1
|
Harrill JA, Everett LJ, Haggard DE, Word LJ, Bundy JL, Chambers B, Harris F, Willis C, Thomas RS, Shah I, Judson R. Signature analysis of high-throughput transcriptomics screening data for mechanistic inference and chemical grouping. Toxicol Sci 2024; 202:103-122. [PMID: 39177380 DOI: 10.1093/toxsci/kfae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
High-throughput transcriptomics (HTTr) uses gene expression profiling to characterize the biological activity of chemicals in in vitro cell-based test systems. As an extension of a previous study testing 44 chemicals, HTTr was used to screen an additional 1,751 unique chemicals from the EPA's ToxCast collection in MCF7 cells using 8 concentrations and an exposure duration of 6 h. We hypothesized that concentration-response modeling of signature scores could be used to identify putative molecular targets and cluster chemicals with similar bioactivity. Clustering and enrichment analyses were conducted based on signature catalog annotations and ToxPrint chemotypes to facilitate molecular target prediction and grouping of chemicals with similar bioactivity profiles. Enrichment analysis based on signature catalog annotation identified known mechanisms of action (MeOAs) associated with well-studied chemicals and generated putative MeOAs for other active chemicals. Chemicals with predicted MeOAs included those targeting estrogen receptor (ER), glucocorticoid receptor (GR), retinoic acid receptor (RAR), the NRF2/KEAP/ARE pathway, AP-1 activation, and others. Using reference chemicals for ER modulation, the study demonstrated that HTTr in MCF7 cells was able to stratify chemicals in terms of agonist potency, distinguish ER agonists from antagonists, and cluster chemicals with similar activities as predicted by the ToxCast ER Pathway model. Uniform manifold approximation and projection (UMAP) embedding of signature-level results identified novel ER modulators with no ToxCast ER Pathway model predictions. Finally, UMAP combined with ToxPrint chemotype enrichment was used to explore the biological activity of structurally related chemicals. The study demonstrates that HTTr can be used to inform chemical risk assessment by determining in vitro points of departure, predicting chemicals' MeOA and grouping chemicals with similar bioactivity profiles.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Logan J Everett
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Derik E Haggard
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Laura J Word
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Joseph L Bundy
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Bryant Chambers
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Felix Harris
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
- Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States
| | - Clinton Willis
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Russell S Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Imran Shah
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Richard Judson
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| |
Collapse
|
2
|
Aarts MT, Wagner M, van der Wal T, van Boxtel AL, van Amerongen R. A molecular toolbox to study progesterone receptor signaling. J Mammary Gland Biol Neoplasia 2023; 28:24. [PMID: 38019315 PMCID: PMC10687192 DOI: 10.1007/s10911-023-09550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023] Open
Abstract
Progesterone receptor (PR) signaling is required for mammary gland development and homeostasis. A major bottleneck in studying PR signaling is the lack of sensitive assays to measure and visualize PR pathway activity both quantitatively and spatially. Here, we develop new tools to study PR signaling in human breast epithelial cells. First, we generate optimized Progesterone Responsive Element (PRE)-luciferase constructs and demonstrate that these new reporters are a powerful tool to quantify PR signaling activity across a wide range of progesterone concentrations in two luminal breast cancer cell lines, MCF7 and T47D. We also describe a fluorescent lentiviral PRE-GFP reporter as a novel tool to visualize PR signaling at the single-cell level. Our reporter constructs are sensitive to physiological levels of progesterone. Second, we show that low background signaling, and high levels of PR expression are a prerequisite for robustly measuring PR signaling. Increasing PR expression by transient transfection, stable overexpression in MCF7 or clonal selection in T47D, drastically improves both the dynamic range of luciferase reporter assays, and the induction of endogenous PR target genes as measured by qRT-PCR. We find that the PR signaling response differs per cell line, target gene and hormone concentration used. Taken together, our tools allow a more rationally designed approach for measuring PR signaling in breast epithelial cells.
Collapse
Affiliation(s)
- Marleen T Aarts
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Muriel Wagner
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Christakoudi S, Tsilidis KK, Dossus L, Rinaldi S, Weiderpass E, Antoniussen CS, Dahm CC, Tjønneland A, Mellemkjær L, Katzke V, Kaaks R, Schulze MB, Masala G, Grioni S, Panico S, Tumino R, Sacerdote C, May AM, Monninkhof EM, Quirós JR, Bonet C, Sánchez MJ, Amiano P, Chirlaque MD, Guevara M, Rosendahl AH, Stocks T, Perez-Cornago A, Tin Tin S, Heath AK, Aglago EK, Peruchet-Noray L, Freisling H, Riboli E. A body shape index (ABSI) is associated inversely with post-menopausal progesterone-receptor-negative breast cancer risk in a large European cohort. BMC Cancer 2023; 23:562. [PMID: 37337133 PMCID: PMC10278318 DOI: 10.1186/s12885-023-11056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Associations of body shape with breast cancer risk, independent of body size, are unclear because waist and hip circumferences are correlated strongly positively with body mass index (BMI). METHODS We evaluated body shape with the allometric "a body shape index" (ABSI) and hip index (HI), which compare waist and hip circumferences, correspondingly, among individuals with the same weight and height. We examined associations of ABSI, HI, and BMI (per one standard deviation increment) with breast cancer overall, and according to menopausal status at baseline, age at diagnosis, and oestrogen and progesterone receptor status (ER+/-PR+/-) in multivariable Cox proportional hazards models using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. RESULTS During a mean follow-up of 14.0 years, 9011 incident breast cancers were diagnosed among 218,276 women. Although there was little evidence for association of ABSI with breast cancer overall (hazard ratio HR = 0.984; 95% confidence interval: 0.961-1.007), we found borderline inverse associations for post-menopausal women (HR = 0.971; 0.942-1.000; n = 5268 cases) and breast cancers diagnosed at age ≥ 55 years (HR = 0.976; 0.951-1.002; n = 7043) and clear inverse associations for ER + PR- subtypes (HR = 0.894; 0.822-0.971; n = 726) and ER-PR- subtypes (HR = 0.906; 0.835-0.983 n = 759). There were no material associations with HI. BMI was associated strongly positively with breast cancer overall (HR = 1.074; 1.049-1.098), for post-menopausal women (HR = 1.117; 1.085-1.150), for cancers diagnosed at age ≥ 55 years (HR = 1.104; 1.076-1.132), and for ER + PR + subtypes (HR = 1.122; 1.080-1.165; n = 3101), but not for PR- subtypes. CONCLUSIONS In the EPIC cohort, abdominal obesity evaluated with ABSI was not associated with breast cancer risk overall but was associated inversely with the risk of post-menopausal PR- breast cancer. Our findings require validation in other cohorts and with a larger number of PR- breast cancer cases.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Laure Dossus
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Christian S Antoniussen
- Department of Public Health, Aarhus University, Bartholins Allé 2, Aarhus C, DK-8000, Denmark
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Bartholins Allé 2, Aarhus C, DK-8000, Denmark
| | - Anne Tjønneland
- Diet, Cancer and Health, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lene Mellemkjær
- Diet, Cancer and Health, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, 14558, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, Milano, 20133, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association Epidemiological Research AIRE - ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, Turin, 10126, Italy
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, Utrecht, 3508 GA, Netherlands
| | - Evelyn M Monninkhof
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, Utrecht, 3508 GA, Netherlands
| | | | - Catalina Bonet
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, 18011, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, 18071, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Tanja Stocks
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Laia Peruchet-Noray
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Heinz Freisling
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
4
|
Ratnasari J, Tan MI, Esyanti RR, Juliawaty LD. Cryptobrachytone C from Cryptocarya pulchrinervia (Kosterm) Leaves on Proliferation, Apoptosis, Migration and Clonogenicity of MCF-7 and T47D Cell Lines. Trop Life Sci Res 2023; 34:223-241. [PMID: 38144382 PMCID: PMC10735263 DOI: 10.21315/tlsr2023.34.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/17/2022] [Indexed: 12/26/2023] Open
Abstract
Cryptocarya pulchrinervia is an Indonesian indigenous plant that grows in Sumatra, Kalimantan and Papua. One of the new compounds extracted from this plant was cryptobrachytone C, which was known to be cytotoxic against cancer cells of Murine leukemia P388 with IC50 10.52 μM. In this study, the cytotoxicity and anticancer properties of cryptobrachytone C on proliferation, apoptosis, migration and clone formation of MCF-7 and T47D breast cancer cell lines were examined, which had not previously been done before. The cytotoxicity of the compound was measured using an MTT (3- (4,5-dimethylthiazol-2- yl) -2,5-di-phenyl-tetrazolium bromide) assay. The cell proliferation was measured using a BrdU assay, and the cell apoptosis was measured using annexin-V FITC, while the cell migration was measured using a transwell filter. The cytotoxic test result demonstrated that cryptobrachytone C was cytotoxic against MCF-7 cells with IC50 12.94 ± 0.32 μM but not against T47D cells with IC50 65.33 ± 2.33 μM nor against normal MRC-5 cells with IC50 122.57 ± 19.84 μM. The cell proliferation assay showed that cryptobrachytone C at IC50 concentration had antiproliferative properties against MCF-7 cancer cell lines (p < 0.05) but did not significantly reduce T47D cell proliferation (p < 0.07). Although the results of the cell apoptosis test showed that cryptobrachytone C could induce the apoptosis of the MCF-7 and T47D cells, it was insignificant (p > 0.05). The cell migration test showed that cryptobrachytone at IC50 concentrations could inhibit the migration of the MCF-7 and T47D cells. The clonogenic test showed that cryptobrachytone C at IC50 concentration can induce the inhibition of the formation of MCF-7 and T47D cell colonies. The cryptobrachytone C anti-cancer character was more signi icant on the MCF-7 cell line compared to the T47D. This study showed that cryptobrachytone C was cytotoxic and had potential as an anti-cancer compound against MCF-7 and T47D breast cancer cell lines.
Collapse
Affiliation(s)
- Jujun Ratnasari
- Biology Education Department, Universitas Muhammadiyah Sukabumi, Jl. R. Syamsudin SH No 50, Sukabumi 43113, Indonesia
| | - Marselina Irasonia Tan
- Animal Physiology and Developmental Biology and Biomedical Sciences, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganeca No 10 Bandung 40116, Indonesia
| | - Rizkita Rachmi Esyanti
- Plant Sciences and Biotechnology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganeca No 10 Bandung 40116, Indonesia
| | - Lia Dewi Juliawaty
- Organic Chemistry, Chemistry Study Program, Institut Teknologi Bandung, Jl. Ganeca No 10, Bandung 40116, Indonesia
| |
Collapse
|
5
|
Synthesis, characterization, in vitro biological evaluation and molecular docking studies of newly synthesized mononuclear lanthanum(III) complexes of N,N'-bis(2-aminoethyl)oxamide and phenanthroline bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Kuttithodi AM, Nikhitha D, Jacob J, Narayanankutty A, Mathews M, Olatunji OJ, Rajagopal R, Alfarhan A, Barcelo D. Antioxidant, Antimicrobial, Cytotoxicity, and Larvicidal Activities of Selected Synthetic Bis-Chalcones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238209. [PMID: 36500302 PMCID: PMC9740027 DOI: 10.3390/molecules27238209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.
Collapse
Affiliation(s)
- Aswathi Moothakoottil Kuttithodi
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Divakaran Nikhitha
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
- Correspondence: (A.N.); (O.J.O.)
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Correspondence: (A.N.); (O.J.O.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
7
|
Pecci A, Ogara MF, Sanz RT, Vicent GP. Choosing the right partner in hormone-dependent gene regulation: Glucocorticoid and progesterone receptors crosstalk in breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1037177. [PMID: 36407312 PMCID: PMC9672667 DOI: 10.3389/fendo.2022.1037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors (SHRs) belong to a large family of ligand-activated nuclear receptors that share certain characteristics and possess others that make them unique. It was thought for many years that the specificity of hormone response lay in the ligand. Although this may be true for pure agonists, the natural ligands as progesterone, corticosterone and cortisol present a broader effect by simultaneous activation of several SHRs. Moreover, SHRs share structural and functional characteristics that range from similarities between ligand-binding pockets to recognition of specific DNA sequences. These properties are clearly evident in progesterone (PR) and glucocorticoid receptors (GR); however, the biological responses triggered by each receptor in the presence of its ligand are different, and in some cases, even opposite. Thus, what confers the specificity of response to a given receptor is a long-standing topic of discussion that has not yet been unveiled. The levels of expression of each receptor, the differential interaction with coregulators, the chromatin accessibility as well as the DNA sequence of the target regions in the genome, are reliable sources of variability in hormone action that could explain the results obtained so far. Yet, to add further complexity to this scenario, it has been described that receptors can form heterocomplexes which can either compromise or potentiate the respective hormone-activated pathways with its possible impact on the pathological condition. In the present review, we summarized the state of the art of the functional cross-talk between PR and GR in breast cancer cells and we also discussed new paradigms of specificity in hormone action.
Collapse
Affiliation(s)
- Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| | - María Florencia Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Rosario T. Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| |
Collapse
|
8
|
Dhaibar HA, Cruz-Topete D. Predisposition of Women to Cardiovascular Diseases: A Side-Effect of Increased Glucocorticoid Signaling During the COVID-19 Pandemic? Front Glob Womens Health 2021; 2:606833. [PMID: 34816180 PMCID: PMC8593983 DOI: 10.3389/fgwh.2021.606833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 01/22/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has created a significant health crisis worldwide. To mitigate this disease's spread, "social distancing" and "shelter in place" have been implemented. While these actions have been critical to controlling the pandemic, they have short- and long-term mental health consequences due to increased stress. There is a strong association between mental stress and cardiovascular disease (CVD). Young women (pre-menopausal) are at high risk of developing CV events in response to mental stress compared to age-matched men. The mechanisms underlying women's increased reactivity and response to stress are mostly unknown. The present review summarizes the known physiological consequences of mental stress in women's CV health and the latest molecular findings of the actions of the primary stress hormones, glucocorticoids, on the CV system. The current data suggest a clear link between psychological stress and heart disease, and women have an increased sensitivity to the harmful effects of stress hormone signaling imbalances. Therefore, it is expected that with the given unprecedented levels of stress associated with the COVID-19 pandemic, women's CV health will be significantly compromised. It is critical to widen our understanding of the direct contribution of mental stress to CVD risk in women and to identify biochemical markers with predictive value for CVD in female patients with/without cardiovascular conditions who have experienced significant mental stress during the current pandemic.
Collapse
Affiliation(s)
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
9
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
10
|
Koureta M, Karaglani M, Panagopoulou M, Balgkouranidou I, Papadaki-Anastasopoulou A, Zarouchlioti C, Dekavallas S, Kolios G, Lambropoulou M, Baritaki S, Chatzaki E. Corticotropin Releasing Factor Receptors in breast cancer: Expression and activity in hormone-dependent growth in vitro. Peptides 2020; 129:170316. [PMID: 32333998 DOI: 10.1016/j.peptides.2020.170316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023]
Abstract
Corticotropin Releasing Factor (CRF) neuropeptides coordinate the stress response via two distinct membrane receptors (CRF-Rs). We have previously shown expression of both CRF-Rs in human breast cancer tissues. In the present study, we examined in vitro using the MCF-7 cell line model, the regulation of CRF-Rs expression and their signaling in hormone-dependent breast cancer growth. Our findings show that similarly to breast cancer biopsies, the predominant receptor type expressed in the cell line is CRF-R2α. The transcription of CRF-R1 and CRF-R2 is up and down-regulated respectively by exposure to estradiol (E2); however this effect seems not to be exerted at the level of promoter gene methylation, although in human breast cancer specimens, CRF-R1 methylation was found to be positively associated with the presence of steroid hormone receptors. Finally, we showed that specific activation of CRF-R2 increased the migration of MCF-7 cells and potentiated an estrogen-inducing effect. Our data support an involvement of CRF-R signaling in breast cancer pathophysiology via a regulatory steroid-hormone interplay.
Collapse
Affiliation(s)
- Maria Koureta
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Ioanna Balgkouranidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | | | - Christina Zarouchlioti
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Spyridon Dekavallas
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Maria Lambropoulou
- Department of Histology-Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| |
Collapse
|
11
|
Ogara MF, Rodríguez-Seguí SA, Marini M, Nacht AS, Stortz M, Levi V, Presman DM, Vicent GP, Pecci A. The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells. Nucleic Acids Res 2020; 47:10645-10661. [PMID: 31598691 PMCID: PMC6846950 DOI: 10.1093/nar/gkz857] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
The glucocorticoid and progesterone receptors (GR and PR) are closely related members of the steroid receptor family. Despite sharing similar structural and functional characteristics; the cognate hormones display very distinct physiological responses. In mammary epithelial cells, PR activation is associated with the incidence and progression of breast cancer, whereas the GR is related to growth suppression and differentiation. Despite their pharmacological relevance, only a few studies have compared GR and PR activities in the same system. Using a PR+/GR+ breast cancer cell line, here we report that either glucocorticoid-free or dexamethasone (DEX)-activated GR inhibits progestin-dependent gene expression associated to epithelial-mesenchymal-transition and cell proliferation. When both receptors are activated with their cognate hormones, PR and GR can form part of the same complex according to co-immunoprecipitation, quantitative microscopy and sequential ChIP experiments. Moreover, genome-wide studies in cells treated with either DEX or R5020, revealed the presence of several regions co-bound by both receptors. Surprisingly, GR also binds novel genomic sites in cells treated with R5020 alone. This progestin-induced GR binding was enriched in REL DNA motifs and located close to genes coding for chromatin remodelers. Understanding GR behavior in the context of progestin-dependent breast cancer could provide new targets for tumor therapy.
Collapse
Affiliation(s)
- Maria F Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Santiago A Rodríguez-Seguí
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Melisa Marini
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ana Silvina Nacht
- Centro de Regulación Genómica, Barcelona 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Martin Stortz
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Guillermo P Vicent
- Centro de Regulación Genómica, Barcelona 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Department of Molecular Genomics, Institute of Molecular Biology of Barcelona, IBMB-CSIC. Baldiri Reixac 4, Barcelona 08028, Spain
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
12
|
Amazu C, Ma X, Henkes C, Ferreira JJ, Santi CM, England SK. Progesterone and estrogen regulate NALCN expression in human myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 2020; 318:E441-E452. [PMID: 31935111 PMCID: PMC7191408 DOI: 10.1152/ajpendo.00320.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During pregnancy, the uterus transitions from a quiescent state to an excitable, highly contractile state to deliver the fetus. Two important contributors essential for this transition are hormones and ion channels, both of which modulate myometrial smooth muscle cell (MSMC) excitability. Recently, the sodium (Na+) leak channel, nonselective (NALCN), was shown to contribute to a Na+ leak current in human MSMCs, and mice lacking NALCN in the uterus had dysfunctional labor. Microarray data suggested that the proquiescent hormone progesterone (P4) and the procontractile hormone estrogen (E2) regulated this channel. Here, we sought to determine whether P4 and E2 directly regulate NALCN. In human MSMCs, we found that NALCN mRNA expression decreased by 2.3-fold in the presence of E2 and increased by 5.6-fold in the presence of P4. Similarly, E2 treatment decreased, and P4 treatment restored NALCN protein expression. Additionally, E2 significantly inhibited, and P4 significantly enhanced an NALCN-dependent leak current in MSMCs. Finally, we identified estrogen response and progesterone response elements (EREs and PREs) in the NALCN promoter. With the use of luciferase assays, we showed that the PREs, but not the ERE, contributed to regulation of NALCN expression. Our findings reveal a new mechanism by which NALCN is regulated in the myometrium and suggest a novel role for NALCN in pregnancy.
Collapse
Affiliation(s)
- Chinwendu Amazu
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Xiaofeng Ma
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Clara Henkes
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Juan J Ferreira
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Celia M Santi
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Sarah K England
- Department of Obstetrics Gynecology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Li T, Zhang W, Lin SX. Steroid enzyme and receptor expression and regulations in breast tumor samples - A statistical evaluation of public data. J Steroid Biochem Mol Biol 2020; 196:105494. [PMID: 31610224 DOI: 10.1016/j.jsbmb.2019.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively. The results showed significant up-regulation of 17β-HSD7 (2.50-fold, p < 0.0001) in BC, supporting its effect in sex-hormone control. Besides, suppression of 11β-HSD1 expression (-8.29-fold, p < 0.0001) and elevation of 11β-HSD2 expression (2.04-fold, p < 0.0001) provide a low glucocorticoid environment diminishing BC anti-proliferation. Furthermore, 3α-HSDs were down-regulated (-1.59-fold, p < 0.01; -8.18-fold, p < 0.0001; -33.96-fold, p < 0.0001; -31.85-fold, p < 0.0001 for type 1-4, respectively), while 5α-reductases were up-regulated (1.41-fold, p < 0.0001; 2.85-fold, p < 0.0001; 1.70-fold, p < 0.0001 for type 1-3, respectively) in BC, reducing cell proliferation suppressers 4-pregnenes, increasing cell proliferation stimulators 5α-pregnanes. Expression analysis indicates significant correlations between 11β-HSD1 with 3α-HSD4 (r = 0.605, p < 0.0001) and 3α-HSD3 (r = 0.537, p < 0.0001). Significant expression correlations between 3α-HSDs were also observed. Our results systematically present the regulation of steroid-converting enzymes and their roles in modulating the intratumoral steroid-hormone levels in BC with a vivid 3D-schema, supporting novel therapy targeting the reductive 17β-HSD7 and proposing a new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Collapse
MESH Headings
- 17-Hydroxysteroid Dehydrogenases/genetics
- 17-Hydroxysteroid Dehydrogenases/metabolism
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cohort Studies
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Factual/statistics & numerical data
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadal Steroid Hormones/genetics
- Gonadal Steroid Hormones/metabolism
- Humans
- Public Sector/statistics & numerical data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
14
|
Lu X, Guan A, Chen X, Xiao J, Xie M, Yang B, He S, You S, Li W, Chen Q. mPRα mediates P4/Org OD02-0 to improve the sensitivity of lung adenocarcinoma to EGFR-TKIs via the EGFR-SRC-ERK1/2 pathway. Mol Carcinog 2019; 59:179-192. [PMID: 31777985 DOI: 10.1002/mc.23139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations has made EGFR tyrosine kinase inhibitors (EGFR-TKIs) a milestone in the treatment for advanced non-small cell lung cancer (NSCLC). However, patients lacking EGFR mutations are not sensitive to EGFR-TKI treatment and the emergence of secondary resistance poses new challenges for the targeted therapy of lung cancer. In this study, we identified that the expression of membrane progesterone receptor α (mPRα) was associated with EGFR mutations in lung adenocarcinoma patients and subsequently affected the efficacy of EGFR-TKIs. Progesterone (P4) or its derivative Org OD02-0 (Org), which is mediated by mPRα, increases the function of EGFR-TKIs to suppress the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. In addition, the mPRα pathway triggers delayed resistance to EGFR-TKIs. Mechanistic investigations demonstrated that the mPRα pathway can crosstalk with the EGFR pathway by activating nongenomic effects to inhibit the EGFR-SRC-ERK1/2 pathway, thereby promoting antitumorigenic effects. In conclusion, our data describe an essential role for mPRα in improving sensitivity to EGFR-TKIs, thus rationalizing its potential as a therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingxuan Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baishuang Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Shaojin You
- Laboratory of Cancer Experimental Therapy, Histopathology Core, Atlanta Research & Educational Foundation (151F), Atlanta VA Medical Center, Emory University, Decatur, Georgia
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Elshami M, Abu Kmeil H, Abu-Jazar M, Mahfouz I, Ashour D, Aljamal A, Mohareb N, Elbalaawi R, Dabbour R, Ghaith J, Hasan T, Abdelati M, Saleh E, Shawwa H, Al-Ghazali R, Obaid O, Albarqouni L, Böttcher B. Breast Cancer Awareness and Barriers to Early Presentation in the Gaza-Strip: A Cross-Sectional Study. J Glob Oncol 2019; 4:1-13. [PMID: 30372400 PMCID: PMC7010447 DOI: 10.1200/jgo.18.00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Timely detection of breast cancer (BC) is important to reduce its related deaths. Hence, high awareness of its symptoms and risk factors is required. This study aimed to assess the awareness level of BC among females in Gaza. MATERIALS AND METHODS A cross-sectional study was performed during September and October 2017 in Gaza, Palestine. Stratified sampling was used to recruit patients from four hospitals and seven high schools. The validated Breast Cancer Awareness Measure (BCAM) was used to assess confidence and behavior in relation to breast changes, awareness of BC symptoms and risk factors, barriers to seek medical help, and knowledge of BC screening. Women (age ≥ 18 years) visiting or admitted to any of the four hospitals, and female adolescents (age 15 to 17 years) in any of the seven schools, were recruited for face-to-face interviews to complete the BCAM. RESULTS Of 3,055 women approached, 2,774 participants completed the BCAM questionnaire (response rate, 90.8%); 1,588 (57.2%) were adults, and 1,186 (42.8%) were adolescents. Of these, 1,781 (64.2%) rarely (or never) checked their breasts, and 909 (32.8%) were not confident to notice changes. In total, 1,675 (60.4%) were aware of the availability of BC screening programs. The overall mean ± standard deviation score for awareness of BC symptoms was 5.9 ± 2.9 of 11, and that of risk factors 7.5 ± 3.1 of 16. Feeling scared was the most reported barrier to seeking advice reported among women (n = 802; 50.2%), whereas feeling embarrassed was the most reported in adolescents (n = 745; 62.8%). CONCLUSION Awareness of BC symptoms, risk factors, and screening programs is suboptimal in Gaza. Educational interventions are necessary to increase public awareness of BC and to train local female breast surgeons to address barriers to early detection.
Collapse
Affiliation(s)
- Mohamedraed Elshami
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Hanan Abu Kmeil
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Maymona Abu-Jazar
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Ibtisam Mahfouz
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Dina Ashour
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Ansam Aljamal
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Nada Mohareb
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Reem Elbalaawi
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Reem Dabbour
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Jomana Ghaith
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Tayseer Hasan
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Meral Abdelati
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Esraa Saleh
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Haifa Shawwa
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Reem Al-Ghazali
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Ola Obaid
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Loai Albarqouni
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| | - Bettina Böttcher
- Mohamedraed Elshami, Reem Dabbour, Tayseer Hasan, Esraa Saleh, and Haifa Shawwa, Ministry of Health; Hanan Abu Kmeil, Maymona Abu-Jazar, Ibtisam Mahfouz, Dina Ashour, Ansam Aljamal, Nada Mohareb, Reem Elbalaawi, Meral Abdelati, Reem Al-Ghazali, and Bettina Böttcher, Islamic University of Gaza School of Medicine; Jomana Ghaith, Alazhar University School of Medicine, Gaza, Palestine; and Loai Albarqouni, Centre for Research in Evidence-Based Practice, Bond University, Australia
| |
Collapse
|
16
|
Mitre-Aguilar IB, Barrios-Garcia T, Ruiz-Lopez VM, Cabrera-Quintero AJ, Mejia-Dominguez NR, Ventura-Gallegos JL, Moreno-Mitre D, Aranda-Gutierrez A, Mejia-Rangel J, Escalona-Guzman AR, Chavarri-Guerra Y, Leon-Del-Rio A, Zentella-Dehesa A. Glucocorticoid-dependent expression of IAP participates in the protection against TNF-mediated cytotoxicity in MCF7 cells. BMC Cancer 2019; 19:356. [PMID: 30987626 PMCID: PMC6466787 DOI: 10.1186/s12885-019-5563-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Glucocorticoid receptor (GR) activation has been associated with breast cancer cell survival in vitro. Glucocorticoid (GC)-dependent protection against tumor necrosis factor (TNF)-induced cell death has been well characterized in MCF7 luminal A breast cancer cells. The GR activates a variety of protective mechanisms, such as inhibitors of apoptosis proteins (IAPs). However, the relative contribution of the GR-dependent expression of IAPs in the protection of cell death has not, to our knowledge, been evaluated. Methods MCF7 cells were used for all experiments. GR was activated with cortisol (CORT) or dexamethasone (DEX) and inhibited with mifepristone (RU486). Cell viability was determined in real-time with the xCELLigence™ RTCA System and at specific endpoints using crystal violet stain. The mRNA levels of the eight members of the IAP family were measured by qRT-PCR. The protein levels of GR, PR, ERα, HER2, PARP1, c-IAP1 and XIAP were evaluated by Western blot analysis. The knockdown of c-IAP1 and XIAP was accomplished via transient transfection with specific siRNAs. GR activation was verified by a gene reporter assay. Via the cBioportal interphase we queried the mRNA levels of GR and IAPs in breast cancer tumors. Results RU486 significantly inhibited the anti-cytotoxic effect of both GCs. PARP1 processing was diminished in the presence of both GCs. The combined treatments of GCs + TNF increased the relative mRNA levels of Survivin>c-IAP1 > NAIP>Apollon>XIAP>Ts-IAP > ML-IAP > c-IAP2. Additionally, GR mRNA content increased with the combined treatments of GCs + TNF. Sustained levels of the proteins c-IAP1 and XIAP were observed after 48 h of the combined treatments with GCs + TNF. With c-IAP1 and XIAP gene silencing, the GC-mediated protection was diminished. In the breast tumor samples, the GR mRNA was coexpressed with Apollon and XIAP with a Pearson coefficient greater than 0.3. Conclusions The effect of GCs against TNF-mediated cytotoxicity involves increased mRNA expression and sustained protein levels of c-IAP1 and XIAP. The antagonist effects of RU486 and the qRT-PCR results also suggest the role of the GR in this process. This finding may have clinical implications because the GR and IAPs are expressed in breast tumor samples. Electronic supplementary material The online version of this article (10.1186/s12885-019-5563-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irma B Mitre-Aguilar
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Tonatiuh Barrios-Garcia
- Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico.,Departamento de Biologia Molecular y Biotecnologia, IIBO, UNAM, 04510, Mexico, CDMX, Mexico
| | - Victor M Ruiz-Lopez
- Departamento de Biologia Molecular, Instituto Nacional de Enfermedades Respiratorias (INER), 14080, Mexico, CDMX, Mexico
| | - Alberto J Cabrera-Quintero
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Nancy R Mejia-Dominguez
- Red de Apoyo a la Investigacion-Coordinacion de la Investigacion Cientifica (RAI-CIC), UNAM, 14080, Mexico, CDMX, Mexico
| | - Jose L Ventura-Gallegos
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Daniel Moreno-Mitre
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Alejandro Aranda-Gutierrez
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Janini Mejia-Rangel
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Alma R Escalona-Guzman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Yanin Chavarri-Guerra
- Departamento de Hemato-Oncologia, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, 14080, Mexico, CDMX, Mexico
| | - Alfonso Leon-Del-Rio
- Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico.,Departamento de Biologia Molecular y Biotecnologia, IIBO, UNAM, 04510, Mexico, CDMX, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico. .,Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico. .,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico. .,Centro de Cancer, Centro Medico ABC, 01120, Mexico, CDMX, Mexico.
| |
Collapse
|
17
|
The Role of Glucocorticoid Receptor Signaling in Bladder Cancer Progression. Cancers (Basel) 2018; 10:cancers10120484. [PMID: 30518063 PMCID: PMC6315905 DOI: 10.3390/cancers10120484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
Previous preclinical studies have indicated that the activation of glucocorticoid receptor signaling results in inhibition of the growth of various types of tumors. Indeed, several glucocorticoids, such as dexamethasone and prednisone, have been prescribed for the treatment of, for example, hematological malignancies and castration-resistant prostate cancer. By contrast, the role of glucocorticoid-mediated glucocorticoid receptor signaling in the progression of bladder cancer remains far from being fully understood. Nonetheless, emerging evidence implies its unique functions in urothelial cancer cells. Moreover, the levels of glucocorticoid receptor expression have been documented to significantly associate with the prognosis of patients with bladder cancer. This review summarizes the available data suggesting the involvement of glucocorticoid-mediated glucocorticoid receptor signaling in urothelial tumor outgrowth and highlights the potential underlying molecular mechanisms. The molecules/pathways that contribute to modulating glucocorticoid receptor activity and function in bladder cancer cells are also discussed.
Collapse
|
18
|
Truong TH, Lange CA. Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 2018; 159:3897-3907. [PMID: 30307542 PMCID: PMC6236424 DOI: 10.1210/en.2018-00831] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Steroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers. Although this strategy is successful, ∼40% of patients eventually relapse due to endocrine resistance. The majority of hormone-independent tumors retain some level of SR expression, but sidestep hormone ablation treatments. SRs are known to crosstalk extensively with kinase signaling pathways, and this interplay has been shown to bypass ER-targeted therapies in part by providing alternative proliferation and survival signals that enable hormone independence. Modified receptors adopt alternate conformations that resist antagonism or promote agonism. SR-regulated transcription and SR-binding events have been classically studied as single receptor events using single hormones. However, it is becoming increasingly evident that individual steroids and SRs rarely act alone. Emerging evidence shows that coexpressed SRs crosstalk with each other in hormone-driven cancers, such as breast and prostate. Crosstalk between related SRs allows them to modulate signaling and transcriptional responses to noncognate ligands. This flexibility can lead to altered genomic binding and subsequent changes in SR target gene expression. This review will discuss recent mechanistic advances in elucidating SR crosstalk and the implications for treating hormone-driven cancers. Understanding this crosstalk (i.e., both opposing and collaborative) is a critical step toward expanding and modernizing endocrine therapies and will ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer 2018; 25:R385-R404. [PMID: 29692347 PMCID: PMC6029727 DOI: 10.1530/erc-18-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions to reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single-cell approaches enable the coupling of population-based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
- Institute of BiomedicineUniversity of Eastern Finland, Kuopio, Finland
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
20
|
McNamara KM, Kannai A, Sasano H. Possible roles for glucocorticoid signalling in breast cancer. Mol Cell Endocrinol 2018; 466:38-50. [PMID: 28687451 DOI: 10.1016/j.mce.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Our understanding of breast cancer biology, and our ability to manipulate breast cancers have grown exponentially in the last 20 years. Much of that expansion has focused on the roles of steroids in driving these neoplasms. Initially this research focused on estrogens and progesterone receptors, and more recently on androgen actions in breast cancers. This review aims to make the case for glucocorticoids as the next essential steroid subclass that contributes significantly to our understanding of steroidogenic regulation of these neoplasms. Glucocorticoids have the potential to play multiple roles in the regulation of breast cancers including their control of cellular differentiation, apoptosis and proliferation. Beyond this they also act as a master integrator of organ homeostats in relation to such as circadian rhythms and stress responses. Therefore a better understanding of glucocorticoids and breast cancer could help to explain some of the epidemiological links between circadian disruption and/or stress and breast cancer development. Finally glucocorticoids are currently used during chemotherapeutic treatment in breast cancer therapy and yet results of various studies suggest that this may have an adverse impact on treatment success. This review aims to summarise the current evidence for glucocorticoids as actors in breast cancer and then suggest future essential approaches in order to determine the roles of glucocorticoids in this disease.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan.
| | - Ayako Kannai
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Hervault M, Clavel MA. Sex-related Differences in Calcific Aortic Valve Stenosis: Pathophysiology, Epidemiology, Etiology, Diagnosis, Presentation, and Outcomes. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2018. [DOI: 10.1080/24748706.2017.1420273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maxime Hervault
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
22
|
Concomitant high expression of ERα36, EGFR and HER2 is associated with aggressive behaviors of papillary thyroid carcinomas. Sci Rep 2017; 7:12279. [PMID: 28947799 PMCID: PMC5612999 DOI: 10.1038/s41598-017-12478-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
ERα, ERβ, PR, ERα36, EGFR and HER2 mRNA and protein expression in papillary thyroid carcinoma (PTC) were examined by real time RT-PCR and immunohistochemical staining. The mRNA and protein expression of ERα and PR were gradually increased and those of ERβ were gradually decreased from normal thyroid tissues to nodular hyperplasias (P < 0.05) and to PTCs (P < 0.05). However, the mRNA and protein expression of ERα36, EGFR and HER2 were only significantly increased in PTCs when compared with those in normal thyroid tissues (P < 0.001) and nodular hyperplasias (P < 0.001). There was some correlation between ERα, ERβ and PR, and between ERα36, EGFR and HER2 protein expression in PTCs. As for ERα, ERβ and PR, there was a significant positive correlation between ERα and PR, and a significant negative correlation between ERα and ERβ and between PR and ERβ protein expression. As for ERα36, EGFR and HER2, there was a significant positive correlation between ERα36, EGFR and HER2 protein expression in PTCs. Concomitant high expression of ERα36, EGFR and HER2 was strongly associated with aggressive behaviors including extrathyroidal extension (ETE), lymph node metastasis (LNM) and high TNM stage in PTCs (P < 0.001).
Collapse
|
23
|
Zhou S, Li J, Xu H, Zhang S, Chen X, Chen W, Yang S, Zhong S, Zhao J, Tang J. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene 2017; 622:1-12. [DOI: 10.1016/j.gene.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 02/08/2023]
|
24
|
|
25
|
Kavya K, Kumar MN, Patil RH, Hegde SM, Kiran Kumar KM, Nagesh R, Babu RL, Ramesh GT, Chidananda Sharma S. Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status. Mol Cell Biochem 2017; 433:13-26. [PMID: 28386843 DOI: 10.1007/s11010-017-3012-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022]
Abstract
Androgen receptor (AR) signaling axis plays a vital role in the development of prostate and critical in the progression of prostate cancer. Androgen withdrawal initially regresses tumors but eventually develops into aggressive castration-resistant prostate cancer (CRPC). Activator Protein-1 (AP-1) transcription factors are most likely to be associated with malignant transformation in prostate cancer. Hence, to determine the implication of AR and AP-1 in promoting the transition of prostate cancer to the androgen-independent state, we used AR-positive LNCaP and AR-negative PC-3 cells as an in vitro model system. The effect of dihydrotestosterone or anti-androgen bicalutamide on the cell proliferation and viability was assessed by MTT assay. Expression studies on AR, marker genes-PSA, TMPRSS2, and different AP-1 factors were analyzed by semi-quantitative RT-PCR and expressions of AR and Fra-1 proteins were analyzed by Western blotting. Dihydrotestosterone induced the cell proliferation in LNCaP with no effect on PC-3 cells. Bicalutamide decreased the viability of both LNCaP and PC-3 cells. Dihydrotestosterone induced the expression of AR, PSA, c-Jun, and Fra-1 in LNCaP cells, and it was c-Jun and c-Fos in case of PC-3 cells, while bicalutamide decreased their expression. In addition, constitutive activation and non-regulation of Fra-1 by bicalutamide in PC-3 cells suggested that Fra-1, probably a key component, involved in transition of aggressive androgen-independent PC-3 cells with poor prognosis.
Collapse
Affiliation(s)
- K Kavya
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - M Naveen Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Rajeshwari H Patil
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Shubha M Hegde
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - K M Kiran Kumar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - Rashmi Nagesh
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India
| | - R L Babu
- Department of Bioinformatics and Biotechnology, Karnataka State Women's University, Jnanashakthi Campus, Vijayapura, 586 108, Karnataka, India
- Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - Govindarajan T Ramesh
- Department of Biology and Center for Biotechnology and Biomedical Sciences, Norfolk State University, Norfolk, VA, USA
| | - S Chidananda Sharma
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru, 560 056, Karnataka, India.
| |
Collapse
|