1
|
Castro-Gerónimo VD, García-Rodríguez RV, Sánchez-Medina A, Chamorro-Cevallos GA, Sánchez-González DJ, Méndez-Bolaina E. C-Phycocyanin: A Phycobiliprotein from Spirulina with Metabolic Syndrome and Oxidative Stress Effects. J Med Food 2024; 27:807-813. [PMID: 37668603 DOI: 10.1089/jmf.2022.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Spirulina maxima is a cyanobacterium considered a "superfood" due to its metabolites and nutrient content. These include a complex mixture of minerals, vitamins, fatty acids, proteins, and accessory pigments. In recent years, it has positioned itself as a promising source of bioactive molecules for the treatment of several diseases, including metabolic syndrome, coronary diseases, cancer, and the improvement of health modulating oxidative stress. C-Phycocyanin (C-PC) is a photosynthetic pigment from green-blue cyanobacterium and the most abundant phycobiliprotein in the Spirulina genus with various pharmacological properties attributed due to its antioxidant capacity but has no specific cellular target. This has made it a molecule of great interest in biomedical research. This review focuses on the pharmacological effects and the benefits on metabolic syndrome and oxidative stress of C-PC.
Collapse
Affiliation(s)
- Van D Castro-Gerónimo
- Laboratorio de Farmacología y Quimiometría, Instituto de Química Aplicada, Universidad Veracruzana, Xalapa, México
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, México
| | | | - Alberto Sánchez-Medina
- Laboratorio de Farmacología y Quimiometría, Instituto de Química Aplicada, Universidad Veracruzana, Xalapa, México
| | - German A Chamorro-Cevallos
- Laboratorio de la Reproducción y la Fertilidad, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Enrique Méndez-Bolaina
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, México
- Maestría en Ciencias en Procesos Biológicos-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, México
| |
Collapse
|
2
|
Citi V, Torre S, Flori L, Usai L, Aktay N, Dunford NT, Lutzu GA, Nieri P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis ( Spirulina). Nutrients 2024; 16:1752. [PMID: 38892686 PMCID: PMC11174898 DOI: 10.3390/nu16111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41122 Modena, MO, Italy; (L.U.); (G.A.L.)
| | - Nazlim Aktay
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| |
Collapse
|
3
|
Orhan C, Sahin E, Tuzcu M, Sahin N, Celik A, Ojalvo SP, Sylla S, Komorowski JR, Sahin K. Nicotinamide Riboside and Phycocyanin Oligopeptides Affect Stress Susceptibility in Chronic Corticosterone-Exposed Rats. Antioxidants (Basel) 2023; 12:1849. [PMID: 37891928 PMCID: PMC10604757 DOI: 10.3390/antiox12101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Phycocyanin oligopeptide (PC), a phytonutrient found in blue-green algae, has antioxidant and anti-inflammatory properties. This study explored the effects of NR, PC, and their combination on the telomere length as well as inflammatory and antioxidant status of rats under chronic stress conditions (CS). Forty-nine rats were allocated into seven groups: control, chronic stress (CS), CS with NR (26.44 mg/kg), a low dose of 2.64 mg/kg of PC (PC-LD), or a high dose of 26.44 mg/kg PC (PC-HD), NR + PC-LD, and NR + PC-HF. The rats were given daily corticosterone injections (40 mg/kg) to induce stress conditions, or NR and PC were orally administered for 21 days. NR and PC supplementation, particularly NR plus PC, increased the serum antioxidant enzyme activities, hepatic nicotinamide adenine (NAD+) content, and telomere length (p < 0.001 for all) compared to the CS group. The levels of serum malondialdehyde (MDA), liver interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), IL-1β, and IL-8 were reduced under the CS condition (p < 0.001). In addition, CS decreased the levels of hepatic telomere-related proteins and sirtuins (SIRT1 and 3), whereas administration of NR and PC or their combination to CS-exposed rats increased the levels of telomere-related proteins (e.g., POT1b, TRF1 and TRF2), SIRT3 and NAMPT (p < 0.05). In conclusion, NR and PC, especially their combination, can alleviate metabolic abnormalities by enhancing hepatic cytokines, SIRT3, NAMPT, and NAD+ levels in CS-exposed rats. More research is needed to further elucidate the potential health effects of the combination of NR and PC in humans.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Abdullah Celik
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Sara Perez Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - James R. Komorowski
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| |
Collapse
|
4
|
Fernández-Rojas B, Gómez-Sierra T, Medina-Campos O, Hernández-Juárez J, Hernández-Cruz P, Gallegos-Velasco I, Pérez-Cervera Y, Pedraza-Chaverri J. Antioxidant activity of glucosamine and its effects on ROS production, Nrf2, and O-GlcNAc expression in HMEC-1 cells. Curr Res Toxicol 2023; 5:100128. [PMID: 37808439 PMCID: PMC10558709 DOI: 10.1016/j.crtox.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Glucosamine (GlcN) is the most used supplement for osteoarthritis treatment. In vitro studies have related GlcN to beneficial and detrimental effects on health. The aim of this study was to evaluate the effects of O-linked-N-acetylglucosaminylation (O-GlcNAc) on GlcN-induced ROS production and Nrf2 expression in human dermal microvascular endothelial cells-1 (HMEC-1) and to evaluate the antioxidant capacity of GlcN compared to well-known antioxidants. For this, we evaluate the antioxidant capacity by in vitro assays. Besides, the GlcN (5-20 mM) effects on cell viability, reactive oxygen species (ROS) production, O-GlcNAc, and nuclear factor erythroid-2-related factor 2 (Nrf2) expression with and without the O-GlcNAc inhibitor OSMI-1 (10 μM) in HMEC-1 were evaluated. GlcN showed high inhibitory concentration (low scavenging activity) against superoxide (O2•─, IC20 = 47.67 mM), 2,2-diphenyl-1-picrylhydrazyl (DPPH•, IC50 = 21.32 mM), and hydroxyl (HO•, IC50 = 14.04 mM) radicals without scavenging activity against hydrogen peroxide (H2O2) and low antioxidant capacity determined by oxygen radical absorbance capacity (ORAC, 0.001 mM Trolox equivalent) and ferric reducing antioxidant power (FRAP, 0.046 mM Trolox equivalent). In cell culture, GlcN (20 mM) reduced cell viability up to 26 % and induced an increase in ROS production (up to 70 %), O-GlcNAc (4-fold-higher vs. control), and Nrf2 expression (56 %), which were prevented by OSMI-1. These data suggest an association between O-GlcNAc, ROS production, and Nrf2 expression in HMEC-1 cells stimulated with GlcN.
Collapse
Affiliation(s)
- B. Fernández-Rojas
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - T. Gómez-Sierra
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| | - O.N. Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| | - J. Hernández-Juárez
- CONAHCYT-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Calle Hornos 1003, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, México
| | - P.A. Hernández-Cruz
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - I.B. Gallegos-Velasco
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - Y. Pérez-Cervera
- Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Avenida Universidad S/N, C.P. 68120, Oaxaca de Juárez, Oaxaca, México
| | - J. Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| |
Collapse
|
5
|
Oral hydrogel microspheres were used for highly specific delivery of Steamed Codonopsis lanceolata to exert the protective effects on cisplatin-induced acute kidney injury in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
6
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
7
|
Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022; 8:e10608. [PMID: 36158077 PMCID: PMC9489975 DOI: 10.1016/j.heliyon.2022.e10608] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Cisplatin spearheads the anticancer chemotherapeutics in present-day use although acute toxicity is its primary impediment factor. Among a plethora of experimental medications, a drug as effective or surpassing the benefits of cisplatin has not been discovered yet. Although Oxaliplatin is considered more superior to cisplatin, the former has been better for colorectal cancer while cisplatin is widely used for treating gynaecological cancers. Carcinoma imposes a heavy toll on mortality rates worldwide despite the novel treatment strategies and detection methods that have been introduced; nanomedicine combined with precision medicine, immunotherapy, volume-regulated anion channels, and fluorodeoxyglucose-positron emission tomography. Millions of deaths occur annually from metastatic cancers which escape early detection and the concomitant diseases caused by highly toxic chemotherapy that causes organ damage. It continues due to insufficient knowledge of the debilitative mechanisms induced by cancer biology. To overcome chemoresistance and to attenuate the adverse effects of cisplatin therapy, both in vitro and in vivo models of cisplatin-treated cancers and a few multi-centred, multi-phasic, randomized clinical trials in pursuant with recent novel strategies have been tested. They include plant-based phytochemical compounds, de novo drug delivery systems, biochemical/immune pathways, 2D and 3D cell culture models using small molecule inhibitors and genetic/epigenetic mechanisms, that have contributed to further the understanding of cisplatin's role in modulating the tumour microenvironment. Cisplatin was beneficial in cancer therapy for modulating the putative cellular mechanisms; apoptosis, autophagy, cell cycle arrest and gene therapy of micro RNAs. Specific importance of drug influx, efflux, systemic circulatory toxicity, half-maximal inhibition, and the augmentation of host immunometabolism have been identified. This review offers a discourse on the recent anti-neoplastic treatment strategies to enhance cisplatin efficacy and to overcome chemoresistance, given its superiority among other tolerable chemotherapies.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| |
Collapse
|
8
|
Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:biom12081078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
|
9
|
Rao V, Bhushan R, Kumari P, Cheruku SP, Ravichandiran V, Kumar N. Chemobrain: A review on mechanistic insight, targets and treatments. Adv Cancer Res 2022; 155:29-76. [DOI: 10.1016/bs.acr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
11
|
Arnold M, Segiser A, Graf S, Méndez-Carmona N, Sanz MN, Wyss RK, Kalbermatter N, Keller N, Carrel T, Longnus S. Pre-ischemic Lactate Levels Affect Post-ischemic Recovery in an Isolated Rat Heart Model of Donation After Circulatory Death (DCD). Front Cardiovasc Med 2021; 8:669205. [PMID: 34195235 PMCID: PMC8236508 DOI: 10.3389/fcvm.2021.669205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction: Donation after circulatory death (DCD) could substantially improve donor heart availability. In DCD, the heart is not only exposed to a period of warm ischemia, but also to a damaging pre-ischemic phase. We hypothesized that the DCD-relevant pre-ischemic lactate levels negatively affect the post-ischemic functional and mitochondrial recovery in an isolated rat heart model of DCD. Methods: Isolated, working rat hearts underwent 28.5′ of global ischemia and 60′ of reperfusion. Prior to ischemia, hearts were perfused with one of three pre-ischemic lactate levels: no lactate (0 Lac), physiologic lactate (0.5 mM; 0.5 Lac), or DCD-relevant lactate (1 mM; 1 Lac). In a fourth group, an inhibitor of the mitochondrial calcium uniporter was added in reperfusion to 1 Lac hearts (1 Lac + Ru360). Results: During reperfusion, left ventricular work (heart rate-developed pressure product) was significantly greater in 0.5 Lac hearts compared to 0 Lac or 1 Lac. In 1 vs. 0.5 Lac hearts, in parallel with a decreased function, cellular and mitochondrial damage was greater, tissue calcium content tended to increase, while oxidative stress damage tended to decrease. The addition of Ru360 to 1 Lac hearts partially abrogated the negative effects of the DCD-relevant pre-ischemic lactate levels (greater post-ischemic left ventricular work and less cytochrome c release in 1 Lac+Ru360 vs. 1 Lac). Conclusion: DCD-relevant levels of pre-ischemic lactate (1 mM) reduce contractile, cellular, and mitochondrial recovery during reperfusion compared to physiologic lactate levels. Inhibition of mitochondrial calcium uptake during early reperfusion improves the post-ischemic recovery of 1 Lac hearts, indicating calcium overload as a potential therapeutic reperfusion target for DCD hearts.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Selianne Graf
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nina Kalbermatter
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nino Keller
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sarah Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Wang C, Zhao Y, Wang L, Pan S, Liu Y, Li S, Wang D. C-phycocyanin Mitigates Cognitive Impairment in Doxorubicin-Induced Chemobrain: Impact on Neuroinflammation, Oxidative Stress, and Brain Mitochondrial and Synaptic Alterations. Neurochem Res 2021; 46:149-158. [PMID: 33237471 DOI: 10.1007/s11064-020-03164-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a common detrimental effect of cancer treatment, occurring in up to 75% of cancer patients. The widely utilized chemotherapeutic agent doxorubicin (DOX) has been implicated in cognitive decline, mostly via cytokine-induced neuroinflammatory and oxidative and mitochondrial damage to brain tissues. C-phycocyanin (CP) has previously been shown to have potent anti-inflammatory, antioxidant, and mitochondrial protective properties. Therefore, this present study was aimed to investigate the neuroprotective effects of CP against DOX-elicited cognitive impairment and explore the underlying mechanisms. CP treatment (50 mg/kg) significantly improved behavioral deficits in DOX-treated mice. Furthermore, CP suppressed DOX-induced neuroinflammation and oxidative stress, mitigated mitochondrial abnormalities, rescued dendritic spine loss, and increased synaptic density in the hippocampus of DOX-treated mice. Our results suggested that CP improves established DOX-induced cognitive deficits, which could be explained at least partly by inhibition of neuroinflammatory and oxidant stress and attenuation of mitochondrial and synaptic dysfunction.
Collapse
Affiliation(s)
- Chenying Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
- Department of Clinical Laboratory Science, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | | | - Lewei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shunji Pan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Henan Centre for Engineering and Technology Research On Prevention and Treatment of Liver Diseases, Luoyang, China.
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
13
|
Hu JN, Leng J, Shen Q, Liu Y, Li XD, Wang SH, Li HP, Wang Z, Wang YP, Li W. Platycodin D suppresses cisplatin-induced cytotoxicity by suppressing ROS-mediated oxidative damage, apoptosis, and inflammation in HEK-293 cells. J Biochem Mol Toxicol 2020; 35:e22624. [PMID: 32881195 DOI: 10.1002/jbt.22624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin-induced human embryonic kidney 293 (HEK-293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose-dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase-3,-9, and decreased protein levels of Bcl-2, Bcl-XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF-κB-mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shi-Han Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
14
|
Madhyastha H, Madhyastha R, Thakur A, Kentaro S, Dev A, Singh S, Chandrashekharappa R B, Kumar H, Acevedo O, Nakajima Y, Daima HK, Aradhya A, Nagaraj P N, Maruyama M. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism. Colloids Surf B Biointerfaces 2020; 194:111211. [PMID: 32615521 DOI: 10.1016/j.colsurfb.2020.111211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
Abstract
Green synthesis of metal-encased nutraceutical nano-hybrids has been a target for research over the last few years. In the present investigation, we have reported temperature dependent facile synthesis of silver nanoparticles using FDA approved c phycocyanin (cPC). The cPC conjugated silver nanoparticles (AgcPCNPs) were characterized by TEM, Zeta Potential, UV-vis, XPS, FTIR, and CD Spectroscopy. The temperature optimization studies suggested the synthesis of stable AgcPCNPs at 40 °C while at higher temperature system shows aggregated appearance. Molecular docking studies predicted the exclusive interaction of C, D, I, and J chains of cPC with the surface of AgNPs. Moreover, AgcPCNPs significantly (p < 0.1 %) counteract the toxic nature of AgNPs on red blood cell by measuring parameters like total RBC count, % hemolysis, % hematocrit, coagulation time, pH, electrolyte concentrations and degree of blood cell lipid peroxidation by the anti-oxidation mechanism. Skin fibroblast in vitro cell migration result suggeststhat AgcPCNPs enhanced the degree of cell movement towards the wound area. Data obtained collectively demonstrate that AgcPCNPs can be a better agent in the dermal wound healing with reduced toxicity with the bi-phasic advantage of cPC as a wound healer and Ag nano-metal as an anti-bacterial agent.
Collapse
Affiliation(s)
- Harishkumar Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan.
| | - Radha Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, United States
| | - Sakai Kentaro
- Center for Collaborative Research and Community Corporation, Division of Materials Research, University of Miyazaki, Miyazaki, 889 2192, Japan
| | - Abhimanyu Dev
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology Mesra, Ranchi, 835215, India
| | - Sneha Singh
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, 835215, India
| | - Bistivalli Chandrashekharappa R
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be) University, Paneer Campus, Mangaluru, 575018, Karnataka, India
| | - Hemanth Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be) University, Paneer Campus, Mangaluru, 575018, Karnataka, India
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, United States
| | - Yuichi Nakajima
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedcine (ACNN), Amity Institute of Biotechnology, Amity University, Rajasthan, Kant-Kalwar, Jaipur-Delhi Highway, Jaipur, 303002, India
| | - Akhela Aradhya
- Amity Center for Nanobiotechnology and Nanomedcine (ACNN), Amity Institute of Biotechnology, Amity University, Rajasthan, Kant-Kalwar, Jaipur-Delhi Highway, Jaipur, 303002, India
| | - Navya Nagaraj P
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - Masugi Maruyama
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| |
Collapse
|
15
|
X-ray structure of C-phycocyanin from Galdieria phlegrea: Determinants of thermostability and comparison with a C-phycocyanin in the entire phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148236. [PMID: 32479753 DOI: 10.1016/j.bbabio.2020.148236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Galdieria phlegrea is a polyextremophilic red alga belonging to Cyanidiophyceae. Galdieria phlegrea C-phycocyanin (GpPC), an abundant light-harvesting pigment with an important role in energy capture and transfer to photosystems, is the C-phycocyanin (C-PC) with the highest thermal stability described so far. GpPC also presents interesting antioxidant and anticancer activities. The X-ray structure of the protein was here solved. GpPC is a [(αβ)3]2 hexamer, with the phycocyanobilin chromophore attached to Cys84α, Cys82β and Cys153β. Details of geometry and interaction with solvent of the chromophores are reported. Comparison with the structure of a C-PC in the entire Porphyridium purpureum phycobilisome system reveals that linker polypeptides have a significant effect on the local structure of the chromophores environment. Comparative analyses with the structures of other purified C-PCs, which were carried out including re-refined models of G. sulphuraria C-PC, reveal that GpPC presents a significantly higher number of inter-trimer salt bridges. Notably, the higher number of salt bridges at the (αβ)3/(αβ)3 interface is not due to an increased number of charged residues in this region, but to subtle conformational variations of their side chains, which are the result of mutations of close polar and non-polar residues.
Collapse
|
16
|
Hu JN, Xu XY, Jiang S, Liu Y, Liu Z, Wang YP, Gong XJ, Li KK, Ren S, Li W. Protective effect of ginsenoside Rk1, a major rare saponin from black ginseng, on cisplatin-induced nephrotoxicity in HEK-293 cells. Kaohsiung J Med Sci 2020; 36:732-740. [PMID: 32374939 DOI: 10.1002/kjm2.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin, as one of the most effective chemotherapeutic agents, its clinical use is limited by serious side effect of nephrotoxicity. Cisplatin-induced nephrotoxicity is closely related to apoptosis induction and activation of caspase. The present study aimed to explore the potential protective effect of ginsenoside Rk1 (Rk1), a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity and the underlying mechanisms in human embryonic kidney 293 (HEK-293) cells. Our results showed that the reduced cell viability induced by cisplatin could significantly recover by Rk1. Furthermore, glutathione (GSH) as an oxidative index, was elevated and the lipid peroxidation product malondialdehyde (MDA) was significantly decreased after Rk1 treatment compared to the cisplatin group. Additionally, Rk1 can also decrease the ROS fluorescence expression and increase the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) compared to the cisplatin group, which suggested a suppression of oxidative response. More importantly, the cisplatin-induced elevated protein levels of Bax, cleaved caspase-3, cleaved caspase-9, and decreased protein level of Bcl-2 were reversed after treatment with Rk1. Our results elucidated the possible protective mechanism of Rk1 for the first time, which may involve in its anti-oxidation and anti-apoptosis effects.
Collapse
Affiliation(s)
- Jun-Nan Hu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xing-Yue Xu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuang Jiang
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhi Liu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Ke-Ke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Shen Ren
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
17
|
Qingfeng Xiao, Xiong Z, Xie X, Yu C, Shen Q, Zhou J, Fu Z. Increased Oxidative Damage Contributes to Mitochondrial Dysfunction in Muscle of Depressed Rats Induced by Chronic Mild Stress Probably Mediated by SIRT3 Pathway. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019660026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
C-phycocyanin from Limnothrix Species KNUA002 Alleviates Cisplatin-Induced Ototoxicity by Blocking the Mitochondrial Apoptotic Pathway in Auditory Cells. Mar Drugs 2019; 17:md17040235. [PMID: 31010222 PMCID: PMC6521143 DOI: 10.3390/md17040235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Ototoxicity, or adverse pharmacological effects on the inner ear or auditory nerve, is a common side effect of cisplatin, a platinum-based drug widely used in anticancer chemotherapy. Although the incidence of ototoxicity is high among patients that receive cisplatin therapy, there is currently no effective treatment for it. The generation of excessive reactive oxygen species (ROS) is considered to be the major cause of cisplatin-induced ototoxicity. C-phycocyanin (C-PC), a blue phycobiliprotein found in cyanobacteria and red algae, has antioxidant and anticancer activities in different experimental models in vitro and in vivo. Thus, we tested the ability of C-PC from Limnothrix sp. KNUA002 to protect auditory cells from cisplatin-induced ototoxicity in vitro. Pretreatment with C-PC from Limnothrix sp. KNUA002 inhibited apoptosis and protected mitochondrial function by preventing ROS accumulation in cisplatin-treated House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, a mouse auditory cell line. Cisplatin increased the expression of Bax and reduced the expression of Bcl-2, which activate and inhibit, respectively, the mitochondrial apoptotic pathway in response to oxidative stress. Pretreatment with C-PC prior to cisplatin treatment caused the Bax and Bcl-2 levels to stay close to the levels in untreated control cells. Our results suggest that C-PC from Limnothrix sp. KNUA002 protects cells against cisplatin-induced cytotoxicity by inhibiting the mitochondrial apoptotic pathway.
Collapse
|
19
|
Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res 2018; 135:1-11. [PMID: 30030169 DOI: 10.1016/j.phrs.2018.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, chronic kidney disease (CKD) is considered a worldwide public health problem. CKD is a term used to describe a set of pathologies that structurally and functionally affect the kidney, it is mostly characterized by the progressive loss of kidney function. Current therapeutic approaches are insufficient to avoid the development of this disease, which highlights the necessity of developing new strategies to reverse or at least delay CKD progression. Kidney is highly dependent on mitochondrial homeostasis and function, consequently, the idea that mitochondrial pathologies could play a pivotal role in the genesis and development of kidney diseases has risen. Although many research groups have recently published studies of mitochondrial function in acute kidney disease models, the existing information about CKD is still limited, especially in renal mass reduction (RMR) models. This paper focuses on reviewing current experimental information about the bioenergetics, dynamics (fission and fusion processes), turnover (mitophagy and biogenesis) and redox mitochondrial alterations in RMR, to discuss and integrate the mitochondrial changes triggered by nephron loss, as well as its relationship with loss of kidney function in CKD, in these models. Understanding these mechanisms would allow us to design new therapies that target these mitochondrial alterations.
Collapse
|
20
|
Li YZ, Ren S, Yan XT, Li HP, Li W, Zheng B, Wang Z, Liu YY. Improvement of Cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:228-237. [PMID: 29421595 DOI: 10.1016/j.jep.2018.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill is a frequently used traditional Chinese medicine, and modern pharmacological research has proven that S. chinensis has antioxidant, anti-hepatotoxity, anti-inflammatory, and anti-nephrotoxic effects. Cisplatin is widely used as antineoplastic drug at present, but the clinical application is limited owing to its nephrotoxicity. AIM OF THE STUDY To demonstrate the renoprotective activity of the extract of the stems of S. chinensis (SCE) in mice established by cisplatin-triggering acute kidney injury (AKI). The possible molecular mechanism of nephroprotection exhibited by SCE was evaluated for the first time. MATERIALS AND METHODS Mice in SCE groups were pre-treated with SCE for 10 consecutive days, and on 7th day 1 h after final administration, following intraperitoneal injection of cisplatin with 20 mg/kg was treated to cisplatin group and SCE groups. On the 10th day, renal function, histopathological change, and oxidative stress markers were investigated. RESULTS Renal oxidative stress level characterized by elevated heme oxygenase 1 (HO-1), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) expression was obviously reduced by SCE pre-treatment. In addition, SCE was found to suppress inflammatory response through the reduction of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) expression and nuclear factor-kappa B (NF-κB) p65 activation. SCE treatment also inhibited activation of apoptotic pathways through down-regulating Bax, cleaved caspase-3, 8, 9 and up-regulating Bcl-2 expression levels. CONCLUSION These findings illustrated that SCE possessed powerful protective effect on AKI caused by cisplatin via amelioration of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yan-Zi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Bing Zheng
- School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
21
|
Sulforaphane prevents maleic acid-induced nephropathy by modulating renal hemodynamics, mitochondrial bioenergetics and oxidative stress. Food Chem Toxicol 2018; 115:185-197. [PMID: 29548851 DOI: 10.1016/j.fct.2018.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Maleic acid (MA)-induced nephropathy that is characterized by proteinuria, glycosuria, phosphaturia and a deficient urinary acidification and concentration. Sulforaphane (SF) is an indirect antioxidant that shows nephroprotective effects. The aim of the present work was to test the pre-treatment with SF against the MA-induced nephropathy. Wistar rats (230-260 g) were separated in the following groups: control, MA (which received 400 mg/kg of MA), SF + MA (which received MA and 1 mg/kg of SF each day for four days) and SF (which only received SF). MA induced proteinuria, an increase in urinary excretion of N-acetyl-β-d-glucosaminidase, and a decrease in plasma glutathione peroxidase activity, renal blood flow, and oxygenation and perfusion of renal cortex. All these impairments correlated with higher levels of oxidative damage markers and exacerbated superoxide anion production on renal cortex. Moreover, MA impaired mitochondrial bioenergetics associated to complex I, mitochondrial membrane potential and respiratory control index and increased the mitochondrial production of hydrogen peroxide. Further it disrupted mitochondrial morphology. SF prevented all the above-described alterations. In conclusion, the protective effect of SF against MA-induced nephropathy is associated with preservation of mitochondrial bioenergetics, amelioration of oxidative stress and improvement of renal hemodynamics and renal cortex oxygenation.
Collapse
|
22
|
C-Phycocyanin supplementation during in vitro maturation enhances pre-implantation developmental competence of parthenogenetic and cloned embryos in pigs. Theriogenology 2018; 106:69-78. [DOI: 10.1016/j.theriogenology.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
23
|
C-Phycocyanin protects against mitochondrial dysfunction and oxidative stress in parthenogenetic porcine embryos. Sci Rep 2017; 7:16992. [PMID: 29208995 PMCID: PMC5717099 DOI: 10.1038/s41598-017-17287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of early porcine embryos as well as its underlying mechanisms. Different concentrations of CP (2, 5, 8, 10 μg/mL) were added to porcine zygote medium 5 during in vitro culture. The results showed that 5 μg/mL CP significantly increased blastocyst formation and hatching rate. Blastocyst formation and quality were significantly increased in the 50 μM H2O2 treatment group following 5 μg/mL CP addition. CP prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and reactive oxygen species generation. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared to in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.
Collapse
|
24
|
Chatterjee PK, Yeboah MM, Solanki MH, Kumar G, Xue X, Pavlov VA, Al-Abed Y, Metz CN. Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice. PLoS One 2017; 12:e0188797. [PMID: 29190774 PMCID: PMC5708817 DOI: 10.1371/journal.pone.0188797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is the most common side effect of cisplatin, a widely used chemotherapy drug. Although AKI occurs in up to one third of cancer patients receiving cisplatin, effective renal protective strategies are lacking. Cisplatin targets renal proximal tubular epithelial cells leading to inflammation, reactive oxygen species, tubular cell injury, and eventually cell death. The cholinergic anti-inflammatory pathway is a vagus nerve-mediated reflex that suppresses inflammation via α7 nicotinic acetylcholine receptors (α7nAChRs). Our previous studies demonstrated the renoprotective and anti-inflammatory effects of cholinergic agonists, including GTS-21. Therefore, we examined the effect of GTS-21 on cisplatin-induced AKI. Male C57BL/6 mice received either saline or GTS-21 (4mg/kg, i.p.) twice daily for 4 days before cisplatin and treatment continued through euthanasia; 3 days post-cisplatin mice were euthanized and analyzed for markers of renal injury. GTS-21 significantly reduced cisplatin-induced renal dysfunction and injury (p<0.05). GTS-21 significantly attenuated renal Ptgs2/COX-2 mRNA and IL-6, IL-1β, and CXCL1 protein expression, as well as neutrophil infiltration after cisplatin. GTS-21 blunted cisplatin-induced renal ERK1/2 activation, as well as renal ATP depletion and apoptosis (p<0.05). GTS-21 suppressed the expression of CTR1, a cisplatin influx transporter and enhanced the expression of cisplatin efflux transporters MRP2, MRP4, and MRP6 (p<0.05). Using breast, colon, and lung cancer cell lines we showed that GTS-21 did not inhibit cisplatin’s tumor cell killing activity. GTS-21 protects against cisplatin-AKI by attenuating renal inflammation, ATP depletion and apoptosis, as well as by decreasing renal cisplatin influx and increasing efflux, without impairing cisplatin-mediated tumor cell killing. Our results support further exploring the cholinergic anti-inflammatory pathway for preventing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Prodyot K Chatterjee
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Michael M Yeboah
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America
| | - Xiangying Xue
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Valentin A Pavlov
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Yousef Al-Abed
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America.,Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Christine N Metz
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
25
|
Ateyya H, Hassan ZA, El-Sherbeeny NA. The selective tyrosine kinase-inhibitor nilotinib alleviates experimentally induced cisplatin nephrotoxicity and heptotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:60-67. [PMID: 28826126 DOI: 10.1016/j.etap.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
This work tested the action of nilotinib, selective inhibitor of tyrosine kinase on cisplatin (CP)-induced damage of kidney and liver in rats. Rats were assigned to 4 groups, control, nilotinib, CP, and CP plus nilotinib. Assessment of kidney and liver function, lipid peroxidation and antioxidant markers, anti-apoptotic protein Bcl2, nuclear factor- kappa B (NF-κB) immunoreactivity, and caspase 3 activity were done. CP-induced damage evidenced by histopathological changes, deterioration of renal and liver function, imbalance in oxidants/antioxidants markers, decreased Bcl2, increased caspase 3 activity, and NF-κB nuclear expression in both organs. Nilotinib treatment with CP restored kidney and liver oxidants/antioxidant levels also increased Bcl2 and decreased NF-κB immunoreactivity were evident with nilotinib treatment. In conclusions these results demonstrated a protective effect of nilotinib in experimentally induced CP kidney and liver damage that could be mediated through combating oxidative stress, reducing inflammation and anti-apoptosis in the two organs.
Collapse
Affiliation(s)
- Hayam Ateyya
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Zeinab A Hassan
- Faculty of Medicine, Taibah University, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| | - Nagla A El-Sherbeeny
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt.
| |
Collapse
|
26
|
Ortega-Domínguez B, Aparicio-Trejo OE, García-Arroyo FE, León-Contreras JC, Tapia E, Molina-Jijón E, Hernández-Pando R, Sánchez-Lozada LG, Barrera-Oviedo D, Pedraza-Chaverri J. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem Toxicol 2017; 107:373-385. [DOI: 10.1016/j.fct.2017.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
27
|
Nephroprotective Effects of Saponins from Leaves of Panax quinquefolius against Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2017; 18:ijms18071407. [PMID: 28703736 PMCID: PMC5535899 DOI: 10.3390/ijms18071407] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
Although cisplatin is an anticancer drug that has activity against malignant tumor, it often causes nephrotoxicity. Previous reports have confirmed that the saponins from the leaves of P. quinquefolium (PQS) exerted many pharmacological activities. However, the renoprotective effects of PQS were still unknown. The purpose of the present research was to discuss renoprotective effect of PQS in a mouse model of cisplatin-induced acute kidney injury (AKI). The levels of blood urea nitrogen (BUN) and serum creatinine (CRE) were evidently increased in cisplatin-intoxicated mice, which were reversed by PQS. Renal oxidative stress, evidenced by increased malondialdehyde (MDA) level and decline of glutathione (GSH) and superoxide dismutase (SOD) activities, was significantly alleviated by PQS pretreatment. The suppression of inflammatory response by PQS was realized through the decrease the mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in kidney tissues, which were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Simultaneously, the overexpression of cytochrome P450 E1 (CYP2E1) and heme oxygenase-1 (HO-1) were attenuated by PQS. Furthermore, the effects of Western blotting demonstrated that PQS administration significantly suppressed the protein expression levels of nicotinamide adenine dinucleotide phosphate oxidase type 4 (Nox4), cleaved Caspase-3, cleaved Caspase-9, Bax, nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), suggesting the inhibition of apoptosis and inflammation response. Overall, PQS may possess protective effects in cisplatin-induced AKI through suppression of oxidative stress, inflammation and apoptosis.
Collapse
|
28
|
Hartman JH, Miller GP, Meyer JN. Toxicological Implications of Mitochondrial Localization of CYP2E1. Toxicol Res (Camb) 2017; 6:273-289. [PMID: 28989700 DOI: 10.1039/c7tx00020k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) metabolizes an extensive array of pollutants, drugs, and other small molecules, often resulting in bioactivation to reactive metabolites. Therefore, it is unsurprising that it has been the subject of decades of research publications and reviews. However, while CYP2E1 has historically been studied in the endoplasmic reticulum (erCYP2E1), active CYP2E1 is also present in mitochondria (mtCYP2E1). Relatively few studies have specifically focused on mtCYP2E1, but there is growing interest in this form of the enzyme as a driver in toxicological mechanisms given its activity and location. Many previous studies have linked total CYP2E1 to conditions that involve mitochondrial dysfunction (fasting, diabetes, non-alcoholic steatohepatitis, and obesity). Furthermore, a large number of reactive metabolites that are formed by CYP2E1 through metabolism of drugs and pollutants have been demonstrated to cause mitochondrial dysfunction. Finally, there appears to be significant inter-individual variability in targeting to the mitochondria, which could constitute a source of variability in individual response to exposures. This review discusses those outcomes, the biochemical properties and toxicological consequences of mtCYP2E1, and highlights important knowledge gaps and future directions. Overall, we feel that this exciting area of research is rich with new and important questions about the relationship between mtCYP2E1, mitochondrial dysfunction, and pathology.
Collapse
Affiliation(s)
| | - Grover P Miller
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC
| |
Collapse
|
29
|
Aparicio-Trejo OE, Tapia E, Molina-Jijón E, Medina-Campos ON, Macías-Ruvalcaba NA, León-Contreras JC, Hernández-Pando R, García-Arroyo FE, Cristóbal M, Sánchez-Lozada LG, Pedraza-Chaverri J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors 2017; 43:293-310. [PMID: 27801955 DOI: 10.1002/biof.1338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Eduardo Molina-Jijón
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Ciudad de México, 07340, México
| | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Norma Angélica Macías-Ruvalcaba
- Department of Physical Chemistry, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Fernando E García-Arroyo
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Magdalena Cristóbal
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| |
Collapse
|
30
|
Molina-Jijón E, Aparicio-Trejo OE, Rodríguez-Muñoz R, León-Contreras JC, Del Carmen Cárdenas-Aguayo M, Medina-Campos ON, Tapia E, Sánchez-Lozada LG, Hernández-Pando R, Reyes JL, Arreola-Mendoza L, Pedraza-Chaverri J. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. Biofactors 2016; 42:686-702. [PMID: 27412471 DOI: 10.1002/biof.1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •- ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Biociences and Engineering, CIIEMAD-IPN, Mexico City, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | | | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - José L Reyes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
31
|
Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis. Nutrients 2016; 8:nu8090566. [PMID: 27649238 PMCID: PMC5037551 DOI: 10.3390/nu8090566] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is an effective anti-cancer agent that is widely used for treating various types of malignant solid tumors, the nephrotoxicity induced by cisplatin severely limits its clinical application. The present study was designed to explore the potential protective effect of ginsenoside Rg5, a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity in a mouse experimental model. The possible mechanisms underlying this nephroprotective effect were also investigated for the first time. Rg5 was given at doses of 10 and 20 mg/kg for 10 consecutive days. On Day 7, a single nephrotoxic dose of cisplatin (25 mg/kg) was injected to mice. Cisplatin administration resulted in renal dysfunction as evidenced by increase in serum creatinine (CRE) and blood urea nitrogen (BUN) levels. In addition, cisplatin increased the level of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), the makers of lipid peroxidation, and depleted glutathione (GSH) content and superoxide dismutase (SOD) activity in renal tissues. These effects were associated with the significantly increased levels of cytochrome P450 E1 (CYP2E1), 4-hydroxynonenal (4-HNE), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nuclear factor-kappa B (NF-κB) p65, and cyclooxygenase-2 (COX-2) in renal tissues. However, pretreatment with ginsenoside Rg5 significantly attenuated the renal dysfunction, oxidative stress and inflammation response induced by cisplatin. Furthermore, ginsenoside Rg5 supplementation inhibited activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax expression levels. Histopathological examination further confirmed the nephroprotective effect of Rg5. Collectively, these results clearly suggest that Rg5-mediated alleviation of cisplatin-induced nephrotoxicity may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.
Collapse
|
32
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y, Li Z. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells. Aging Dis 2016; 7:254-66. [PMID: 27330840 PMCID: PMC4898922 DOI: 10.14336/ad.2016.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.
Collapse
Affiliation(s)
- Liwei Ma
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Hongjun Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China; 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| | - Chunyan Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Jing Su
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Qi Xie
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Lu Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yang Yu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Shibing Liu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Songyan Li
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Ye Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Zhixin Li
- 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| |
Collapse
|