1
|
Bose GS, Kalakoti G, Kulkarni AP, Mittal S. AP-1/C-FOS and AP-1/FRA2 differentially regulate early and late adipogenic differentiation of mesenchymal stem cells. J Cell Biochem 2024; 125:e30543. [PMID: 38440920 DOI: 10.1002/jcb.30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Obesity is defined as an abnormal accumulation of adipose tissue in the body and is a major global health problem due to increased morbidity and mortality. Adipose tissue is made up of adipocytes, which are fat-storing cells, and the differentiation of these fat cells is known as adipogenesis. Several transcription factors (TFs) such as CEBPβ, CEBPα, PPARγ, GATA, and KLF have been reported to play a key role in adipogenesis. In this study, we report one more TF AP-1, which is found to be involved in adipogenesis. Human mesenchymal stem cells were differentiated into adipocytes, and the expression pattern of different subunits of AP-1 was examined during adipogenesis. It was observed that C-FOS was predominantly expressed at an early stage (Day 2), whereas FRA2 expression peaked at later stages (Days 6 and 8) of adipogenesis. Chromatin immunoprecipitation-sequencing analysis revealed that C-FOS binds mainly to the promoters of WNT1, miR-30a, and ANAPC7 and regulates their expression during mitotic clonal expansion. In contrast, FRA2 binds to the promoters of CIDEA, NOTCH1, ARAF, and MYLK, regulating their expression and lipid metabolism. Data obtained clearly indicate that the differential expression of C-FOS and FRA2 is crucial for different stages of adipogenesis. This also raises the possibility of considering AP-1 as a therapeutic target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Garima Kalakoti
- Bioinformatics Center, Savitribai Phule Pune University, Pune, India
| | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
2
|
Rampioni Vinciguerra GL, Capece M, Scafetta G, Rentsch S, Vecchione A, Lovat F, Croce CM. Role of Fra-2 in cancer. Cell Death Differ 2024; 31:136-149. [PMID: 38104183 PMCID: PMC10850073 DOI: 10.1038/s41418-023-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
4
|
Ponkarpagam S, Vennila KN, Elango KP. Molecular spectroscopic and molecular simulation studies on the interaction of oral contraceptive drug Ormeloxifene with CT-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121351. [PMID: 35567820 DOI: 10.1016/j.saa.2022.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The interaction between oral contraceptive drug Ormeloxifene (ORM) and calf thymus DNA (CT-DNA) was studied using UV-Vis, fluorescence, circular dichroism (CD) and 1H NMR spectral techniques under physiological buffer (pH 7.4). Competitive binding assays with ethidium bromide (EB) and Hoechst 33258, viscosity measurements, KI quenching studies, molecular docking and metadynamics simulation studies were also substantiated the spectroscopic results. ORM is found to binds in the minor groove of CT-DNA as evidenced by: (1) non-displacement of EB from EB/CT-DNA complex; (2) appreciable displacement of Hoechst 33258 from its CT-DNA complex; (3) slight alteration in the CD signal; (4) small shifts (Δδ < 0.033 ppm) without broadening in 1H NMR signals and (5) the nearly equal extent of quenching of fluorescence of ORM by KI in the absence and presence of CT-DNA. Negative values of both enthalpy and entropy changes pointed out that the interaction between ORM and CT-DNA is governed mainly by H-bonding and van der Waals forces. Negative free energy change suggested a spontaneous interaction between ORM and CT-DNA. The free energy landscape of the binding process was computed using metadynamics simulation. The simulation study results disclosed that ORM binds to the minor groove of DNA through H-bonding and π-π stacking interactions. The results of molecular docking and simulation studies corroborate the available experimental data.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
5
|
Xia M, Liu D, Liu H, Zhao J, Tang C, Chen G, Liu Y, Liu H. Based on Network Pharmacology Tools to Investigate the Mechanism of Tripterygium wilfordii Against IgA Nephropathy. Front Med (Lausanne) 2022; 8:794962. [PMID: 34977095 PMCID: PMC8715946 DOI: 10.3389/fmed.2021.794962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease and poses a global major public health burden. The preparation of Tripterygium wilfordii Hook F (TwHF) is widely applied for treating patients with Immunoglobulin A nephropathy in China, while the molecular mechanisms remain unclear. This study aimed to verify the therapeutic mechanism of TwHF on IgAN by undertaking a holistic network pharmacology strategy in combination with in vitro and in vivo experiments. Methods: TwHF active ingredients and their targets were obtained via the Traditional Chinese Medicine Systems Pharmacology Database. The collection of IgAN-related target genes was collected from GeneCards and OMIM. TwHF-IgAN common targets were integrated and visualized by Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the predominant molecular mechanisms and pathways of TwHF on the treatment of IgAN. The protein-protein interaction network was constructed by the STRING online search tool, and hub genes were identified using R software. The expression of hub gene and related signaling were evaluated in TwHF-treated mice through immunohistochemistry and western blot and further validated in human mesangial cells (HMCs). In addition, Cell counting kit 8 (CCK8) and flow cytometry were used to detect the effects of TwHF on cell proliferation and cell cycle of mesangial cells. Results: A total of 51 active ingredients were screened from TwHF and 61 overlapping targets related to IgAN were considered potential therapeutic targets, GO functions and KEGG analyses demonstrated that these genes were primarily associated with DNA-binding transcription factor binding, lipid and atherosclerosis pathway. Genes with higher degrees including AKT1, CXCL8, MMP9, PTGS2, CASP3, JUN are hub genes of TwHF against IgAN. Verification of hub gene JUN both in vitro and in vivo showed that TwHF significantly attenuated JUN phosphorylation in the kidneys of IgAN mice and aIgA1-activated HMCs, meanwhile suppressing HMCs proliferation and arresting G1-S cell cycle progression. Conclusion: Our research strengthened the mechanisms of TwHF in treating IgAN, inhibition of JUN activation may play a pivotal role in TwHF in alleviating IgAN renal injury.
Collapse
Affiliation(s)
- Ming Xia
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyang Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juanyong Zhao
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guochun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Synergistic Cytotoxicity between Elephantopus scaber and Tamoxifen on MCF-7-Derived Multicellular Tumor Spheroid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6355236. [PMID: 34712346 PMCID: PMC8548115 DOI: 10.1155/2021/6355236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.
Collapse
|
7
|
Xu S, Sun J, Zhang Y, Ji J, Sun X. Opposite estrogen effects of estrone and 2-hydroxyestrone on MCF-7 sensitivity to the cytotoxic action of cell growth, oxidative stress and inflammation activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111754. [PMID: 33321418 DOI: 10.1016/j.ecoenv.2020.111754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
There are many kinds of estrogens, and endogenous estrogens produce a variety of estrogen metabolites with similar structure but with different physiological effects after metabolism in vivo. Studies have shown that estrone (E1) widely occurs in the environment and animal-derived food. Because of its estrogen effect, E1 can have adverse effects on the human body as an endocrine disruptor. In this study, we found that E1 and 2-hydroxyestrone (2-OH-E1), the hydroxylation metabolite of estrogen, have opposite proliferative effects on breast cancer cells (MCF-7) through cell proliferation experiments and comparison of their effects by molecular docking and detection of ROS, Ca2+, and cell pathway proteins. The effects of 2-methoxyestrone (2-MeO-E1) and 16α-hydroxyestrone (16α-OH-E1) on the biochemical and protein levels of MCF-7 were further studied to compare the effects of metabolic sites and modes on estrogen effects. Hydroxylation of E1 at the C2 site weakened the estrogen effect, down-regulated the expression of the mammalian target of rapamycin (mTOR) and protein kinase B (Akt) pathway proteins, inhibited the proliferation of cancer cells, and enhanced anti-oxidative stress and anti-inflammation. Methoxylation at the C2 position also inhibited the expression of inflammatory and oxidative stress pathway proteins but did not greatly affect the estrogen effects. However, hydroxylation on C16 had no significant effect on the biological effects of estrogen. Therefore, the structural changes of estrogen on C2 are important reasons for the different physiological effects of estrogen and its metabolites. Thus, by regulating the gene Cytochrome P450 1B1(CYP1B1), which affects the hydroxylation metabolism of estrogen, and promoting the hydroxylation of estrone at the C2 position, the estrogen effect of estrone can be effectively reduced, thus reducing the harm its poses in food and the environment.
Collapse
Affiliation(s)
- Shiying Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Li C, Han X. Co-delivery of Dacarbazine and All-Trans Retinoic Acid (ATRA) Using Lipid Nanoformulations for Synergistic Antitumor Efficacy Against Malignant Melanoma. NANOSCALE RESEARCH LETTERS 2020; 15:113. [PMID: 32430641 PMCID: PMC7237551 DOI: 10.1186/s11671-020-3293-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Malignant melanoma is a highly aggressive skin cancer responsible for 80% of mortality, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Combination treatment through the simultaneous administration of dual drugs in a single nanocarrier has been demonstrated to be elegant and effective in combatting cancer. Herein, we employ a combination therapy based on dacarbazine (DBZ), FDA approved drug for melanoma and all-trans retinoic acid (ATRA), promising anticancer agents loaded on lipid nanoformulations (RD-LNF) as a new treatment strategy for malignant melanoma. We have successfully encapsulated both the drugs in lipid nanoformulations and showed a controlled release of payload over time. We demonstrated that the simultaneous delivery of DBZ and ATRA could effectively reduce cell proliferation in a concentration-dependent manner. The combinational nanoparticles significantly reduced the colony formation ability of B16F10 melanoma cells. Flow cytometer analysis showed that RD-LNF induced a greater proportion of apoptosis cells with significant inhibition of cell cycle progression and cell migration. These results suggest the promising potential of RD-LNF in the treatment of malignant melanoma with high efficacy.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
9
|
Chen C, Li C, Liu W, Guo F, Kou X, Sun S, Ye T, Li S, Zhao A. Estrogen-induced FOS-like 1 regulates matrix metalloproteinase expression and the motility of human endometrial and decidual stromal cells. J Biol Chem 2020; 295:2248-2258. [PMID: 31937587 DOI: 10.1074/jbc.ra119.010701] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/01/2020] [Indexed: 11/06/2022] Open
Abstract
The regulation mechanisms involved in matrix metalloproteinase (MMP) expression and the motility of human endometrial and decidual stromal cells (ESCs and DSCs, respectively) during decidualization remain unclear. DSCs show significant increased cell motility and expression of FOS-like 1 (FOSL1) and MMP1, MMP2, and MMP9 compared with ESCs, whereas lack of decidualization inducers leads to a rapid decrease in FOSL1 and MMP1 and MMP9 expression in DSCs in vitro Therefore, we hypothesized that a link exists between decidualization inducers and FOSL1 in up-regulation of motility during decidualization. Based on the response of ESCs/DSCs to different decidualization systems in vitro, we found that progesterone (P4) alone had no significant effect and that 17β-estradiol (E2) significantly increased cell motility and FOSL1 and MMP1 and MMP9 expression at the mRNA and protein levels, whereas 8-bromo-cAMP significantly decreased cell motility and FOSL1 and MMP9 expression in the presence of P4. In addition, we showed that E2 triggered phosphorylation of estrogen receptor 1 (ESR1), which could directly bind to the promoter of FOSL1 in ESCs/DSCs. Additionally, we also revealed silencing of ESR1 expression by siRNA abrogated E2-induced FOSL1 expression at the transcript and protein levels. Moreover, silencing of FOSL1 expression by siRNA was able to block E2-induced MMP1 and MMP9 expression and cell motility in ESCs/DSCs. Taken together, our data suggest that, in addition to its enhancement of secretory function, the change in MMP expression and cell motility is another component of the decidualization of ESCs/DSCs, including estrogen-dependent MMP1 and MMP9 expression mediated by E2-ESR1-FOSL1 signaling.
Collapse
Affiliation(s)
- Chao Chen
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Congcong Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Weichun Liu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Feng Guo
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Xi Kou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Taiyang Ye
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shanji Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China.
| |
Collapse
|
10
|
Tsubaki M, Takeda T, Obata N, Kawashima K, Tabata M, Imano M, Satou T, Nishida S. Combination therapy with dacarbazine and statins improved the survival rate in mice with metastatic melanoma. J Cell Physiol 2019; 234:17975-17989. [PMID: 30834527 DOI: 10.1002/jcp.28430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Malignant melanoma is a highly aggressive skin cancer, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Although molecular targeted therapies have recently been developed and have improved the overall survival, melanoma patients may show no response and acquisition of resistance to these drugs. Thus, other molecular approaches are essential for the treatment of metastatic melanoma. In the present study, we investigated the effect of cotreatment with dacarbazine and statins on tumor growth, metastasis, and survival rate in mice with metastatic melanomas. We found that cotreatment with dacarbazine and statins significantly inhibited tumor growth and metastasis via suppression of the RhoA/RhoC/LIM domain kinase/serum response factor/c-Fos pathway and enhanced p53, p21, p27, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase 1 expression in vivo. Moreover, the cotreatment significantly improved the survival rate in metastasis-bearing mice. Importantly, treatment with dacarbazine plus 100 mg/kg simvastatin or fluvastatin prevented metastasis-associated death in 4/20 mice that received dacarbazine + simvastatin and in 8/20 mice that received dacarbazine + fluvastatin (survival rates, 20% and 40%, respectively). These results suggested that cotreatment with dacarbazine and statins may thus serve as a new therapeutic approach to control tumor growth and metastasis in melanoma patients.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Naoya Obata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Keishi Kawashima
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Mitsuki Tabata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| |
Collapse
|
11
|
Babu RL, Naveen Kumar M, Patil RH, Kiran Kumar KM, Devaraju KS, Ramesh GT, Sharma SC. Forskolin and Phorbol 12-myristate 13-acetate modulates the expression pattern of AP-1 factors and cell cycle regulators in estrogen-responsive MCF-7 cells. Genes Dis 2018; 6:159-166. [PMID: 31194000 PMCID: PMC6545452 DOI: 10.1016/j.gendis.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Activator protein-1 (AP-1) transcription factor is a key component of many signal transduction pathways involved in the regulation of cellular processes and controls rapid responses of mammalian cells when exposed to the variety of stimulus. The phorbol 12-myristate 13-acetate and Forskolin (Fo) are well-known kinase activators/stimulators of Protein Kinase C (PKC) and Protein Kinase A (PKA) respectively. Importantly, these kinases are found to be present in transitional points of many cell signaling pathways, especially those involved in proliferation. The stimulating effect of PKC and PKA on the expression of AP-1 factors in MCF-7 breast cell proliferation is not well characterized. Hence, the role of PKC by PMA treatment and the role of PKA by using Fo in MCF-7 cells is investigated. Where, cells treated with PMA showed increased cell proliferation, while Fo had no effect, but inhibited the PMA induced proliferation. The RT-PCR results showed the PMA induced c-Jun, c-Fos and Fra-1 expressions compared to control and Fo. However, Fo in combination with PMA, inhibit the PMA induced above mRNA expressions where Fo alone has no effect. Western blot studies validated the c-Jun expressions in PMA treated MCF-7 cells. Further, PMA increases the mRNA expression of Cyclin-E1, Cyclin-D1, and CDK-4, whereas Fo decreases their expressions. Thus, mitogenic effect of PMA and inhibitory action of Fo on MCF-7 cells is probably enhanced via activation of AP-1 factors and concomitant action of cell cycle regulators in the downstream singling cascade.
Collapse
Affiliation(s)
- R L Babu
- Department of Bioinformatics and Biotechnology, Akkamahadevi Women's University, Jnanashakthi Campus, Vijayapura, 586 108, Karnataka, India.,Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - M Naveen Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Rajeshwari H Patil
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - K M Kiran Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - K S Devaraju
- Department of Biochemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Govindarajan T Ramesh
- Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - S Chidananda Sharma
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| |
Collapse
|
12
|
Zhang LZ, Man QW, Liu JY, Zhong WQ, Zheng YY, Zhao YF, Liu B. Overexpression of Fra-1, c-Jun and c-Fos in odontogenic keratocysts: potential correlation with proliferative and anti-apoptotic activity. Histopathology 2018; 73:933-942. [PMID: 29993138 DOI: 10.1111/his.13705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
AIMS The purpose of this study was to explore the potential involvement of Fra-1, c-Jun and c-Fos, three vital members of the AP-1 complex, in the pathogenesis of odontogenic keratocysts (OKCs). METHODS AND RESULTS Tissue samples, containing 10 normal oral mucosa (OM), 10 dentigerous cysts (DC) and 32 OKC specimens, were applied to investigate the expression levels of Fra-1, c-Jun and c-Fos by immunohistochemistry and real-time-quantitative polymerase chain reaction (RT-qPCR). The association between Fra-1, c-Jun and c-Fos expression levels and markers of proliferation [Ki-67, proliferating cell nuclear antigen (PCNA)], anti-apoptosis (Bcl-2) was then investigated in the OKC serial tissue sections. The results showed that Fra-1, c-Jun and c-Fos expression levels were increased significantly in OKCs compared to these in OM and DC tissue samples. Meanwhile, the expression levels of Fra-1, c-Jun and c-Fos were associated positively with the expression levels of Ki-67, PCNA and Bcl-2, as confirmed further by double-labelling immunofluorescence analysis and hierarchical analysis. CONCLUSIONS This study revealed for the first time that Fra-1, c-Jun and c-Fos were overexpressed in OKCs and had a close correlation with proliferation and anti-apoptosis potential of OKCs.
Collapse
Affiliation(s)
- Lin-Zhou Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin-Yuan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Qun Zhong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue-Yu Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Wang Y, Lu Y, Li Z, Zhou Y, Gu Y, Pang X, Wu J, Gobin R, Yu J. Oestrogen receptor α regulates the odonto/osteogenic differentiation of stem cells from apical papilla via ERK and JNK MAPK pathways. Cell Prolif 2018; 51:e12485. [PMID: 30069950 DOI: 10.1111/cpr.12485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Oestrogen receptor (ER) is a common nucleus receptor that is essential for the regulation of cell growth, proliferation and differentiation. This study was to examine whether ERα can affect the proliferation and odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs). MATERIALS AND METHODS Stem cells from apical papillas were isolated, purified and then transfected with ERα lentiviruses. The proliferation capacity was investigated by cell counting kit-8 (CCK-8) assay and flow cytometry. The odonto/osteogenic differentiation ability was analysed by alkaline phosphatase (ALP) activity, alizarin red staining, western blot assay (WB) and real-time RT-PCR. MAPK pathway and its downstream transcriptional factors were explored by WB assay. RESULTS As indicated by CCK-8 assay and flow cytometry, ERα had no significant effect on the proliferation of SCAPs. When ERα was overexpressed, the ALP activity and the formation of calcified nodules were significantly enhanced in SCAPs. Moreover, the odonto/osteogenic markers (DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OCN/OCN) in SCAPs were significantly up-regulated at both mRNA and protein levels. On the contrary, the odonto/osteogenic differentiation ability of SCAPs was remarkably inhibited after suppression of ERα. Mechanistically, the protein levels of phosphorylated ERK and JNK significantly increased after ERα overexpression. Moreover, some downstream transcriptional factors of MAPK pathway were simultaneously activated by ERα overexpression. CONCLUSIONS Together, the data accumulated here indicated that ERα can enhance the odonto/osteogenic differentiation of SCAPs via ERK and JNK MAPK pathways.
Collapse
Affiliation(s)
- Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yadie Lu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department of the West Branch of Hangzhou Dental Hospital, Hangzhou, Zhejiang, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixiang Zhou
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,IVY Dental Clinic, Hangzhou, Zhejiang, China
| | - Yongchun Gu
- Department of Dentistry and Central Laboratory, The First People's Hospital of Wujiang District, Nantong University, Suzhou, Nantong, China
| | - Xiyao Pang
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Protein kinases orchestrate cell cycle regulators in differentiating BeWo choriocarcinoma cells. Mol Cell Biochem 2018; 452:1-15. [PMID: 30051305 DOI: 10.1007/s11010-018-3407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023]
Abstract
Choriocarcinoma, a trophoblastic neoplasia, occurs in women as an incidence of abnormal pregnancy. BeWo choriocarcinoma cells derived from the abnormal placentation are a suitable model system to study the factors associated with differentiation, invasion and other cellular events as an alternative to clinical samples. Many protein kinases orchestrate the complex events of cell cycle and in case of malignancy such regulators are found to be mutated. In the present study, BeWo cells treated with forskolin (Fo) and phorbol 12-myristate 13-acetate (PMA) were used to study the role of PKA (protein kinase A) and PKC (protein kinase C), respectively, on the expression pattern of differentiation-related genes, membrane markers, PKC isoforms and cell cycle regulators. The effect of Fo and PMA on the cell proliferation was assessed. Progressive induction of alkaline phosphatase level and formation of multinucleated differentiated cells were observed in the cells treated with Fo. Exposure of cells to Fo and PMA induced the mRNA transcripts of α-hCG, β-hCG and endoglin and down-regulates E-cadherin at mRNA and protein levels. Synergistic levels of both up- and down-regulated genes/proteins were observed when cells were treated with the combination of Fo and PMA. The mRNA levels of cyclin D1, cyclin E1, p21, Rb, p53, caspase-3 and caspase-8 decreased gradually during differentiation. Fo significantly inhibited the protein levels of PCNA, Rb, PKC-α and PMA stimulated mRNA expression of PKC-ε and PKC-δ. Further, failure in the activation of essential components of the cell cycle machinery caused G2/M phase arrest in differentiating BeWo cells.
Collapse
|
15
|
Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 2018; 115:613-618. [PMID: 29295935 DOI: 10.1073/pnas.1716016115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To elucidate molecular mechanisms responsible for the sexually dimorphic phenotype of soluble epoxide hydrolase (sEH) expression, we tested the hypothesis that female-specific down-regulation of sEH expression is driven by estrogen-dependent methylation of the Ephx2 gene. Mesenteric arteries isolated from male, female, ovariectomized female (OV), and OV with estrogen replacement (OVE) mice, as well as the human cell line (HEK293T) were used. Methylation-specific PCR and bisulfite genomic sequencing analysis indicate significant increases in DNA/CG methylation in vessels of female and OVE compared with those of male and OV mice. The same increase in CG methylation was also observed in male vessels incubated with a physiological concentration of 17β-estradiol (17β-E2) for 48 hours. All vessels that displayed increases in CG methylation were concomitantly associated with decreases in their Ephx2 mRNA and protein, suggesting a methylation-induced gene silencing. Transient transfection assays indicate that the activity of Ephx2 promoter-coding luciferase was significantly attenuated in HEK293T cells treated with 17β-E2, which was prevented by additional treatment with an estrogen receptor antagonist (ICI). ChIP analysis indicates significantly reduced binding activities of transcription factors (including SP1, AP-1, and NF-κB with their binding elements located in the Ephx2 promoter) in vessels of female mice and human cells treated with 17β-E2, responses that were prevented by ICI and Decitabine (DNA methyltransferase inhibitor), respectively. In conclusion, estrogen/estrogen receptor-dependent methylation of the promoter of Ephx2 gene silences sEH expression, which is involved in specific transcription factor-directed regulatory pathways.
Collapse
|
16
|
Patil RH, Naveen Kumar M, Kiran Kumar KM, Nagesh R, Kavya K, Babu RL, Ramesh GT, Chidananda Sharma S. Dexamethasone inhibits inflammatory response via down regulation of AP-1 transcription factor in human lung epithelial cells. Gene 2017; 645:85-94. [PMID: 29248584 DOI: 10.1016/j.gene.2017.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/22/2023]
Abstract
The production of inflammatory mediators by epithelial cells in inflammatory lung diseases may represent an important target for the anti-inflammatory effects of glucocorticoids. Activator protein-1 is a major activator of inflammatory genes and has been proposed as a target for inhibition by glucocorticoids. We have used human pulmonary type-II A549 cells to examine the effect of dexamethasone on the phorbol ester (PMA)/Lipopolysaccharide (LPS) induced pro-inflammatory cytokines and AP-1 factors. A549 cells were treated with and without PMA or LPS or dexamethasone and the cell viability and nitric oxide production was measured by MTT assay and Griess reagent respectively. Expression of pro-inflammatory cytokines and AP-1 factors mRNA were measured using semi quantitative RT-PCR. The PMA/LPS treated cells show significant 2-3 fold increase in the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8 and TNF-α), cyclo‑oxygenase-2 (COX-2) and specific AP-1 factors (c-Jun, c-Fos and Jun-D). Whereas, pretreatment of cells with dexamethasone significantly inhibited the LPS induced nitric oxide production and PMA/LPS induced mRNAs expression of above pro-inflammatory cytokines, COX-2 and AP-1 factors. Cells treated with dexamethasone alone at both the concentrations inhibit the mRNAs expression of IL-1β, IL-6 and TNF-α compared to control. Our study reveals that dexamethasone decreased the mRNAs expression of c-Jun and c-Fos available for AP-1 formation suggested that AP-1 is the probable key transcription factor involved in the anti-inflammatory activity of dexamethasone. This may be an important molecular mechanism of steroid action in asthma and other chronic inflammatory lung diseases which may be useful for treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Rajeshwari H Patil
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India; Department of Biotechnology, The Oxford College of Science, HSR Layout, Bengaluru 560102, Karnataka, India.
| | - M Naveen Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India
| | - K M Kiran Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India
| | - Rashmi Nagesh
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India
| | - K Kavya
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India
| | - R L Babu
- Department of Bioinformatics and Biotechnology, Karnataka State Women's University, Jnana Shakthi Campus, Vijayapura 586 108, Karnataka, India; Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - Govindarajan T Ramesh
- Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - S Chidananda Sharma
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, Karnataka, India
| |
Collapse
|
17
|
Fang Z, Yi Y, Shi G, Li S, Chen S, Lin Y, Li Z, He Z, Li W, Zhong S. Role of Brf1 interaction with ERα, and significance of its overexpression, in human breast cancer. Mol Oncol 2017; 11:1752-1767. [PMID: 28972307 PMCID: PMC5709663 DOI: 10.1002/1878-0261.12141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 02/05/2023] Open
Abstract
TFIIB-related factor 1 (Brf1) modulates the transcription of RNA Pol III genes (polymerase-dependent genes). Upregulation of Pol III genes enhances tRNA and 5S RNA production and increases the translational capacity of cells to promote cell transformation and tumor development. However, the significance of Brf1 overexpression in human breast cancer (HBC) remains to be investigated. Here, we investigate whether Brf1 expression is increased in the samples of HBC, and we explore its molecular mechanism and the significance of Brf1 expression in HBC. Two hundred and eighteen samples of HBC were collected to determine Brf1 expression by cytological and molecular biological approaches. We utilized colocalization, coimmunoprecipitation, and chromatin immunoprecipitation methods to explore the interaction of Brf1 with estrogen receptor alpha (ERα). We determined how Brf1 and ERα modulate Pol III genes. The results indicated that Brf1 is overexpressed in most cases of HBC, which is associated with an ER-positive status. The survival period of the cases with high Brf1 expression is significantly longer than those with low levels of Brf1 after hormone treatment. ERα mediates Brf1 expression. Brf1 and ERα are colocalized in the nucleus. These results indicate an interaction between Brf1 and ERα, which synergistically regulates the transcription of Pol III genes. Inhibition of ERα by its siRNA or tamoxifen reduces cellular levels of Brf1 and Pol III gene expression and decreases the rate of colony formation of breast cancer cells. Together, these studies demonstrate that Brf1 is a good biomarker for the diagnosis and prognosis of HBC. This interaction of Brf1 with ERα and Brf1 itself are potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zeng Fang
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yunfeng Yi
- Department of Cardiothoracic SurgeryXiamen University Affiliated Southeast HospitalZhangzhouChina
| | - Ganggang Shi
- Department of PharmacologyShantou University Medical CollegeChina
| | - Songqi Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Songlin Chen
- Department of Cardiothoracic SurgeryXiamen University Affiliated Southeast HospitalZhangzhouChina
| | - Ying Lin
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhi Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhimin He
- Cancer Center of Guangzhou Medical UniversityGuangzhouChina
| | - Wen Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shuping Zhong
- Department of PharmacologyShantou University Medical CollegeChina
- Cancer Center of Guangzhou Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngeleCAUSA
| |
Collapse
|
18
|
Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res 2017; 128:366-375. [PMID: 28951297 DOI: 10.1016/j.phrs.2017.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, 263 136, Uttarakhand, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, 54000, Pakistan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090, Vienna, Austria; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
19
|
Synthesis, Characterization and Biocompatibility Studies of Gold Nanoparticles from Zingiber officinal. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0427-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kavya K, Kumar MN, Patil RH, Hegde SM, Kiran Kumar KM, Nagesh R, Babu RL, Ramesh GT, Chidananda Sharma S. Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status. Mol Cell Biochem 2017; 433:13-26. [PMID: 28386843 DOI: 10.1007/s11010-017-3012-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022]
Abstract
Androgen receptor (AR) signaling axis plays a vital role in the development of prostate and critical in the progression of prostate cancer. Androgen withdrawal initially regresses tumors but eventually develops into aggressive castration-resistant prostate cancer (CRPC). Activator Protein-1 (AP-1) transcription factors are most likely to be associated with malignant transformation in prostate cancer. Hence, to determine the implication of AR and AP-1 in promoting the transition of prostate cancer to the androgen-independent state, we used AR-positive LNCaP and AR-negative PC-3 cells as an in vitro model system. The effect of dihydrotestosterone or anti-androgen bicalutamide on the cell proliferation and viability was assessed by MTT assay. Expression studies on AR, marker genes-PSA, TMPRSS2, and different AP-1 factors were analyzed by semi-quantitative RT-PCR and expressions of AR and Fra-1 proteins were analyzed by Western blotting. Dihydrotestosterone induced the cell proliferation in LNCaP with no effect on PC-3 cells. Bicalutamide decreased the viability of both LNCaP and PC-3 cells. Dihydrotestosterone induced the expression of AR, PSA, c-Jun, and Fra-1 in LNCaP cells, and it was c-Jun and c-Fos in case of PC-3 cells, while bicalutamide decreased their expression. In addition, constitutive activation and non-regulation of Fra-1 by bicalutamide in PC-3 cells suggested that Fra-1, probably a key component, involved in transition of aggressive androgen-independent PC-3 cells with poor prognosis.
Collapse
Affiliation(s)
- K Kavya
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - M Naveen Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Rajeshwari H Patil
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Shubha M Hegde
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - K M Kiran Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Rashmi Nagesh
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - R L Babu
- Department of Bioinformatics and Biotechnology, Karnataka State Women's University, Jnanashakthi Campus, Vijayapura, 586 108, Karnataka, India
- Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - Govindarajan T Ramesh
- Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - S Chidananda Sharma
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India.
| |
Collapse
|
21
|
Nagesh R, Kiran Kumar KM, Naveen Kumar M, Patil RH, Kavya K, Babu RL, Ramesh GT, Chidananda Sharma S. Aqueous areca nut extract induces oxidative stress in human lung epithelial A549 cells: Probable role of p21 in inducing cell death. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Cervantes-Madrid DL, Nagi S, Asting Gustafsson A. FosB transcription factor regulates COX-2 expression in colorectal cancer cells without affecting PGE2 expression. Oncol Lett 2017; 13:1411-1416. [PMID: 28454270 DOI: 10.3892/ol.2017.5571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
The expression levels of cyclooxygenase (COX)-2 and the prostaglandin E2 (PGE2) content have been associated with poor prognosis in patients with colorectal cancer (CRC). There is a strong correlation between COX-2 expression and PGE2 production in tissues from CRC patients, suggesting an important role for COX-2 on the regulation of PGE2 production. Previous studies by the present authors, where CRC patients were divided into high- or low-COX-2 expressing tumors, displayed important differences in the expression levels of several transcription factors involved in carcinogenesis. Among them, FBJ murine osteosarcoma viral oncogene homolog B (FosB), which is a member of the activator protein-1 complex, was the highest upregulated transcription factor in patients with high expression levels of COX-2. The present study aimed to investigate the role of FosB on the COX-2/PGE2 axis in CRC cells with high COX-2 expression levels. Interference RNA technology was used to knockdown FosB expression in HCA-7 cells, and 72 h later the messenger (m)RNA expression levels of COX-1 and COX-2, as well as the PGE2 content, were measured. The results indicated that FosB knockdown decreased the expression levels of COX-2 but did not affect the PGE2 content or the mRNA expression levels of COX-1. The present findings suggest an important role for FosB on the regulation of COX-2 expression, but no effect on the regulation of the PGE2 levels. In addition, the present results imply independent regulatory mechanisms for COX-2 expression and PGE2 content.
Collapse
Affiliation(s)
- Diana Lizeth Cervantes-Madrid
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden.,Department of Basic Research, Institute of Biomedical Sciences, National Autonomous University of Mexico, Mexico City 14080, Mexico
| | - Sabah Nagi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Annika Asting Gustafsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| |
Collapse
|
23
|
Kiran Kumar KM, Naveen Kumar M, Patil RH, Nagesh R, Hegde SM, Kavya K, Babu RL, Ramesh GT, Sharma SC. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods 2016; 26:658-666. [PMID: 27687512 DOI: 10.1080/15376516.2016.1223240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is one of the well-known highly toxic environmental and industrial pollutants. Cd first accumulates in the nucleus and later interacts with zinc finger proteins of antiapoptotic genes and inhibit the binding of transcriptional factors and transcription. However, the role of Cd in oxidative stress and apoptosis is less understood. Hence, the present study was undertaken to unveil the mechanism of action. A549 cells were treated with or without Cd and cell viability was measured by MTT assay. Treatment of cells with Cd shows reduced viability in a dose-dependent manner with IC50 of 45 μM concentration. Cd significantly induces the reactive oxygen species (ROS), lipid peroxidation followed by membrane damage with the leakage of lactate dehydrogenase (LDH). Cells with continuous exposure of Cd deplete the antioxidant super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Further, analysis of the expression of genes involved in apoptosis show that both the extrinsic and intrinsic apoptotic pathways were involved. Death receptor marker tumor necrosis factor-α (TNF-α), executor caspase-8 and pro-apoptotic gene (Bax) were induced, while antiapoptotic gene (Bcl-2) was decreased in Cd-treated cells. Fluorescence-activated cell sorting (FACS) analysis further confirms the induction of apoptosis in Cd-treated A549 cells.
Collapse
Affiliation(s)
- K M Kiran Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - M Naveen Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rajeshwari H Patil
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rashmi Nagesh
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Shubha M Hegde
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - K Kavya
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - R L Babu
- b Department of Bioinformatics and Biotechnology , Karnataka State Women's University , Jnanashakthi Campus , Vijayapura , Karnataka , India
| | - Govindarajan T Ramesh
- c Department of Biology and Center for Biotechnology and Biomedical Sciences , Norfolk State University , Norfolk , VA , USA
| | - S Chidananda Sharma
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| |
Collapse
|
24
|
Hegde SM, Kumar MN, Kavya K, Kumar KMK, Nagesh R, Patil RH, Babu RL, Ramesh GT, Sharma SC. Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells. Mol Cell Biochem 2016; 422:109-120. [DOI: 10.1007/s11010-016-2810-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
|
25
|
Peng L, Zhou Y, Dong L, Chen RQ, Sun GY, Liu T, Ran WZ, Fang X, Jiang JX, Guan CX. TGF-β1 Upregulates the Expression of Triggering Receptor Expressed on Myeloid Cells 1 in Murine Lungs. Sci Rep 2016; 6:18946. [PMID: 26738569 PMCID: PMC4704059 DOI: 10.1038/srep18946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) increases the expression of TGF-β family genes, which are known as profibrogenic cytokines in the pathogenesis of pulmonary fibrosis. In this study, we determined whether TGF-β1 regulated the expression of TREM-1 in a mouse model of pulmonary fibrosis. The expression of TGF-β1 and TREM-1 was increased on day 7, 14, and 21 after single intratracheal injection of bleomycin (BLM). And there was positive correlation between the expression of TGF-β1 and TREM-1. TGF-β1 increased expression of TREM-1 mRNA and protein in a time- and dose-dependent manner in mouse macrophages. The expression of the activator protein 1 (AP-1) was increased in lung tissues from mouse after BLM injection and in mouse macrophages after TGF-β1 treatment, respectively. TGF-β1 significantly increased the relative activity of luciferase in the cells transfected with plasmid contenting wild type-promoter of TREM-1. But TGF-β1 had no effect on the activity of luciferase in the cells transfected with a mutant-TREM1 plasmid carrying mutations in the AP-1 promoter binding site. In conclusion, we found the expression of TREM-1 was increased in lung tissues from mice with pulmonary fibrosis. TGF-β1 increased the expression of TREM-1 in mouse macrophages partly via the transcription factor AP-1.
Collapse
Affiliation(s)
- Li Peng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liang Dong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Qi Chen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-Zhuo Ran
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
26
|
Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol 2015; 230:3084-92. [DOI: 10.1002/jcp.25049] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
|
27
|
Estrogen receptor signal in regulation of B cell activation during diverse immune responses. Int J Biochem Cell Biol 2015; 68:42-7. [PMID: 26299327 DOI: 10.1016/j.biocel.2015.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022]
Abstract
The role of signalling through oestrogen receptors (ERs) in the regulation of B cell activation is an area of growing importance not only in terms protective immunity but also in the determination of the mechanisms of the onset of autoimmune disorders and cancers. The mode of signalling action of this single chain nuclear receptor protein molecule depends on its ability to bind to the promoters of Pax5, HOXC4 and apolipoprotein B RNA-editing enzyme activation-induced cytidine deaminase (AID) genes. ER-mediated transcriptional regulation induces class switch recombination of the immunoglobulin heavy chain variable (VH) to DH-JH genes and somatic hypermutation in developing B cells. The mode of action of ER is associated with BCR-signal pathways that involve the regulator proteins BAFF and APRIL. Additionally, the plasma membrane-bound G protein-coupled oestrogen receptor-1 (GEPR1) directs diverse cell signalling events in B cells that involve the MAPK pathways. These signals are immensely important during progenitor and precursor B cell activation. We have focused our goals on the medicinal aspects of ER-signalling mechanisms and their effects on polyclonal B cell activation.
Collapse
|
28
|
Patil RH, Babu RL, Naveen Kumar M, Kiran Kumar KM, Hegde SM, Nagesh R, Ramesh GT, Sharma SC. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells. Inflammation 2015; 39:138-147. [DOI: 10.1007/s10753-015-0232-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Mol Cell Biochem 2015; 403:95-106. [DOI: 10.1007/s11010-015-2340-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/30/2015] [Indexed: 11/25/2022]
|
30
|
Zhong Q, Shi G, Zhang Q, Lu L, Levy D, Zhong S. Tamoxifen represses alcohol-induced transcription of RNA polymerase III-dependent genes in breast cancer cells. Oncotarget 2014; 5:12410-7. [PMID: 25400119 PMCID: PMC4322994 DOI: 10.18632/oncotarget.2678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Alcohol consumption in women has been associated with an increased risk of breast cancer, particular in estrogen receptor positive (ER+) cases. Deregulation of RNA polymerase III-dependent (Pol III) transcription enhances cellular tRNAs and 5S rRNA production, leading to an increase in translational capacity to promote cell transformation and tumor formation. Our recent studies demonstrated that alcohol induces Brf1 expression and Pol III gene transcription via ER. Here, we report that Tamoxifen (Tam) inhibits the induction of Brf1 and Pol III genes in ER+ breast cancer cells. Further analysis indicates that alcohol increases c-Jun expression to upregulate the transcription of Brf1 and Pol III genes, whereas Tam reduces c-Jun expression to repress the transcription of Brf1. Repression of cJun decreases cellular levels of ERα and Brf1. Alcohol-dependent increased occupancy of Brf1 in Pol III gene promoters is reduced by Tam. The repression of Brf1 and Pol III genes by Tam reduces alcohol-induced cell proliferation and colony formation. Together, these results indicate that Tam inhibits alcohol-induced Brf1 expression through c-Jun and ERα to downregulate Pol III gene transcription. Our studies uncover a new mechanism of Tam-treated ER+ breast cancer, by which Tam inhibits tumor growth through repressing Pol III gene transcription.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, China
| | - Ganggang Shi
- Shantou University Medical College, Shantou, Guangdong, China
| | - Qingsong Zhang
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lei Lu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Levy
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
31
|
17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway. Stem Cell Res Ther 2014; 5:125. [PMID: 25403930 PMCID: PMC4446088 DOI: 10.1186/scrt515] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. Methods SCAP was isolated and treated with 10-7 M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. Results MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. Conclusions The ondonto/osteogenic differentiation of SCAP is enhanced by 10-7 M 17beta-estradiol via the activation of MAPK signaling pathway.
Collapse
|
32
|
Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1264-74. [PMID: 24835555 DOI: 10.1016/j.etap.2014.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 05/15/2023]
Abstract
Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.
Collapse
Affiliation(s)
- Joo-Young Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
33
|
JIN MEILING, PARK SUNYOUNG, KIM YOUNGHUN, PARK GEUNTAE, LEE SANGJOON. Halofuginone induces the apoptosis of breast cancer cells and inhibits migration via downregulation of matrix metalloproteinase-9. Int J Oncol 2013; 44:309-18. [DOI: 10.3892/ijo.2013.2157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|