoptosis. HSP70 and HSP90 could participate in boar sperm resistance to temperature changes by being associated with AMPK activation and anti-apoptotic processes.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450000, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium cardiotoxicity is associated with oxidative stress and upregulated TLR-4/NF-kB pathway in rats; protective role of agomelatine. Food Chem Toxicol 2023; 180:114055. [PMID: 37739054 DOI: 10.1016/j.fct.2023.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cardiotoxicity is one of the hazardous effects of the exposure to the heavy metal cadmium (Cd). Inflammation and oxidative injury are implicated in the cardiotoxic mechanism of Cd. The melatonin receptor agonist agomelatine (AGM) showed promising effects against oxidative and inflammatory responses. This study evaluated the effect of AGM on Cd-induced cardiotoxicity in rats, pointing to its modulatory effect on TLR-4/NF-kB pathway and HSP70. Rats received AGM for 14 days and a single dose of Cd on day 7 and blood and heart samples were collected for analyses. Cd increased serum CK-MB, AST and LDH and caused cardiac tissue injury. Cardiac malondialdehyde (MDA), nitric oxide (NO) and MPO were elevated and GSH, SOD and GST decreased in Cd-administered rats. AGM ameliorated serum CK-MB, AST and LDH and cardiac MDA, NO and MPO, prevented tissue injury and enhanced antioxidants. AGM downregulated serum CRP and cardiac TLR-4, NF-kB, iNOS, IL-6, TNF-α and COX-2 in Cd-administered rats. HSP70 was upregulated in the heart of Cd-challenged rats treated with AGM. In silico findings revealed the binding affinity of AGM with TLR-4 and NF-kB. In conclusion, AGM protected against Cd cardiotoxicity by preventing myocardial injury and oxidative stress and modulating HSP70 and TLR-4/NF-kB pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
4
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
5
|
Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells 2022; 12:cells12010151. [PMID: 36611952 PMCID: PMC9818491 DOI: 10.3390/cells12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents.
Collapse
Affiliation(s)
- Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuyao Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China
- Kent and Medway Medical School, Canterbury CT2 7NZ, UK
| | - Qingmiao Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| |
Collapse
|
6
|
Lin GS, Zhang MY, Wu LN, Lin QY. Vitexin Glucolone Reinforces Radiosensitivity of Non-Small Cell Lung Cancer via Transforming Growth Factor Kinase 1/Adenylate Activated Protein Kinase Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: To discuss effects of vitexin glucolone (VG) to radiosensitivity of NSCLC (Non-small cell lung cancer) cell lines (A549 and H1299). Methods: Treating A549 and H1299 cells by VG with or without X-radiation. Cell viability was calculated by CCK8. Apoptosis rate
was measured by flow cytometry and Western blot to expressions of protein. Subsequently, cells were transferred with TAK1 siRNA, cell viability and apoptosis were measured. Results: VG decreased the viability of Huh7 cells and inhibited effects of VG was more strengthen than radiotherapy
in concentrations of 20 μmol/L and 40 μmol/L. Meanwhile, VG sensitized HCC exposed to radiation therapy to apoptosis as demonstrated by increased Bax/Bcl-2 ratio. In addition, VG enhanced the promotive effects of X-radiation on the expressions of TAK1, AMPKα1
and PPARγ. Furthermore, silence the expression of TAK1 partly reversed the effects of VG on HCC and radiosensitivity of NSCLC. Conclusion: VG enhances radiosensitivity of NSCLC via TAK1/AMPK pathway.
Collapse
Affiliation(s)
- Guo Sheng Lin
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Mei Yi Zhang
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Liang Ning Wu
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Qun Ying Lin
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, 351100, China
| |
Collapse
|
7
|
The New Role of AMP-Activated Protein Kinase in Regulating Fat Metabolism and Energy Expenditure in Adipose Tissue. Biomolecules 2021; 11:biom11121757. [PMID: 34944402 PMCID: PMC8698496 DOI: 10.3390/biom11121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by excessive accumulation of fat in the body, which is triggered by a body energy intake larger than body energy consumption. Due to complications such as cardiovascular diseases, type 2 diabetes (T2DM), obstructive pneumonia and arthritis, as well as high mortality, morbidity and economic cost, obesity has become a major health problem. The global prevalence of obesity, and its comorbidities is escalating at alarming rates, demanding the development of additional classes of therapeutics to reduce the burden of disease further. As a central energy sensor, the AMP-activated protein kinase (AMPK) has recently been elucidated to play a paramount role in fat synthesis and catabolism, especially in regulating the energy expenditure of brown/beige adipose tissue and the browning of white adipose tissue (WAT). This review discussed the role of AMPK in fat metabolism in adipose tissue, emphasizing its role in the energy expenditure of brown/beige adipose tissue and browning of WAT. A deeper understanding of the role of AMPK in regulating fat metabolism and energy expenditure can provide new insights into obesity research and treatment.
Collapse
|
8
|
Yu S, Guo H, Luo Y, Chen H. Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered 2021; 12:6606-6616. [PMID: 34516361 PMCID: PMC8806608 DOI: 10.1080/21655979.2021.1974760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury causes complications in early coronary artery reperfusion for acute myocardial infarction (AMI). Ozone (O3) has been reported to be applied for protecting I/R injury, but its detailed mechanism remains unclear. Our study focused on the protective effect of O3 pretreatment on myocardial I/R injury and JAK2/STAT3 signaling and HSP70 regulation involving in the mediation. The rat hearts which were perfused and isolated as well as the cultured cardiomyocytes of neonatal rat were exposed to hypoxia/reoxygenation (H/R) and different concentrations of O3 followed by heat shock protein 70 (HSP70) siRNA treatment. The results showed O3 attenuated the suppression of cell viability induced by H/R and decreased the release of activity of creatine kinase (CK), lactate dehydrogenase (LDH) and apoptosis of cardiomyocytes in vitro. Moreover, O3 also activated the JAK2/STAT3 signaling, upregulated the expression of HSP70 both in vitro and vivo, and decreased the index of apoptosis of cardiomyocytes caused by I/R as well as myocardial infarct area in vivo. In addition, HSP70 siRNA and JAK2 inhibitor AG490 inhibited the cardioprotective effect of O3. And the expression of HSP70 increased by ozone was reduced by AG-490. In conclusion, our results demonstrated that ozone protects cardiomyocytes in I/R injury through regulation of the expression of HSP70 by activating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Shenglong Yu
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular, Panyu Central Hospital, (Cardiovascular Institute of Panyu District), Guangzhou, China
| | - Huizhuang Guo
- Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| | - Yi Luo
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular Medicine, First People's Hospital, Guangzhou, China
| | - Hanwei Chen
- The first clinical college of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| |
Collapse
|
9
|
Zhang J, Wang H, Sun X. Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70. J Microbiol Biotechnol 2021; 31:1069-1078. [PMID: 34226409 PMCID: PMC9705948 DOI: 10.4014/jmb.2103.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Xizhi Sun
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China,Corresponding author Phone: +86-0535-6691999 E-mail:
| |
Collapse
|
10
|
Chang MC, Wang TM, Chien HH, Pan YH, Tsai YL, Jeng PY, Lin LD, Jeng JH. Effect of butyrate, a bacterial by-product, on the viability and ICAM-1 expression/production of human vascular endothelial cells: Role in infectious pulpal/periapical diseases. Int Endod J 2021; 55:38-53. [PMID: 34420220 DOI: 10.1111/iej.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
AIM To investigate the effects of butyric acid (BA), a metabolic product generated by pulp and root canal pathogens, on the viability and intercellular adhesion molecule-1 (ICAM-1) production of endothelial cells, which are crucial to angiogenesis and pulpal/periapical wound healing. METHODOLOGY Endothelial cells were exposed to butyrate with/without inhibitors. Cell viability, apoptosis and reactive oxygen species (ROS) were evaluated using an MTT assay, PI/annexin V and DCF fluorescence flow cytometry respectively. RNA and protein expression was determined using a polymerase chain reaction assay and Western blotting or immunofluorescent staining. Soluble ICAM-1 (sICAM-1) was measured using an enzyme-linked immunosorbent assay. The quantitative results were expressed as mean ± standard error (SE) of the mean. The data were analysed using a paired Student's t-test where necessary. A p-value ≤0.05 was considered to indicate a statistically significant difference between groups. RESULTS Butyrate (>4 mM) inhibited cell viability and induced cellular apoptosis and necrosis. It inhibited cyclin B1 but stimulated p21 and p27 expression. Butyrate stimulated ROS production and hemeoxygenase-1 (HO-1) expression as well as activated the Ac-H3, p-ATM, p-ATR, p-Chk1, p-Chk2, p-p38 and p-Akt expression of endothelial cells. Butyrate stimulated ICAM-1 mRNA/protein expression and significant sICAM-1 production (p < .05). Superoxide dismutase, 5z-7oxozeaenol, SB203580 and compound C (p < .05), but not ZnPP, CGK733, AZD7762 or LY294002, attenuated butyrate cytotoxicity to endothelial cells. Notably, little effect on butyrate-stimulated sICAM-1 secretion was found. Valproic acid, phenylbutyrate and trichostatin (three histone deacetylase inhibitors) significantly induced sICAM-1 production (p < .05). CONCLUSION Butyric acid inhibited proliferation, induced apoptosis, stimulated ROS and HO-1 production and increased ICAM-1 mRNA expression and protein synthesis in endothelial cells. Cell viability affected by BA was diminished by some inhibitors; however, the increased sICAM-1 secretion by BA was not affected by any of the tested inhibitors. These results facilitate understanding of the pathogenesis, prevention and treatment of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
11
|
Chen S, Annesley SJ, Jasim RAF, Fisher PR. The Parkinson's Disease-Associated Protein DJ-1 Protects Dictyostelium Cells from AMPK-Dependent Outcomes of Oxidative Stress. Cells 2021; 10:cells10081874. [PMID: 34440642 PMCID: PMC8392454 DOI: 10.3390/cells10081874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.
Collapse
Affiliation(s)
- Suwei Chen
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China
| | - Sarah J. Annesley
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
| | - Rasha A. F. Jasim
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Hillah 51002, Iraq
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- Correspondence: ; Tel.: +61-3-9479-2229
| |
Collapse
|
12
|
Wang L, Luo Y, Luo L, Wu D, Ding X, Zheng H, Wu H, Liu B, Yang X, Silva F, Wang C, Zhang X, Zheng X, Chen J, Brigman J, Mandell M, Zhou Z, Liu F, Yang XO, Liu M. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J Exp Med 2021; 218:e20191054. [PMID: 33104171 PMCID: PMC7590510 DOI: 10.1084/jem.20191054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
ILC2s are present in adipose tissue and play a critical role in regulating adipose thermogenesis. However, the mechanisms underlying the activation of adipose-resident ILC2s remain poorly defined. Here, we show that IL-33, a potent ILC2 activator, stimulates phosphorylation of AMPK at Thr172 via TAK1 in primary ILC2s, which provides a feedback mechanism to inhibit IL-33-induced NF-κB activation and IL-13 production. Treating ILC2s with adiponectin or an adiponectin receptor agonist (AdipoRon) activated AMPK and decreased IL-33-NF-κB signaling. AdipoRon also suppressed cold-induced thermogenic gene expression and energy expenditure in vivo. In contrast, adiponectin deficiency increased the ILC2 fraction and activation, leading to up-regulated thermogenic gene expression in adipose tissue of cold-exposed mice. ILC2 deficiency or blocking ILC2 function by neutralization of the IL-33 receptor with anti-ST2 diminished the suppressive effect of adiponectin on cold-induced adipose thermogenesis and energy expenditure. Taken together, our study reveals that adiponectin is a negative regulator of ILC2 function in adipose tissue via AMPK-mediated negative regulation of IL-33 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Handong Zheng
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Haisha Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xianyun Zheng
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jonathan Brigman
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Mandell
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zhiguang Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX
| | - Xuexian O. Yang
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
13
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
14
|
Manukhina EB, Tseilikman VE, Komelkova MV, Lapshin MS, Goryacheva AV, Kondashevskaya MV, Mkhitarov VA, Lazuko SS, Tseilikman OB, Sarapultsev AP, Dmitrieva YA, Strizhikov VK, Kuzhel OP, Downey HF. Сardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J Appl Physiol (1985) 2021; 130:759-771. [PMID: 33411642 DOI: 10.1152/japplphysiol.00694.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats. Fourteen days post-stress, rats were evaluated with an elevated plus-maze test, and assigned to PTSD and PTSDr groups according to an anxiety index calculated from the test results. Cardiac injury was evaluated by: 1) exercise tolerance; 2) ECG; 3) myocardial histomorphology; 4) oxidative stress; 5) pro- and anti-inflammatory cytokines. Myocardial heat shock protein 70 (HSP70) was also measured. Experimental PTSD developed in 40% of rats exposed to PS. Exercise tolerance of PTSD rats was 25% less than control rats and 21% less than PTSDr rats. ECG QRS, QT, and OTc intervals were significantly longer in PTSD rats than in control and PTSDr rats. Only cardiomyocytes of PTSD rats had histomorphological signs of metabolic and hypoxic injury and impaired contractility. Oxidative stress markers were higher in PTSD than in PTSDr rats. Pro-inflammatory IL-6 was higher in PTSD rats than in control and PTSDr rats, and anti-inflammatory IL-4 was lower in PTSD than in control and PTSDr rats. Myocardial HSP70 was lower in PTSD rats than in PTSDr and control rats. Our conclusion was that rats with PTSD developed multiple signs of cardiac injury. PTSDr rats were resistant also to cardiac injury. Factors that limit cardiac damage in PS rats include reduced inflammation and oxidative stress and increased protective HSP70.NEW & NOTEWORTHY For the first time, rats exposed to stress were segregated into experimental PTSD (ePTSD)-susceptible and ePTSD-resistant rats. Cardiac injury, ECG changes, and impaired exercise tolerance were more pronounced in ePTSD-susceptible rats. Resistance to ePTSD was associated with decreased inflammation and oxidative stress and with increased protective heat shock protein 70. Results may help identify individuals at high risk of PTSD and also provide a foundation for developing preventive and therapeutic means to restrict PTSD-associated cardiac morbidity.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Vadim E Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maria V Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maxim S Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Anna V Goryacheva
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Marina V Kondashevskaya
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Vladimir A Mkhitarov
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Svetlana S Lazuko
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Olga B Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,School of Basic Medicine, Chelyabinsk State University, Chelyabinsk, Russian Federation
| | - Alexey P Sarapultsev
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory of Immunopathophysiology, Institute of Immunology and Physiology of RAS, Ekaterinburg, Russian Federation
| | - Yulia A Dmitrieva
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Viktor K Strizhikov
- Department of Morphology and Histology, South Ural State Agricultural University, Troitsk, Russian Federation
| | - Olga P Kuzhel
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - H Fred Downey
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
15
|
Guan W, Wei X, Nong W, Shao Y, Mao L. Heat shock protein 70 (HSP70) promotes air exposure tolerance of Litopenaeus vannamei by preventing hemocyte apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103844. [PMID: 32861730 DOI: 10.1016/j.dci.2020.103844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Brief pretreatment of cold shock at 13 °C for 3 min proved to be an inducer of heat shock protein 70 (HSP70) and improved stress tolerance as a molecular chaperone. With the improvement of air exposure tolerance, HSP70 in shrimp hemocytes was upregulated in mRNA and protein levels after cold shock. Both HSP70 RNA interference (RNAi) gene knockdown and recombinant HSP70 (rHSP70) injection were successfully established in order to investigate the role of HSP70 in response to air exposure stress. Shrimp receiving rHSP70 showed an improved survival rate (80%) with no significant difference (p > 0.05) compared to cold shock treated shrimp (control, 90%) under air exposure, but the survival rate of HSP70-knockdown shrimp was significantly lower (62%, p < 0.05). Reactive oxygen species (ROS) content, relative expression of cytochrome c, caspase-3 activity, and apoptosis rate in hemocytes of HSP70 enriched shrimp (i.e., cold shock and rHSP70 injection) were significantly lower (p < 0.05) than HSP70-knockdown shrimp. Results suggested that HSP70 could be induced by cold shock and contributed to improve the tolerance of shrimp suffering air exposure by blocking the apoptosis pathway through scavenging intracellular ROS, inhibiting cytochrome c expression, inhibiting release from mitochondria, and inactivating caspase-3. This work updates the understanding of cold shock mechanism in water-free transportation of aquatic animals.
Collapse
Affiliation(s)
- Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Wenqian Nong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yelin Shao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
16
|
Suzuki M, Asai Y, Kagi T, Noguchi T, Yamada M, Hirata Y, Matsuzawa A. TAK1 Mediates ROS Generation Triggered by the Specific Cephalosporins through Noncanonical Mechanisms. Int J Mol Sci 2020; 21:ijms21249497. [PMID: 33327477 PMCID: PMC7764951 DOI: 10.3390/ijms21249497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.
Collapse
Affiliation(s)
| | | | | | - Takuya Noguchi
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| | | | | | - Atsushi Matsuzawa
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| |
Collapse
|
17
|
Boisguérin P, Covinhes A, Gallot L, Barrère C, Vincent A, Busson M, Piot C, Nargeot J, Lebleu B, Barrère-Lemaire S. A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovasc Res 2020; 116:633-644. [PMID: 31147690 DOI: 10.1093/cvr/cvz145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction. METHODS AND RESULTS An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments. CONCLUSIONS Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application.
Collapse
Affiliation(s)
- Prisca Boisguérin
- CRBM, Univ. Montpellier, CNRS, F-34293 Montpellier, France.,DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Aurélie Covinhes
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Laura Gallot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Christian Barrère
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Anne Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Muriel Busson
- IRCM, Univ. Montpellier, INSERM, F-34298 Montpellier, France
| | - Christophe Piot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France.,Département de Cardiologie Interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Bernard Lebleu
- DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Stéphanie Barrère-Lemaire
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| |
Collapse
|
18
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
19
|
Ding M, Liu C, Shi R, Yu M, Zeng K, Kang J, Fu F, Mi M. Mitochondrial fusion promoter restores mitochondrial dynamics balance and ameliorates diabetic cardiomyopathy in an optic atrophy 1-dependent way. Acta Physiol (Oxf) 2020; 229:e13428. [PMID: 31840416 DOI: 10.1111/apha.13428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
AIM Imbalanced mitochondrial dynamics including suppressed mitochondrial fusion has been observed in diabetic hearts. However, it is still unknown whether mitochondrial fusion promoter is an effective protection to diabetic hearts. This study was designed to explore the efficacy of mitochondrial fusion promoter on diabetic cardiomyopathy (DCM). METHODS Male Sprague-Dawley rats were injected with streptozotocin (STZ, 65 mg/kg/d) intraperitoneally to induce diabetes. Seven weeks after vehicle or STZ injection, control or diabetic rats were treated with the vehicle or a mitochondrial fusion promoter-M1 (2 mg/kg/d) intraperitoneally for 6 weeks. Moreover, M1 was administrated to the primary cardiomyocytes cultured in normal glucose medium (NG, 5.5 mmol/L) or high glucose (HG, 33 mnol/L). RESULTS Administration of M1 significantly promoted mitochondrial fusion and attenuated the reduction in optic atrophy 1 (Opa1) expression in diabetic hearts. Importantly, M1 treatment attenuated oxidative stress, improved mitochondrial function and alleviated DCM in diabetic rats. In HG-treated cardiomyocytes, M1 treatment consistently increased the expression of Opa1, promoted mitochondrial fusion, enhanced mitochondrial respiratory capacity and reduced mitochondria-derived superoxide production, all of which were blunted by Opa1 siRNA knockdown. In addition, selective upregulation of Opa1 alone can also promote mitochondrial fusion, improve mitochondrial function and inhibit mitochondria-derived superoxide production in HG-cultured cardiomyocytes. CONCLUSION Our findings show for the first time that mitochondrial fusion promoter M1 effectively balances mitochondrial dynamics and protects against diabetic cardiomyopathy (DCM) via an Opa1-dependent way, suggesting that promoting mitochondrial fusion might be a potential therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Mingge Ding
- Research Center for Nutrition and Food Safety Institute of Military Preventive Medicine Third Military Medical University Chongqing China
- Department of Geriatrics Xi'an Central Hospital Xi'an Jiaotong University Xi'an China
| | - Chaoyang Liu
- Department of Physiology and Pathophysiology Fourth Military Medical University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| | - Rui Shi
- Department of Physiology and Pathophysiology Fourth Military Medical University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| | - Mingzhe Yu
- Department of Physiology and Pathophysiology Fourth Military Medical University Xi'an China
| | - Ke Zeng
- Department of Physiology and Pathophysiology Fourth Military Medical University Xi'an China
| | - Junjun Kang
- Department of Neurobiology Fourth Military Medical University Xi'an China
| | - Feng Fu
- Research Center for Nutrition and Food Safety Institute of Military Preventive Medicine Third Military Medical University Chongqing China
- Department of Physiology and Pathophysiology Fourth Military Medical University Xi'an China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety Institute of Military Preventive Medicine Third Military Medical University Chongqing China
| |
Collapse
|
20
|
Shang J, Chen WM, Liu S, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res 2019; 85:106198. [DOI: 10.1016/j.leukres.2019.106198] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/07/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
|
21
|
Effects of Modulation of Ion Channel Currents by Salidroside in H9C2 Myocardial Cells in Hypoxia and Reoxygenation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8212868. [PMID: 30805019 PMCID: PMC6362469 DOI: 10.1155/2019/8212868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 11/17/2022]
Abstract
Salidroside, a phenyl-propanoid glycoside isolated from the medicinal plant Rhodiola rosea, has potent cardioprotective effects, especially against myocardial hypoxia and reoxygenation injury. However, the molecular mechanism underlying its action is still unclear. The aim of this study was to determine the effect of salidroside on sodium channel current (INa) and transient outward potassium channel current (Ito) in H9C2 cardiomyocytes. H9C2 cells were subcultured under anoxic conditions to mimic myocardial hypoxia and subsequently treated with salidroside. Whole cell patch clamp was performed to determine the effect of hypoxia/reoxygenation and salidroside on myocardial electrophysiological properties. In the differentiated H9C2 cells, hypoxia/reoxygenation reduced INa and Ito amplitude, while salidroside significantly restored both and altered the INa and Ito activation/inactivation kinetics in a dose-dependent manner. Our findings demonstrate that salidroside protects myocardial cells against hypoxia-reoxygenation by restoring the function of sodium and potassium channels.
Collapse
|
22
|
The role of chamaejasmine in cellular apoptosis and autophagy in MG-63 cells. Biosci Rep 2019; 39:BSR20181707. [PMID: 30463909 PMCID: PMC6331667 DOI: 10.1042/bsr20181707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common malignant neoplasm in children and adolescents with a very high propensity for local invasion and poor response to current therapy. Anti-cancer effect of chamaejasmine is newly discovered from Stellera chamaejasmine L. Our study focuses on investigating the effect of chamaejasmine on the cellular apoptosis, proliferation, autophagy, and the underlying mechanisms in MG-63. Methods: Our study investigated the concentration of chamaejasmine in MG-63 cells by MTT and verified that chamaejasmine inhibited cell invasion by transwell. We also used Hoechst staining as well as apoptotic associated-proteins in MG-63 cells. Meanwhile, we also detected the lysophagesome and autophagsome by Lysotracker. Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) knockdown was performed with siRNA. Results: Our results show that chamaejasmine exerts cellular growth inhibition, pro-apoptotic and pro-autophagic effect via activating AMPK in MG-63 cells. Furthermore, chamaejasmine significantly increases autophagic cell via the inhibition of mammalian target of rapamycin (mTOR) and activation of AMPK signaling pathways. Administrated with chamaejasmine also induces reactive oxygen species (ROS) generation, indicating cross-talking between these two primary modes of programmed cell death. Conclusion: Our results show that chamaejasmine promotes apoptosis and autophagy by activating AMPK/mTOR signaling pathways with involvement of ROS in MG-63 cells. Chamaejasmine is a promising anti-cancer agent in OS treatment, and further studies are needed to confirm its efficacy and safety in vivo or other cancer cells.
Collapse
|
23
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
24
|
Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biol Pharm Bull 2018; 41:985-993. [DOI: 10.1248/bpb.b17-00724] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi Wang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital
| | - Aihua Zhai
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Bai Zhang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Guizhen Tian
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| |
Collapse
|
25
|
Wang LQ, He Y, Wan HF, Zhou HF, Yang JH, Wan HT. Protective mechanisms of hypaconitine and glycyrrhetinic acid compatibility in oxygen and glucose deprivation injury. J Zhejiang Univ Sci B 2018; 18:586-596. [PMID: 28681583 DOI: 10.1631/jzus.b1600270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the protective effect of the compatibility of hypaconitine (HA) and glycyrrhetinic acid (GA) on H9c2 cells under oxygen and glucose deprivation (OGD)-induced injury, and the possible mechanisms. We found that HA+GA significantly improved pathology and morphology of the nucleus and ultrastructure of H9c2 cells under OGD as determined by Hoechst 33342 staining and transmission electron microscopy (TEM) tests. It also reduced the releases of lactate dehydrogenase (LDH), creatine kinase-myocardial band isoenzyme (CK-MB), and aspartate transaminase (AST) from the cultured supernatant of H9c2 cells, which were tested by enzyme-linked immune sorbent assay (ELISA) kits. In addition, it lessened the apoptotic rate as determined by a fluorescein isothiocyanate-annexin V/propidium iodide (FITC-AV/PI) double staining assay. It was also found that HA+GA might regulate the protein expression associated with the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Overall, the study demonstrated that HA+GA protected H9c2 cells against OGD-induced injury, and the signaling mechanism might be related to the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Li-Qin Wang
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu He
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hao-Fang Wan
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hui-Fen Zhou
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie-Hong Yang
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hai-Tong Wan
- Cardio-Cerebro Vascular Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
26
|
Weng Y, Lin J, Liu H, Wu H, Yan Z, Zhao J. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget 2017; 9:4511-4521. [PMID: 29435120 PMCID: PMC5796991 DOI: 10.18632/oncotarget.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.
Collapse
Affiliation(s)
- Yingfeng Weng
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhimin Yan
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Zheng K, Zhang Q, Lin G, Li Y, Sheng Z, Wang J, Chen L, Lu HH. Activation of Akt by SC79 protects myocardiocytes from oxygen and glucose deprivation (OGD)/re-oxygenation. Oncotarget 2017; 8:14978-14987. [PMID: 28122357 PMCID: PMC5362459 DOI: 10.18632/oncotarget.14785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
SC79 is a novel Akt activator. The current study tested its potential effect against oxygen and glucose deprivation (OGD)/re-oxygenation-induced myocardial cell death. We showed that SC79 activated Akt and protected H9c2 myocardial cells and primary murine myocardiocytes from OGD/re-oxygenation. Reversely, Akt inhibitor MK-2206 or Akt1 shRNA knockdown almost completely abolished SC79-mediated myocardial cytoprotection. SC79 treatment in H9c2 cells inhibited OGD/re-oxygenation-induced programmed necrosis pathway, evidenced by mitochondrial depolarization and cyclophilin D-p53-ANT-1 (adenine nucleotide translocator 1) association. Further, SC79 activated Akt downstream NF-E2-related factor 2 (NRF2) signaling to suppress OGD/re-oxygenation-induced reactive oxygen species (ROS) production. Reversely, NRF2 shRNA knockdown in H9c2 cells largely attenuated SC79-induced ROS scavenging ability and cytoprotection against OGD/re-oxygenation. Together, we conclude that activation of Akt by SC79 protects myocardial cells from OGD/re-oxygenation.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Lin
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yefei Li
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenqiang Sheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jue Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hui-He Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Abstract
Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized by a progressive degeneration of nerve cells eventually leading to dementia. While these diseases affect different neuronal populations and present distinct clinical features, they share in common several features and signaling pathways. In particular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly described and might be correlated with AMP-activated protein kinase (AMPK) deregulation. AMPK is a master energy sensor which was reported to be overactivated in the brain of patients affected by these neurodegenerative disorders. While the exact role played by AMPK in these diseases remains to be clearly established, several studies reported the implication of AMPK in various signaling pathways that are involved in these diseases' progression. In this chapter, we review the current literature regarding the involvement of AMPK in the development of these diseases and discuss the common pathways involved.
Collapse
|
29
|
Yang X, He XQ, Li GD, Xu YQ. AntagomiR-451 inhibits oxygen glucose deprivation (OGD)-induced HUVEC necrosis via activating AMPK signaling. PLoS One 2017; 12:e0175507. [PMID: 28445531 PMCID: PMC5405932 DOI: 10.1371/journal.pone.0175507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Oxygen glucose deprivation (OGD) application in cultured human umbilical vein endothelial cells (HUVECs) mimics ischemic injuries. AntagomiR-451, the miroRNA-451 ("miR-451") inhibitor, could activate pro-survival AMP-activated protein kinase (AMPK) signaling. In the current study, we showed that forced-expression of antagomiR-451 depleted miRNA-451 and significantly attenuated OGD-induced necrosis of HUVECs. Activation of AMPK was required for antagomiR-451-mediated pro-survival actions. AMPK inhibition, by AMPKα shRNA or dominant negative mutation, almost completely abolishedantagomiR-451-mediated HUVEC protection again OGD. Reversely, forced-activation of AMPK by exogenous expression of constructively-active AMPKα inhibited OGD-induced HUVEC necrosis. At the molecular level, antagomiR-451 expression in HUVECs inhibited OGD-induced programmed necrosis, the latter was evidenced by mitochondrial p53-cyclophilinD (Cyp-D) association, mitochondrial depolarization as well as reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) breach. Together, we suggest that antagomiR-451 activates AMPK to inhibit OGD-induced programmed necrosis in HUVECs.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
- Brigade of Postgraduate Management, Third Military Medical University, Chongqing, China
| | - Xiao-Qing He
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| | - Guo-Dong Li
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| | - Yong-Qing Xu
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| |
Collapse
|
30
|
Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-Translational Modifications of the TAK1-TAB Complex. Int J Mol Sci 2017; 18:ijms18010205. [PMID: 28106845 PMCID: PMC5297835 DOI: 10.3390/ijms18010205] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tohru Morishita
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
31
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
32
|
Ge ZR, Xu MC, Huang YU, Zhang CJ, Lin JE, Ruan CW. Cardioprotective effect of notoginsenoside R1 in a rabbit lung remote ischemic postconditioning model via activation of the TGF-β1/TAK1 signaling pathway. Exp Ther Med 2016; 11:2341-2348. [PMID: 27284318 DOI: 10.3892/etm.2016.3222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022] Open
Abstract
Pharmacological postconditioning using cardioprotective agents is able to reduce myocardial infarct size. Notoginsenoside R1 (NG-R1), a phytoestrogen isolated from Panax notoginseng saponins (PNS), is considered to have anti-oxidative and anti-apoptotic properties. However, its cardioprotective properties and underlying mechanisms remain largely unknown. The aim of the present study was to determine the cardioprotective and anti-apoptotic effects of NG-R1 in an ischemia-reperfusion (IR)-induced myocardial injury rabbit model. A total of 45 Japanese big-ear rabbits were equally randomized to three groups: Control group, remote ischemic postconditioning (RIP) group and NG-R1 intervention group. At the endpoint of the experiment, the animals were sacrificed to remove myocardial tissues for the detection of transforming growth factor (TGF)-β1-TGF-β activated kinase 1 (TAK1) pathway-related proteins by immunohistochemistry and western blot analysis, the activities of caspase-3, -8 and -9 in myocardial cells by fluorometric assay, and the apoptosis of myocardial cells by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling. Right and left lung tissues were stained with hematoxylin and eosin (H&E) to observe the severity of injury. NG-R1 treatment reduced the activity of superoxide dismutase, increased the content of malondialdehyde, reduced the activities of caspase-3, -8 and -9, and inhibited the apoptosis of myocardial cells in rabbits undergoing RIP. In addition, the expression of TGF-β1-TAK1 signaling pathway-related proteins was downregulated following NG-R1 intervention. H&E staining of bilateral lung tissues showed that cell morphology was generally intact without significant alveolar congestion, and there was no significant difference among the three groups. These results indicate that NG-R1 protects the heart against IR injury, possibly by inhibiting the activation of the TGF-β1-TAK1 signaling pathway and attenuating apoptotic stress in the myocardium.
Collapse
Affiliation(s)
- Zhi-Ru Ge
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Mao-Chun Xu
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Y U Huang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chen-Jun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - J E Lin
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chang-Wu Ruan
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
33
|
Zheng K, Lu H, Sheng Z, Li Y, Xu B. Low-concentration of perifosine surprisingly protects cardiomyocytes from oxygen glucose deprivation. Biochem Biophys Res Commun 2015; 469:753-60. [PMID: 26686418 DOI: 10.1016/j.bbrc.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022]
Abstract
Here we found that low-concentration of perifosine, an Akt inhibitor, surprisingly protected cardiomyocytes from oxygen glucose deprivation (OGD)/re-oxygenation. In H9c2 cardiomyocytes, non-cytotoxic perifosine (0.1-0.5 μM) suppressed OGD/re-oxygenation-induced reactive oxygen species (ROS) production, p53 mitochondrial translocation and cyclophilin D complexation, as well as mitochondrial membrane potential (MMP) reduction. Molecularly, perifosine activated AMP-activated kinase (AMPK) signaling to increase intracellular NADPH (nicotinamide adenine dinucleotide phosphate) content in H9c2 cells. On the other hand, AMPK inhibition by AMPKα1 shRNA-knockdown in H9c2 cells significantly reduced perifosine-induced NADPH production, and alleviated perifosine-mediated anti-oxidant and cytoprotective activities against OGD/re-oxygenation. In primary murine cardiomyocytes, perifosine similarly activated AMPK signaling, and offered significant protection against OGD/re-oxygenation, which was largely attenuated with siRNA knockdown of AMPKα1. We demonstrate an unexpected function of perifosine (low-concentration) in protecting cardiomyocytes from OGD/re-oxygenation.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, Drum Tower Clinical Medical Hospital, Nanjing Medical University, Nanjing, China; Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Huihe Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenqiang Sheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yefei Li
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Biao Xu
- Department of Cardiology, Drum Tower Clinical Medical Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Miglianico M, Nicolaes GAF, Neumann D. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design. J Med Chem 2015; 59:2879-93. [PMID: 26510622 DOI: 10.1021/acs.jmedchem.5b01201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK.
Collapse
Affiliation(s)
- Marie Miglianico
- Department of Molecular Genetics, and ‡Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University , NL-6200 MD, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Molecular Genetics, and ‡Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University , NL-6200 MD, Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, and ‡Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University , NL-6200 MD, Maastricht, The Netherlands
| |
Collapse
|
35
|
Shao JJ, Peng Y, Wang LM, Wang JK, Chen X. Activation of SphK1 by K6PC-5 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Myocardial Cell Death. DNA Cell Biol 2015; 34:669-76. [PMID: 26308910 DOI: 10.1089/dna.2015.2959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the current study, we evaluated the potential effect of a novel sphingosine kinase 1 (SphK1) activator, K6PC-5, on oxygen-glucose deprivation (OGD)/reoxygenation-induced damages to myocardial cells. We demonstrated that K6PC-5 increased intracellular sphingosine-1-phosphate (S1P) content and remarkably inhibited OGD/reoxygenation-induced death of myocardial cells (H9c2/HL-1 lines and primary murine myocardiocytes). SphK1 inhibitors, B-5354c and SKI-II, or SphK1-siRNA knockdown not only aggregated OGD/reoxygenation-induced cytotoxicity but also nullified the cytoprotection by K6PC-5. On the other hand, overexpression of SphK1 alleviated H9c2 cell death by OGD/reoxygenation, and K6PC-5-mediated cytoprotection was also enhanced in SphK1 overexpressed cells. Molecularly, OGD/reoxygenation activated the mitochondrial death pathway, evidenced by reactive oxygen species (ROS) production, mitochondrial membrane potential reduction, and p53-cyclophilin D (Cyp-D) association, which were all alleviated by K6PC-5 or overexpression of SphK1, but exacerbated by SphK1 knockdown. Furthermore, OGD/reoxygenation induced prodeath ceramide production in myocardial cells, which was largely suppressed by K6PC-5. In the meantime, adding a cell-permeable short-chain ceramide (C6) mimicked OGD/reoxygenation actions and induced ROS production and the mitochondrial death pathway in myocardial cells. Together, we conclude that K6PC-5 inhibits OGD/reoxygenation-induced myocardial cell death probably through activating SphK1. The results of the study indicate a potential benefit of K6PC-5 on ischemic heart disease.
Collapse
Affiliation(s)
- Jun-jie Shao
- 1 Department of Cardiothoracic Surgery, Nanjing First Hospital , Nanjing, China
| | - Yi Peng
- 2 Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Li-ming Wang
- 1 Department of Cardiothoracic Surgery, Nanjing First Hospital , Nanjing, China
| | - Jian-kai Wang
- 1 Department of Cardiothoracic Surgery, Nanjing First Hospital , Nanjing, China
| | - Xin Chen
- 1 Department of Cardiothoracic Surgery, Nanjing First Hospital , Nanjing, China
| |
Collapse
|
36
|
Impact of AMP-Activated Protein Kinase α1 Deficiency on Tissue Injury following Unilateral Ureteral Obstruction. PLoS One 2015; 10:e0135235. [PMID: 26285014 PMCID: PMC4540418 DOI: 10.1371/journal.pone.0135235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background AMP-activated protein kinase (Ampk) is a sensor of the cellular energy status and a powerful regulator of metabolism. Activation of Ampk was previously shown to participate in monocyte-to-fibroblast transition and matrix protein production in renal tissue. Thus, the present study explored whether the catalytic Ampkα1 isoform participates in the regulation of the renal fibrotic response following unilateral ureteral obstruction (UUO). Methods UUO was induced in gene-targeted mice lacking functional Ampkα1 (Ampkα1-/-) and in corresponding wild-type mice (Ampkα1+/+). In the obstructed kidney and, for comparison, in the non-obstructed control kidney, quantitative RT-PCR, Western blotting and immunostaining were employed to determine transcript levels and protein abundance, respectively. Results In Ampkα1+/+ mice, UUO significantly up-regulated the protein abundance of the Ampkα1 isoform, but significantly down-regulated the Ampkα2 isoform in renal tissue. Phosphorylated Ampkα protein levels were significantly increased in obstructed kidney tissue of Ampkα1+/+ mice but not of Ampkα1-/- mice. Renal expression of α-smooth muscle actin was increased following UUO, an effect again less pronounced in Ampkα1-/- mice than in Ampkα1+/+ mice. Histological analysis did not reveal a profound effect of Ampkα1 deficiency on collagen 1 protein deposition. UUO significantly increased phosphorylated and total Tgf-ß-activated kinase 1 (Tak1) protein, as well as transcript levels of Tak1-downstream targets c-Fos, Il6, Pai1 and Snai1 in Ampkα1+/+ mice, effects again significantly ameliorated in Ampkα1-/- mice. Moreover, Ampkα1 deficiency inhibited the UUO-induced mRNA expression of Cd206, a marker of M2 macrophages and of Cxcl16, a pro-fibrotic chemokine associated with myeloid fibroblast formation. The effects of Ampkα1 deficiency during UUO were, however, paralleled by increased tubular injury and apoptosis. Conclusions Renal obstruction induces an isoform shift from Ampkα2 towards Ampkα1, which contributes to the signaling involved in cell survival and fibrosis.
Collapse
|
37
|
Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 2015; 5:492-501. [PMID: 26110105 PMCID: PMC4476901 DOI: 10.1016/j.fob.2015.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress in the arthritis joint is involved in generating mediators for inflammation. Oxidative stress-induced expression of Cox-2 was mediated by MAPKs and NF-κB. ROS-induced MAPKs and NF-κB were attenuated by inhibition of MAPKKK TAK1. Inhibition of TAK1 activity resulted in reduced expression of Cox-2 and PGE2. ROS-induced TAK1 activation and Cox-2 expression was inhibited by antioxidants N-acetyl cysteamine and hyaluronic acid.
Oxidative stress within the arthritis joint has been indicated to be involved in generating mediators for tissue degeneration and inflammation. COX-2 is a mediator in inflammatory action, pain and some catabolic reactions in inflamed tissues. Here, we demonstrated a direct relationship between oxidative stress and Cox-2 expression in the bovine synovial fibroblasts. Furthermore, we elucidated a novel mechanism, in which oxidative stress induced phosphorylation of MAPKs and NF-κB through TAK1 activation and resulted in increased Cox-2 and prostaglandin E2 expression. Finally, we demonstrated that ROS-induced Cox-2 expression was inhibited by supplementation of an antioxidant such as N-acetyl cysteamine and hyaluronic acid in vitro and in vivo. From these results, we conclude that oxidative stress is an important factor for generation of Cox-2 in synovial fibroblasts and thus its neutralization may be an effective strategy in palliative therapy for chronic joint diseases.
Collapse
Affiliation(s)
- Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanae Shigi
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
38
|
Ding H, Wang T, Xu D, Cha B, Liu J, Li Y. Dexamethasone-induced apoptosis of osteocytic and osteoblastic cells is mediated by TAK1 activation. Biochem Biophys Res Commun 2015; 460:157-63. [PMID: 25753204 DOI: 10.1016/j.bbrc.2015.02.161] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Increased apoptosis of osteoblasts and osteocytes is the main mechanism of glucocorticoid (GC)-induced osteonecrosis. In the current study, we investigated whether dexamethasone (Dex)-induced osteoblastic and osteocytic cell apoptosis is mediated through activation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), and whether TAK1 inhibition could promote survival opposing the deleterious effects of Dex. We found that TAK1 was activated by Dex in both osteocytic MLO-Y4 and osteoblastic OB-6 cells, which was prevented by two known anti-oxidants N-acetylcysteine (NAC) and ebselen. TAK1 inhibitors, including LYTAK1 and 5Z-7-oxozeaenol (57-OZ), inhibited Dex-induced apoptosis of MLO-Y4 and OB-6 cells. Meanwhile shRNA-mediated knockdown of TAK1 also suppressed Dex-induced damages to MLO-Y4 and OB-6 cells. On the other hand, exogenously over-expressing TAK1 enhanced Dex-induced MLO-Y4 and OB-6 cell apoptosis. At the molecular level, we found that TAK1 mediated Dex-induced pro-apoptotic Pyk2-JNK activation. Inhibition or silencing of TAK1 almost abolished Pyk2-JNK phosphorylations by Dex in MLO-Y4 and OB-6 cells. TAK1 over-expression, on the other hand, increased Dex's activity on Pyk2-JNK phosphorylations in above cells. We conclude that part of the pro-apoptotic actions of Dex on osteoblastic and osteocytic cells are mediated through TAK1 activation, and that inhibition of TAK1 might protect from GC-induced damages to osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Heyuan Ding
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dongli Xu
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bingbing Cha
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Lipopolysaccharide-induced loss of cultured rat myenteric neurons - role of AMP-activated protein kinase. PLoS One 2014; 9:e114044. [PMID: 25462874 PMCID: PMC4252081 DOI: 10.1371/journal.pone.0114044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intestinal barrier function is vital for homeostasis. Conditions where the mucosal barrier is compromised lead to increased plasma content of lipopolysaccharide (LPS). LPS acts on Toll-like receptor 4 (TLR4) and initiates cellular inflammatory responses. TLR4 receptors have been identified on enteric neurons and LPS exposure causes neuronal loss, counteracted by vasoactive intestinal peptide (VIP), by unknown mechanisms. In addition AMP activated protein kinase (AMPK) stimulation causes loss of enteric neurons. This study investigated a possible role of AMPK activation in LPS-induced neuronal loss. DESIGN Primary cultures of myenteric neurons isolated from rat small intestine were used. Cultures were treated with LPS (0.2-20 µg/mL) with and without TAK1-inhibitor (5Z)-7-Oxozeaenol (10-6 M) or AMPK inhibitor compound C (10-5 M). AMPK-induced neuronal loss was verified treating cultures with three different AMPK activators, AICAR (10-4-3×10-3 M), metformin (0.2-20 µg/mL) and A-769662 (10-5-3×10-4 M) with or without the presence of compound C (10-5 M). Upstream activation of AMPK-induced neuronal loss was tested by treating cultures with AICAR (10-3 M) in the presence of TAK1 inhibitor (5Z)-7-Oxozeaenol (10-6 M). Neuronal survival and relative numbers of neurons immunoreactive (IR) for VIP were evaluated using immunocytochemistry. RESULTS LPS caused a concentration dependent loss of neurons. All AMPK activators induced loss of myenteric neurons in a concentration dependent manner. LPS-, AICAR- and metformin-,but not A-769662-, induced neuronal losses were inhibited by presence of compound C. LPS, AICAR or metformin exposure increased the relative number of VIP-IR neurons; co-treatment with (5Z)-7-Oxozeaenol or compound C reversed the relative increase in VIP-IR neurons induced by LPS. (5Z)-7-Oxozeaenol, compound C or A-769662 did not per se change neuronal survival or relative numbers of VIP-IR neurons. CONCLUSION AMPK activation mimics LPS-induced loss of cultured myenteric neurons and LPS-induced neuronal loss is counteracted by TAK1 and AMPK inhibition. This suggests enteric neuroimmune interactions involving AMPK regulation.
Collapse
|
40
|
Lv G, Zhu H, Zhou F, Lin Z, Lin G, Li C. AMP-activated protein kinase activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Biochem Biophys Res Commun 2014; 453:13-8. [PMID: 25229685 DOI: 10.1016/j.bbrc.2014.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori (H pylori), infecting half of the world's population, causes gastritis, duodenal and gastric ulcer, and gastric cancers. AMP-activated protein kinase (AMPK) is a highly conserved regulator of cellular energy and metabolism. Recent studies indicated an important role for AMPK in promoting cell survival. In this study, we discovered that H Pylori induced AMPK activation in transformed (GEC-1 line) and primary human gastric epithelial cells (GECs). Inhibition of H Pylori-stimulated AMPK kinase activity by AMPK inhibitor compound C exacerbated apoptosis in transformed and primary GECs. Meanwhile, downregulation of AMPK expression by targeted shRNAs promoted apoptosis in H pylori-infected GECs. In contrast, A-769662 and resveratrol, two known AMPK activators, or AMPKα1 over-expression, enhanced H Pylori-induced AMPK activation, and inhibited GEC apoptosis. Our data suggested that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) could be the upstream kinase for AMPK activation by H pylori. Partial depletion of TAK1 by shRNAs not only inhibited AMPK activation, but also suppressed survival of H pylori-infected GECs. Taken together, these results suggest that TAK1-dependent AMPK activation protects GECs from H pylori-Induced apoptosis.
Collapse
Affiliation(s)
- Guoqiang Lv
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China.
| | - Huanhuan Zhu
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Feng Zhou
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Zhou Lin
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Gang Lin
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Chenwan Li
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| |
Collapse
|
41
|
Zheng K, Sheng Z, Li Y, Lu H. Salidroside inhibits oxygen glucose deprivation (OGD)/re-oxygenation-induced H9c2 cell necrosis through activating of Akt-Nrf2 signaling. Biochem Biophys Res Commun 2014; 451:79-85. [PMID: 25063033 DOI: 10.1016/j.bbrc.2014.07.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
Oxygen glucose deprivation (OGD)/re-oxygenation has been applied to cultured cardiomyocytes to create a cellular model of ischemic heart damage. In the current study, we explored the potential role of salidroside against OGD/re-oxygenation-induced damage in H9c2 cardiomyocytes, and studied the underlying mechanisms. We found that OGD/re-oxygenation primarily induced necrosis in H9c2 cells, which was inhibited by salidroside. Salidroside suppressed OGD/re-oxygenation-induced reactive oxygen species (ROS) production, p53 mitochondrial translocation and cyclophilin D (Cyp-D) association as well as mitochondrial membrane potential (MMP) decrease in H9c2 cells. Meanwhile, salidroside activated Akt and promoted transcription of NF-E2-related factor 2 (Nrf2)-regulated genes (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1)). Significantly, Nrf2 shRNA knockdown or Akt inhibitors (LY 294002 and wortmannin) not only prevented salidroside-induced HO-1/NQO-1 transcription, but also alleviated salidroside-mediated cytoprotective effect against OGD/re-oxygenation in H9c2 cells. These observations suggest that salidroside activates Nrf2-regulated anti-oxidant signaling, and protects against OGD/re-oxygenation-induced H9c2 cell necrosis via activation of Akt signaling.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhenqiang Sheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yefei Li
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huihe Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
42
|
Zhu Y, Zhou J, Ao R, Yu B. A-769662 protects osteoblasts from hydrogen dioxide-induced apoptosis through activating of AMP-activated protein kinase (AMPK). Int J Mol Sci 2014; 15:11190-203. [PMID: 24960362 PMCID: PMC4100207 DOI: 10.3390/ijms150611190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 12/17/2022] Open
Abstract
Here we report that 5'-monophosphate (AMP)-activated protein kinase (AMPK) agonist A-769662 inhibited hydrogen peroxide (H2O2)-induced viability loss and apoptosis of human and mouse osteoblast cells. H2O2-induced moderate AMPK activation in osteoblast cells, which was enhanced by A-769662. Inactivation of AMPK by its inhibitor compound C, or by target shRNA-mediated silencing and kinase dead (KD) mutation exacerbated H2O2-induced cytotoxicity in osteoblast cells. A-769662-mediated protective effect against H2O2 was also blocked by AMPK inhibition or depletion. A-769662 inhibited reactive oxygen species (ROS) accumulation by H2O2 in osteoblast cells. Meanwhile, H2O2-induced ATP depletion was inhibited by A-769662, but was aggravated by compound C. Further, H2O2 induced AMPK-dependent and pro-survival autophagy in cultured osteoblast cells, which was enhanced by A-769662. Our results suggested that activation of AMPK by H2O2 is anti-apoptosis and pro-survival in osteoblast cells, probably due to its anti-oxidant, pro-autophagy and ATP preservation abilities, and A-769662-mediated cell-protective effect in osteoblast cells requires AMPK activation. Our study suggests that A-769662 might be further investigated as a novel anti-osteonecrosis agent.
Collapse
Affiliation(s)
- Yalong Zhu
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Jianhua Zhou
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Rongguang Ao
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| | - Baoqing Yu
- Orthopedics Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China.
| |
Collapse
|
43
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
44
|
Li KR, Zhang ZQ, Yao J, Zhao YX, Duan J, Cao C, Jiang Q. Ginsenoside Rg-1 protects retinal pigment epithelium (RPE) cells from cobalt chloride (CoCl2) and hypoxia assaults. PLoS One 2013; 8:e84171. [PMID: 24386346 PMCID: PMC3873980 DOI: 10.1371/journal.pone.0084171] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022] Open
Abstract
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.
Collapse
Affiliation(s)
- Ke-ran Li
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-qing Zhang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Jin Yao
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-xia Zhao
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Duan
- The Center for Safety Evaluation of Drugs, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qin Jiang
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Zhu LQ, Zhen YF, Zhang Y, Guo ZX, Dai J, Wang XD. Salinomycin activates AMP-activated protein kinase-dependent autophagy in cultured osteoblastoma cells: a negative regulator against cell apoptosis. PLoS One 2013; 8:e84175. [PMID: 24358342 PMCID: PMC3866127 DOI: 10.1371/journal.pone.0084175] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022] Open
Abstract
Background The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both invivo and invitro, however, its role in osteoblastoma is still not clear. Key Findings Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibition of autophagy by 3-methyladenine (3-MA), or by RNA interference (RNAi) of light chain 3B (LC3B), enhanced salinomycin-induced cytotoxicity and apoptosis. Salinomycin induced a profound AMP-activated protein kinase (AMPK) activation, which was required for autophagy induction. AMPK inhibition by compound C, or by AMPKα RNAi prevented salinomycin-induced autophagy activation, while facilitating cancer cell death and apoptosis. On the other hand, the AMPK agonist AICAR promoted autophagy activation in U2OS cells. Salinomycin-induced AMPK activation was dependent on reactive oxygen species (ROS) production in osteoblastoma cells. Antioxidant n-acetyl cysteine (NAC) significantly inhibited salinomycin-induced AMPK activation and autophagy induction. Conclusions Salinomycin activates AMPK-dependent autophagy in osteoblastoma cells, which serves as a negative regulator against cell apoptosis. AMPK-autophagy inhibition might be a novel strategy to sensitize salinomycin’s effect in cancer cells.
Collapse
Affiliation(s)
- Lun-qing Zhu
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Yun-fang Zhen
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- * E-mail: (XW); (YZ)
| | - Ya Zhang
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Zhi-xiong Guo
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Jin Dai
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Xiao-dong Wang
- The Center of Diagnosis and Treatment for Children’s Bone Diseases, the Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- * E-mail: (XW); (YZ)
| |
Collapse
|
46
|
Fittipaldi S, Dimauro I, Mercatelli N, Caporossi D. Role of exercise-induced reactive oxygen species in the modulation of heat shock protein response. Free Radic Res 2013; 48:52-70. [DOI: 10.3109/10715762.2013.835047] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
She C, Zhu LQ, Zhen YF, Wang XD, Dong QR. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment? Cell Signal 2013; 26:1-8. [PMID: 24080159 DOI: 10.1016/j.cellsig.2013.08.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
Abstract
Elevated hydrogen peroxide (H2O2) causes osteoblast dysfunction and apoptosis, serving as an important contributor to the development of osteonecrosis. Here we aimed to understand the role of AMP-activated protein kinase (AMPK) in the process. We observed a high level of AMPK activation in surgery isolated patients' osteonecrosis tissues. In cultured osteoblastoma MG63 cells, H2O2 stimulation induced significant AMPK activation, oxidative stress, cell death and apoptosis. Inhibition of AMPK by its inhibitor (compound C) or by shRNA-mediated knockdown dramatically enhanced H2O2-induced MG63 cell apoptosis, while over-expression of AMPK in HEK-293 cells alleviated H2O2-induced cell damage. These results confirmed that H2O2-activated AMPK is pro-cell survival. We observed that H2O2 induced protective autophagy in MG63 cells, and AMPK-dependent Ulk1 activation and mTORC1 (mTOR complex 1) inactivation might involve autophagy activation. Further, AMPK activation inhibited H2O2-induced oxidative stress, probably through inhibiting NADPH (nicotinamide adenine dinucleotide phosphate) depletion, since more NADPH depletion and oxidative stress were induced by H2O2 in AMPK deficient MG63 cells. Finally, we observed a significant AMPK activation in H2O2-treated primary cultured and transformed (MC3T3-E1) osteoblasts, and AMPK inhibitor compound C enhanced death by H2O2 in these cells. Based on these results, we concluded that H2O2-induced AMPK activation is pro-survival and anti-apoptosis in osteoblasts. Autophagy induction and NADPH maintenance are involved in AMPK-mediated pro-survival effects. AMPK might represent a novel molecular target for osteonecrosis treatment.
Collapse
Affiliation(s)
- Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | | | | | | | | |
Collapse
|
48
|
Wang B, Wang XB, Chen LY, Huang L, Dong RZ. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis. Biochem Biophys Res Commun 2013; 437:1-6. [PMID: 23743198 DOI: 10.1016/j.bbrc.2013.05.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.
Collapse
Affiliation(s)
- Bing Wang
- Department of Abdominal Surgical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | | | | | | | | |
Collapse
|