1
|
Wong PF, Kamarul T. Targeting Ubiquitin-Proteasome system (UPS) in treating osteoarthritis. Eur J Pharmacol 2024; 989:177237. [PMID: 39732357 DOI: 10.1016/j.ejphar.2024.177237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Despite osteoarthritis (OA) being recognised for over a century as a debilitating disease that affects millions, there are huge gaps in our understanding of the underlying pathophysiology that drives this disease. Present day studies that focussed on ubiquitination (Ub) and ubiquitylation-like (Ubl) modification related mechanisms have brought light into the possibility of attenuating OA development by targeting these specific proteins in chondrocytes. In the present review, we discuss recent advances in studies involving Ub ligases and deubiquitinating enzymes (DUBs) which are of importance in the development of OA, and may offer potential therapeutic strategies for OA. Such targets may involve attenuating proteases such as matrix metalloproteinases (MMP) 1, 8, 13, 4 and several A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) that are well known for their roles in cartilage breakdown. Ligases such as ubiquitin-conjugating enzymes (E2) and ubiquitin-ligating enzymes (E3) that are involved in extracellular matrix (ECM) degradation in OA and of their pathogenesis would be discussed. In addition to catabolic and degenerative downstream effects of Ub and DUBs in OA, inflammatory mechanisms most notably involving nuclear factor-kappa B (NF-κB) signalling pathways regulated through Ub and using various targeting molecules would also be highlighted. Challenges, gaps and insights from clinical trials will provide valuable guidance for future investigations on targeting ubiquitin-proteosome system (UPS) as a therapeutic option for OA.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, 50603 Kuala Lumpur, Malaysia.
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Liu H, Gan Q, Lai Y, Pan Z, Jin Q, Li J, Wang N, Jiao S, Chai Y. USP14 increases the sensitivity of retinoblastoma to cisplatin by mediating the ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8671-8680. [PMID: 38819674 PMCID: PMC11522062 DOI: 10.1007/s00210-024-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The aim of this study is to explore the function of USP14 on the sensitivity of retinoblastoma (RB) to cisplatin (DDP) and the underlying mechanism. USP14 was knockdown in Y79 cells by transfecting three siRNAs (si-USP14-1, si-USP14-2, and si-USP14-3), with si-USP14 NC as the negative control. si-USP14-3 was selected by results of Western blotting. The CCK-8 assay was used to detect the IC50 of Y79 cells and the growth curve. The cell cycle, cell apoptosis, and ROS level were measured by flow cytometry. The expression level of P-GP, ERCC1, survivin, GPX4, FTH1, ACSL4, NOX1, COX2, and FASN was determined by the Western blotting assay. CO-IP assay was utilized to evaluate the interaction between USP14 and FASN. The IC50 of DDP in Y79 cells and Y79/DDP cells was 7.83 µM and 24.67 µM, respectively. Compared to control and si-USP14 NC groups, increased apoptotic rate and ROS level, and arrested cell cycle in S phase were observed in USP14-knockdown Y79 cells. Compared to control and si-USP14 NC groups, increased apoptotic rate and arrested cell cycle in G0/G1 phase were observed in USP14-knockdown Y79/DDP cells. Compared to control, increased ROS level was observed in USP14-knockdown Y79/DDP cells. Compared to the si-USP14 NC groups, extremely downregulated P-GP, ERCC1, survivin, GPX4, FTH1, NOX1, COX2, and FASN were observed in USP14-knockdown Y79 cells or Y79/DDP cells, accompanied by the elevated expression of ACSL4. The interaction between USP14 and FASN was identified according to the result of CO-IP assay. By silencing USP14 in Y79 and Y79/DDP cells, levels of resistance-related proteins (P-GP, ERCC1, and survivin), ferroptosis-related proteins (FTH1 and GPX4), and lipid metabolism-related proteins (NOX1, COX2, and FASN) were dramatically reduced, accompanied by enhanced ROS level, increased apoptosis, and restrained DNA content, indicating that USP14 might suppress the DDP resistance in RB by mediating ferroptosis, which is an important target for treating RB.
Collapse
Affiliation(s)
- Han Liu
- Eye Hospital of Nanchang University, Nanchang, 330006, China
| | - Qiang Gan
- Department of Ophthalmology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Yongping Lai
- Department of Ophthalmology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Zhenhui Pan
- Pediatric Medical School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiayue Li
- Pediatric Medical School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Nanye Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoufeng Jiao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Road, Nanchang, 330006, China.
| | - Yong Chai
- Eye Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Ophthalmology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Xia X, Liu X, Xu Q, Gu J, Ling S, Liu Y, Li R, Zou M, Jiang S, Gao Z, Chen C, Liu S, Liu N. USP14 deficiency inhibits neointima formation following vascular injury via degradation of Skp2 protein. Cell Death Discov 2024; 10:295. [PMID: 38909015 PMCID: PMC11193710 DOI: 10.1038/s41420-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Ubiquitin-proteasome system (UPS) is involved in vascular smooth muscle cell (VSMC) proliferation. Deubiquitinating enzymes (DUBs) have an essential role in the UPS-regulated stability of the substrate; however, the function of DUBs in intimal hyperplasia remains unclear. We screened DUBs to identify a protein responsible for regulating VSMC proliferation and identified USP14 protein that mediates cancer development, inflammation, and foam cell formation. USP14 promotes human aortic smooth muscle cell and A7r5 cell growth in vitro, and its inhibition or deficiency decreases the intimal area in the mice carotid artery ligation model. In addition, USP14 stabilizes Skp2 expression by decreasing its degradation, while Skp2 overexpression rescues USP14 loss-induced issues. The current findings suggested an essential role of USP14 in the pathology of vascular remodeling, deeming it a promising target for arterial restenosis therapy.
Collapse
Affiliation(s)
- Xiaohong Xia
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jielei Gu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sisi Ling
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yajing Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Rongxue Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min Zou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Siqin Jiang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiwei Gao
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Canshan Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
5
|
Ding L, Lu L, Zheng S, Zhang Z, Huang X, Ma R, Zhang M, Xu Z, Chen M, Guo Z, Zhu S, Gong J, Mao H, Zhang W, Xu P. Usp14 deficiency removes α-synuclein by regulating S100A8/A9 in Parkinson's disease. Cell Mol Life Sci 2024; 81:232. [PMID: 38780644 PMCID: PMC11116365 DOI: 10.1007/s00018-024-05246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaohui Zheng
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingting Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runfang Ma
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengran Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minshan Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimei Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junwei Gong
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Rong Q, Xi Z, Guo D, Xu W, Zhang L, Wu Q. Regulation of ubiquitination and antiviral activity of Cactin by deubiquitinase Usp14 in Drosophila. J Virol 2024; 98:e0017724. [PMID: 38563731 PMCID: PMC11092352 DOI: 10.1128/jvi.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Zhichong Xi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyang Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Liqin Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Wei D, Tian X, Ren Z, Liu Z, Sun C. Mechanistic insights into the role of USP14 in adipose tissue macrophage recruitment and insulin resistance in obesity. Int J Biol Macromol 2024; 267:131645. [PMID: 38631582 DOI: 10.1016/j.ijbiomac.2024.131645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Diet-induced obesity can cause metabolic syndromes. The critical link in disease progression is adipose tissue macrophage (ATM) recruitment, which drives low-level inflammation, triggering adipocyte dysfunction. It is unclear whether ubiquitin-specific proteinase 14 (USP14) affects metabolic disorders by mediating adipose tissue inflammation. In the present study, we showed that USP14 is highly expressed in ATMs of obese human patients and diet-induced obese mice. Mouse USP14 overexpression aggravated obesity-related insulin resistance by increasing the levels of pro-inflammatory ATMs, leading to adipose tissue inflammation, excessive lipid accumulation, and hepatic steatosis. In contrast, USP14 knockdown in adipose tissues alleviated the phenotypes induced by a high-fat diet. Co-culture experiments showed that USP14 deficiency in macrophages led to decreased adipocyte lipid deposition and enhanced insulin sensitivity, suggesting that USP14 plays an important role in ATMs. Mechanistically, USP14 interacted with TNF receptor-associated 6, preventing K48-linked ubiquitination as well as proteasome degradation, leading to increased pro-inflammatory polarization of macrophages. In contrast, the pharmacological inhibition of USP14 significantly ameliorated diet-induced hyperlipidemia and insulin resistance in mice. Our results demonstrated that macrophage USP14 restriction constitutes a key constraint on the pro-inflammatory M1 phenotype, thereby inhibiting obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Zeyu Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China.
| |
Collapse
|
8
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Fu Y, Qiu J, Wu J, Zhang L, Wei F, Lu L, Wang C, Zeng Z, Liang S, Zheng J. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159258. [PMID: 36372300 DOI: 10.1016/j.bbalip.2022.159258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Atherosclerosis, a chronic inflammatory condition that leads to a variety of life-threatening cardiovascular diseases, is a worldwide public health concern. Endothelial cells (ECs), which line the inside of blood vessels, play an important role in atherogenic initiation. Endothelial activation and inflammation are indispensable for the early stage of atherosclerosis. Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme that regulates the stability and activity of target proteins, has been identified as a potential therapeutic target for many inflammatory diseases. However, the role of USP14 on ECs is undefined. In this study, we found that USP14 is downregulated in either atherosclerosis patient specimens or oxidized low-density lipoprotein (ox-LDL)-stimulated ECs as compared to the control group. Overexpression of USP14 in ECs restrains ox-LDL-stimulated nuclear transcription factor kappa B (NF-κB) activation and subsequent adhesion molecule production. USP14 inhibits endothelium proinflammatory activation by suppressing the degradation of the negative regulator of NF-κB signaling, nod-like receptor family caspase recruitment domain family domain containing 5 (NLRC5). Finally, our in vivo experiments confirmed that USP14 adenovirus injection in apolipoprotein E deficient (ApoE-/-) mice fed with a western diet reduced the atherosclerotic lesion size, inhibited macrophage accumulation in the intima, and restricted the progression of atherosclerosis. Our results reveal that USP14 may represent a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Wu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lisui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiothoracic Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, China
| | - Liuyi Lu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopei Zeng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Du XH, Ke SB, Liang XY, Gao J, Xie XX, Qi LZ, Liu XY, Xu GY, Zhang XD, Du RL, Li SZ. USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis 2023; 14:56. [PMID: 36693850 PMCID: PMC9873792 DOI: 10.1038/s41419-023-05579-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
Collapse
Affiliation(s)
- Xue-Hua Du
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Xiao Xie
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guo-Yuan Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, China.
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
11
|
Wu Z, Bai Y, Qi Y, Chang C, Jiao Y, Bai Y, Guo Z. HDAC1 disrupts the tricarboxylic acid (TCA) cycle through the deacetylation of Nur77 and promotes inflammation in ischemia-reperfusion mice. Cell Death Discov 2023; 9:10. [PMID: 36653355 PMCID: PMC9849262 DOI: 10.1038/s41420-023-01308-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Histone deacetylase enzymes (HDACs) regulate protein acetylation. HDAC1 is known to enhance ischemia/reperfusion (I/R) injury, but its underlying mechanism(s) of action have not been defined. Here, in vivo mouse models of myocardial I/R were used to investigate the role of HDAC1 during I/R myocardial injury. We show that HDAC1 enhances the inflammatory responses of I/R mice. Using a constructed macrophage H/R (hypoxia/ regeneration) injury model (Raw264.7 cells), we identified Nur77 as a HDAC1 target in macrophages. Nur77 deficient macrophages failed to downregulate IDH1 (isocitrate dehydrogenase 1) and accumulated succinic acid and other tricarboxylic acid (TCA) cycle-derived metabolites in a glutamine-independent manner. These data show that the inhibition of HDAC1 ameliorates H/R-inflammation in macrophages through the regulation of Nur77 and the TCA cycle.
Collapse
Affiliation(s)
- Zhenhua Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300222, Tianjin, China
- ICU, Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Yujuan Qi
- ICU, Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Chao Chang
- ICU, Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Yan Jiao
- ICU, Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Yaobang Bai
- ICU, Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China
| | - Zhigang Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300222, Tianjin, China.
- Department of Cardiac Surgery, Tianjin Chest Hospital, 300222, Tianjin, China.
| |
Collapse
|
12
|
Yang L, Cui Y, Liang H, Li Z, Wang N, Wang Y, Zheng G. Multifunctional Selenium Nanoparticles with Different Surface Modifications Ameliorate Neuroinflammation through the Gut Microbiota-NLRP3 Inflammasome-Brain Axis in APP/PS1 Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30557-30570. [PMID: 35758423 DOI: 10.1021/acsami.2c06283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuroinflammation plays a critical role in Alzheimer's disease (AD). However, it is still unknown if neuroinflammation can be effectively treated using selenium nanoparticles (SeNPs) with different surface modifications. In this study, SeNPs were coated with dihydromyricetin (DMY), a natural polyphenol, to obtain DMY@SeNPs. Given that DMY@SeNPs are unstable under physiological conditions, they were decorated step-by-step with chitosan (CS/DMY@SeNPs) and with the blood brain barrier (BBB) targeting peptide Tg (TGNYKALHPHNG) to yield Tg-CS/DMY@SeNPs, which significantly reduced the aggregation of Aβ and improved the anti-inflammatory effects of SeNPs in vitro. The mechanisms of CS/DMY@SeNPs and Tg-CS/DMY@SeNPs on regulating neuroinflammation are different. Only Tg-CS/DMY@SeNPs can cross the BBB; therefore, Tg-CS/DMY@SeNPs more successfully inhibited Aβ aggregation and reduced inflammatory cytokine secretion via the NF-κB pathway in the brain of APP/PS1 mice compared to CS/DMY@SeNPs. Furthermore, both types of nanoparticles, however, were able to repair the gut barrier and regulate the population of inflammatory-related gut microbiota such as Bifidobacterium, Dubosiella, and Desulfovibrio. Of note, the relative abundance of Gordonibacter was only enhanced by Tg-CS/DMY@SeNPs, thereby downregulating the protein expression of the NLRP3 inflammasome and the concentrations of serum inflammatory factors. This demonstrates that Tg-CS/DMY@SeNPs ameliorate neuroinflammation through the gut microbiota-NLRP3 inflammasome-brain axis. Overall, our data suggest that Tg-CS/DMY@SeNPs are an ideal drug candidate for AD treatment.
Collapse
Affiliation(s)
- Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanan Cui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hanji Liang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiwei Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yabin Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
13
|
Colombo F, Illescas O, Noci S, Minnai F, Pintarelli G, Pettinicchio A, Vannelli A, Sorrentino L, Battaglia L, Cosimelli M, Dragani TA, Gariboldi M. Gut microbiota composition in colorectal cancer patients is genetically regulated. Sci Rep 2022; 12:11424. [PMID: 35794137 PMCID: PMC9259655 DOI: 10.1038/s41598-022-15230-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractThe risk of colorectal cancer (CRC) depends on environmental and genetic factors. Among environmental factors, an imbalance in the gut microbiota can increase CRC risk. Also, microbiota is influenced by host genetics. However, it is not known if germline variants influence CRC development by modulating microbiota composition. We investigated germline variants associated with the abundance of bacterial populations in the normal (non-involved) colorectal mucosa of 93 CRC patients and evaluated their possible role in disease. Using a multivariable linear regression, we assessed the association between germline variants identified by genome wide genotyping and bacteria abundances determined by 16S rRNA gene sequencing. We identified 37 germline variants associated with the abundance of the genera Bacteroides, Ruminococcus, Akkermansia, Faecalibacterium and Gemmiger and with alpha diversity. These variants are correlated with the expression of 58 genes involved in inflammatory responses, cell adhesion, apoptosis and barrier integrity. Genes and bacteria appear to be involved in the same processes. In fact, expression of the pro-inflammatory genes GAL, GSDMD and LY6H was correlated with the abundance of Bacteroides, which has pro-inflammatory properties; abundance of the anti-inflammatory genus Faecalibacterium correlated with expression of KAZN, with barrier-enhancing functions. Both the microbiota composition and local inflammation are regulated, at least partially, by the same germline variants. These variants may regulate the microenvironment in which bacteria grow and predispose to the development of cancer. Identification of these variants is the first step to identifying higher-risk individuals and proposing tailored preventive treatments that increase beneficial bacterial populations.
Collapse
|
14
|
Czarnek M, Stalińska K, Sarad K, Bereta J. shRNAs targeting mouse Adam10 diminish cell response to proinflammatory stimuli independently of Adam10 silencing. Biol Open 2022; 11:274200. [PMID: 35107128 PMCID: PMC8905717 DOI: 10.1242/bio.059092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference is one of the common methods of studying protein functions. In recent years critical reports have emerged indicating that off-target effects may have a much greater impact on RNAi-based analysis than previously assumed. We studied the influence of Adam10 and Adam17 silencing on MC38CEA cell response to proinflammatory stimuli. Eight lentiviral vector-encoded shRNAs that reduced ADAM10 expression, including two that are specific towards ADAM17, caused inhibition of cytokine-induced Nos2 expression presumably via off-target effects. ADAM10 silencing was not responsible for this effect because: (i) CRISPR/Cas9 knockdown of ADAM10 did not affect Nos2 levels; (ii) ADAM10 inhibitor increased rather than decreased Nos2 expression; (iii) overexpression of ADAM10 in the cells with shRNA-silenced Adam10 did not reverse the effect induced by shRNA; (iv) shRNA targeting ADAM10 resulted in decrease of Nos2 expression even in ADAM10-deficient cells. The studied shRNAs influenced transcription of Nos2 rather than stability of Nos2 mRNA. They also affected stimulation of Ccl2 and Ccl7 expression. Additionally, we used vectors with doxycycline-inducible expression of chosen shRNAs and observed reduced activation of NF-κB and, to a lesser extent, AP-1 transcription factors. We discuss the requirements of strict controls and verification of results with complementary methods for reliable conclusions of shRNA-based experiments. Summary: Use of several specific shRNAs is not enough to escape a pitfall of their off-target activity: the case of Adam10 and Adam17 silencing.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
16
|
Jin X, Gao X, Lan M, Li CN, Sun JM, Zhang H. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des 2021; 99:717-726. [PMID: 34939324 DOI: 10.1111/cbdd.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Peimisine is one of the alkaloids in Fritillariae ussuriensis Bulbus, which has anti-acute lung injury effect. In order to obtain compounds with superior bio-activity, 14 new derivatives were obtained from peimisine, and the better activity compounds were screened by MTT method. It was found that boc-leucine mono peimisine ester monoamide (compound G, 25 μg/ml) had increased cell survival rate and reduced the TNF-α, IL-1β, IL-6, and iNOS levels in RAW 264.7 by lipopolysaccharide (LPS)-stimulated. In vivo, LPS (10 mg/kg) was given intraperitoneally to establish ALI model, and compound G (2.5 or 10 mg/kg) was injected into mice as the experimental group. The results showed that after the compound G (10 mg/kg) treatment, the Wet / Dry ratio of the lung was reduced, and the expression of TNF-α, IL-1β, IL-6 and iNOS was inhibited. Meanwhile, compound G (10 mg/kg) could increase the content of IκB protein and reduce the content of p65 protein in lung tissue by Western blot analysis, which may play an anti-acute lung injury role by inhibiting the activity of NF-κB signaling pathway. In conclusion, compound G could attenuate LPS-induced ALI in mice and it may become a new approach to treat ALI.
Collapse
Affiliation(s)
- Xin Jin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng Lan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
17
|
Li C, Wang N, Zheng G, Yang L. Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer's Disease-like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46406-46420. [PMID: 34569225 DOI: 10.1021/acsami.1c14818] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with amyloid-β (Aβ) deposition, leading to neurotoxicity (oxidative stress and neuroinflammation) and gut microbiota imbalance. Resveratrol (Res) has neuroprotective properties, but its bioavailability in vivo is very low. Herein, we developed a small Res-selenium-peptide nanocomposite to enable the application of Res for eliminating Aβ aggregate-induced neurotoxicity and mitigating gut microbiota disorder in aluminum chloride (AlCl3) and d-galactose(d-gal)-induced AD model mice. Res functional selenium nanoparticles (Res@SeNPs) (8 ± 0.34 nm) were prepared first, after which the surface of Res@SeNPs was decorated with a blood-brain barrier transport peptide (TGN peptide) to generate Res-selenium-peptide nanocomposites (TGN-Res@SeNPs) (14 ± 0.12 nm). Oral administration of TGN-Res@SeNPs improves cognitive disorder through (1) interacting with Aβ and decreasing Aβ aggregation, effectively inhibiting Aβ deposition in the hippocampus; (2) decreasing Aβ-induced reactive oxygen species (ROS) and increasing activity of antioxidation enzymes in PC12 cells and in vivo; (3) down-regulating Aβ-induced neuroinflammation via the nuclear factor kappa B/mitogen-activated protein kinase/Akt signal pathway in BV-2 cells and in vivo; and (4) alleviating gut microbiota disorder, particularly with respect to oxidative stress and inflammatory-related bacteria such as Alistipes, Helicobacter, Rikenella, Desulfovibrio, and Faecalibaculum. Thus, we anticipate that Res-selenium-peptide nanocomposites will offer a new potential strategy for the treatment of AD.
Collapse
Affiliation(s)
- Changjiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
18
|
Zhang Z, Liu N, Chen X, Zhang F, Kong T, Tang X, Yang Q, Chen W, Xiong X, Chen X. UCHL1 regulates inflammation via MAPK and NF-κB pathways in LPS-activated macrophages. Cell Biol Int 2021; 45:2107-2117. [PMID: 34288216 DOI: 10.1002/cbin.11662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022]
Abstract
Inflammation is a common pathophysiological process as well as a clinical threat that occurs in various diseases worldwide. It is well-documented that nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways are involved in inflammatory reactions to microbial infections in lipopolysaccharide (LPS)-activated macrophages. The deubiquitinase ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1) has been reported as an oncoprotein to promote the growth and progression of cancer cells. However, the regulatory mechanism of UCHL1 in inflammation is currently unclear. Here, we aimed to assess the effects of UCHL1 on LPS-associated inflammatory response in vitro and in vivo by enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. This study identified that inhibition or knockdown of UCHL1 decreased the amounts of the key pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α in macrophages. Additionally, inhibition of UCHL1 suppressed LPS-induced extracellular signal-regulated protein kinase 1/2 phosphorylation and NF-κB translocation by regulating the inhibitor of NF-κB. Mechanically, UCHL1 interacts with IκBα protein in THP-1. Meanwhile, inhibition of UCHL1 blocked the LPS-induced degradation of IκBα through the ubiquitin-proteasome system. Moreover, in vivo assay showed that suppression of UCHL1 notably reduced the LPS-induced animal death and release of pro-inflammatory cytokines. Overall, the current findings uncover that UCHL1 functions as a crucial regulator for inflammatory response via reversing the degradation of IκBα, representing a potential target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Tang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qilin Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiyan Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuming Xiong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Li H, Quan J, Zhao X, Ling J, Chen W. USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol Immunol 2021; 130:69-76. [PMID: 33360745 DOI: 10.1016/j.molimm.2020.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Ubiquitin specific protease 14 (USP14) is a regulator of protein deubiquitination and proteasome activation, and has been implicated in negative regulation of type I IFN signaling pathway. However, the effect of USP14 on RNA virus-related inflammatory response has not been studied. Retinoic acid-inducible gene I (RIG-I) is the important pattern recognition receptor of the innate immunity to detect RNA viruses or intracellular Poly(I:C)-LMW. Here, we reported that USP14 knockdown increased pro-inflammatory cytokines production in macrophages upon VSV infection or intracellular Poly(I:C)-LMW stimulation. USP14-overexpressed HeLa cells exhibited a decrease in RIG-I-mediated IL-6 and TNF-α expression. IU1, USP14 inhibitor, significantly promotes pro-inflammatory cytokines production in VSV-infected mice in vivo. Furthermore, USP14 was also found to inhibit the RIG-I-triggered NF-κB activation by deubiquitinating K63-linked RIG-I. Thus, our results demonstrate that USP14 is a negative regulator of RIG-I-mediated inflammatory response.
Collapse
Affiliation(s)
- Hongrui Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China
| | - Jing Ling
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China.
| |
Collapse
|
21
|
Ling S, Jin L, Li S, Zhang F, Xu Q, Liu M, Chen X, Liu X, Gu J, Liu S, Liu N, Ou W. Allium macrostemon Saponin Inhibits Activation of Platelet via the CD40 Signaling Pathway. Front Pharmacol 2021; 11:570603. [PMID: 33584257 PMCID: PMC7874237 DOI: 10.3389/fphar.2020.570603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Allium macrostemon saponin is a traditional Chinese medicine that exhibits anti-atherosclerosis effects. However, the mechanism of its action has not been fully clarified. Platelet activation induced by CD40L plays an important role in the process of atherosis. In the present study, we demonstrate for the first time that A. macrostemon saponin inhibits platelet activation induced by CD40L. Moreover, the effects of saponin on platelet activation were achieved by activation of the classical CD40L-associated pathway, including the PI3K/Akt, MAPK and NF-κB proteins. In addition, the present study further demonstrated that saponin exhibited an effect on the TRAF2-mediated ubiquitination degradation, which contributed to the inhibition of the CD40 pathway and its downstream members. The findings determine that A. macrostemon saponin inhibits activation of platelets via activation of downstream proteins of the CD40 pathway. This in turn affected TRAF2-associated ubiquitination degradation and caused an anti-thrombotic effect.
Collapse
Affiliation(s)
- Sisi Ling
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijun Jin
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shizheng Li
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangcheng Zhang
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Liu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jielei Gu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchao Ou
- Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol 2020; 236:3396-3405. [PMID: 33135160 DOI: 10.1002/jcp.30124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Huang L, Zhang Y, Zheng J, Ni N, Qin Q, Huang X, Huang Y. Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. FISH & SHELLFISH IMMUNOLOGY 2020; 105:253-262. [PMID: 32697961 DOI: 10.1016/j.fsi.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin-specific protease 14 (USP14), one of the USP family members which belong to deubiquitinating enzymes (DUBs), plays a key role in maintaining cellular protein homeostasis by trimming ubiquitin chains from their substrates. However, the roles of USP14 in response to virus infection still remains largely unknown. In the current study, a USP14 homolog from orange spotted grouper (EcUSP14) was cloned and its roles in innate immune response were investigated. EcUSP14 was composed of 1479 base pairs encoding a 492-amino acid (aa) polypeptide. Sequence analysis indicated that EcUSP14 shared 96.14% and 81.30% identity to USP14 of bicolor damselfish (Stegastes partitus) and humans (homo sapiens), respectively. EcUSP14 contains conserved ubiquitin-like (UBL) domain (aa 3-76) and peptidase-C19A domain (aa 106-481). In response to Singapore grouper iridovirus (SGIV) infection in vitro, EcUSP14 was significantly up-regulated. Subcellular localization showed that EcUSP14 was predominantly localized in the cytoplasm of grouper spleen (GS) cells and mostly co-localized with the viral assembly sites after SGIV infection. The ectopic expression of EcUSP14 significantly promoted the replication of SGIV, as demonstrated by the accelerated progression of severity of cytopathic effect (CPE), the increased viral gene transcription and viral protein synthesis during infection. Consistently, treatment with IU1, a USP14 specific inhibitor, significantly inhibited the replication of SGIV, suggesting that USP14 function as a pro-viral factor during SGIV replication. Further analysis showed that EcUSP14 overexpression decreased the promoter activities of interferon (IFN)-1, IFN-3, IFN-stimulated response element (ISRE), and nuclear factor of kappa B (NF-κB). Furthermore, the ectopic expression of EcUSP14 decreased the activities of IFN-1 promoter evoked by TANK-binding kinase (TBK)-1 and melanoma differentiation-associated protein (MDA)-5, but not stimulator of interferon genes (STING). Thus, we speculated that EcUSP14 facilitated virus replication by negatively regulating the IFN response. Taken together, our results firstly demonstrated that fish USP14 functioned as a pro-viral factor by negatively regulating interferon response against virus infection.
Collapse
Affiliation(s)
- Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Na Ni
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Xu F, Ma Y, Huang W, Gao J, Guo M, Li J, Kong L, Liang G, Du R, Xu Q, Wu X. Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Cell Death Dis 2020; 11:666. [PMID: 32820146 PMCID: PMC7441392 DOI: 10.1038/s41419-020-02898-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/07/2023]
Abstract
Macrophages, with diverse functions and variable phenotypes, are considered as an important executor of inflammatory diseases. And it has been proved that autophagy is deeply connected with the development of inflammation, while the exact regulatory mechanism still remains unclear, and the application of autophagy regulators in anti-inflammation needs to be further confirmed. Here, we firstly verified that neochromine S5 (hereinafter referred to as S5) significantly inhibited M1-like macrophage polarization with decrease of the proinflammatory cytokines and downregulation of NF-κB and STAT1 signals. Then, in vivo experiments demonstrated S5 improved cecal ligation and puncture (CLP)-induced sepsis specially based on the regulation of M1-like macrophages. Mechanistic studies indicated that S5 treatment dramatically upregulated cellular autophagy in M1-like macrophage. Furthermore, by multiple methods, S5 was revealed to directly bind with ubiquitin-specific proteases 14 (USP14) at Ser404, Phe405, and Cys414 by hydrogen bond to inhibit its deubiquitinating activity, and block USP14-TRAF6 (TNF receptor associated factor 6) interaction, subsequently promoting ubiquitination of Beclin1, interrupting Beclin1-Bcl2 interaction, and accumulating the autophagosome in macrophages, which finally resulted in the blockade of M1-like macrophage polarization. Animal experiments also confirmed the protection of S5 in CLP mice was dependent on activation of macrophage autophagy. What's more, as a novel USP14 inhibitor, S5 exhibited higher efficiency and safety than IU1, the known USP14 inhibitor. Therefore, this study has demonstrated that typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Moreover, we provide a new candidate compound, S5, for sensitizing autophagy to interfere with the macrophage inflammation.
Collapse
Affiliation(s)
- Fang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yuxiang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Mengmeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jianxin Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Guang Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China ,grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou Zhejiang, 325035 China
| | - Ronghui Du
- grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093 China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
25
|
Yang Y, Wang LQ, Yao BC, Guo ZG. Ubiquitin-specific protease as the underlying gene biomarker for aortic stenosis. Lipids Health Dis 2020; 19:115. [PMID: 32471496 PMCID: PMC7260852 DOI: 10.1186/s12944-020-01299-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background Aortic stenosis is a common heart valvular disease whose pathological processes include an inflammatory reaction and lipid accumulation. However, its detailed pathogenesis is yet to be completely elucidated. Therefore, it is of great significance to further explore the molecular mechanisms of aortic stenosis. Methods Four datasets were downloaded from the Gene Expression Omnibus (GEO) database. Firstly, the differently expressed genes (DEGs) were screened between control and aortic stenosis samples. Secondly, weighted gene co-expression network analysis (WGCNA) was performed to find the highly relevant gene modules. Enrichment analysis and protein-protein interaction (PPI) networking were also performed, then Cytoscape was used to identify hub genes. Finally, the six participants (3 control participants and 3 patients with aortic stenosis) were recruited at the Tianjin Chest Hospital. In order to verify the expression level of USP14, several molecular experiments were performed, including hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence technology, real time-quantitative polymerase chain reaction (RT-qPCR), and western blotting. Results A total of 9636 DEGs were found between the control and aortic stenosis samples. The DEGs were mainly enriched in the autophagy-animal, cellular lipid catabolic process, apoptosis, and glycoside metabolic process categories. Eleven hub genes were identified via four different algorithms. Following verification of the patient samples, Ubiquitin-specific protease 14 (USP14) was found to be displayed at higher levels in the aortic stenosis samples. Conclusion USP14 might be involved in the occurrence and development of aortic stenosis, so it would be a molecular target for early diagnosis and specific treatment of aortic stenosis. There is a significant association between the high expression of USP14 and aortic stenosis, indicating that this gene may be a genetic risk factor for aortic stenosis.
Collapse
Affiliation(s)
- Yin Yang
- Department of Cardiac Surgery, Tianjin Chest Hospital, No. 261 South Taierzhuang Road, Jinnan District, Tianjin, 300222, China
| | - Lian-Qun Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, No. 261 South Taierzhuang Road, Jinnan District, Tianjin, 300222, China
| | - Bo-Chen Yao
- Department of Cardiac Surgery, Tianjin Chest Hospital, No. 261 South Taierzhuang Road, Jinnan District, Tianjin, 300222, China
| | - Zhi-Gang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, No. 261 South Taierzhuang Road, Jinnan District, Tianjin, 300222, China.
| |
Collapse
|
26
|
Zhang F, Xu R, Chai R, Xu Q, Liu M, Chen X, Chen X, Kong T, Zhang C, Liu SM, Zhang Z, Liu N. Deubiquitinase Inhibitor b-AP15 Attenuated LPS-Induced Inflammation via Inhibiting ERK1/2, JNK, and NF-Kappa B. Front Mol Biosci 2020; 7:49. [PMID: 32391376 PMCID: PMC7188916 DOI: 10.3389/fmolb.2020.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/13/2020] [Indexed: 01/15/2023] Open
Abstract
b-AP15 is a deubiquitinase (DUB) inhibitor of 19S proteasomes, which in turn targets ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14). Nuclear factor kappa B (NF-κB) is closely linked to cellular response in macrophages when the organism is in the state of microbial infection, and it acts as a vital part in the mechanism of inflammatory reaction. However, the molecular mechanism by which DUB inhibitors, especially b-AP15, regulates inflammation remains poorly understood. This study aimed to investigate the relationship between b-AP15 and inflammation. The results showed that b-AP15 treatment significantly reduced the amounts of inflammatory indicators, such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated THP-1 and macrophages. Meanwhile, similar results were obtained from in vivo experiments. In addition, b-AP15 also significantly improved the survival rate of sepsis mouse via high-density LPS mediation. Furthermore, b-AP15 also inhibited the ERK1/2 and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 by removing them from the cytoplasm into the nucleus. All these findings suggested that b-AP15 has anti-inflammatory action and acts as a potential neoteric target drug for treating microbial infection.
Collapse
Affiliation(s)
- Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Zhang F, Xia X, Chai R, Xu R, Xu Q, Liu M, Chen X, Liu B, Liu S, Liu N. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J Cell Mol Med 2020; 24:3292-3302. [PMID: 31970862 PMCID: PMC7131911 DOI: 10.1111/jcmm.15002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is regarded as a chronic progressive inflammatory disease and is a basic pathophysiological process in coronary artery disease which is life threatening in clinic. The formation of foam cell plays a key role in the pathogenesis of atherosclerosis. OxLDL is a significant factor in progression of coronary artery disease. Our studies have demonstrated that USP14 promotes cancer development and mediates progression of cardiac hypertrophy and LPS‐induced inflammation. However, the underlying mechanism of USP14 is unknown. In this study, we found that the inhibition of USP14 significantly suppressed the oxLDL uptake, subsequently decreased the foam cell formation. Surprisingly, USP14 has an effect on the expression of CD36 but not SR‐A, ABCA1, Lox‐1, ABCG1 and SR‐Bl. Furthermore, USP14 stabilizes CD36 protein via cleaving the ubiquitin chain on CD36. Blocking CD36 activation using antibody‐dependent blocking assay remarkably attenuated the function of USP14 on the formation of foam cell. In summary, our results suggested that the inhibition of USP14 decreases foam cell formation by down‐regulating CD36‐mediated lipid uptake and provides a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xia
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, Chen X, Liu M, Xu Q, Liu N, Liu S. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23:7617-7631. [PMID: 31557396 PMCID: PMC6815833 DOI: 10.1111/jcmm.14635] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre-conditioning bone marrow-derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS-primed BMSC-derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L-Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS-dependent NF-κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L-Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post-infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre-conditioning BMSC-derived exosomes may develop into a promising cell-free treatment strategy for clinical treatment of MI.
Collapse
Affiliation(s)
- Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenyi Zhou
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Hu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Dong P, Ji X, Han W, Han H. Oxymatrine exhibits anti-neuroinflammatory effects on Aβ 1-42-induced primary microglia cells by inhibiting NF-κB and MAPK signaling pathways. Int Immunopharmacol 2019; 74:105686. [PMID: 31207405 DOI: 10.1016/j.intimp.2019.105686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oxymatrine (OMT), isolated from Sophora flavescens or Sophora alopecuroides, possesses various pharmacological and biological activities, including anti-inflammatory, anti-oxidant, and anti-diabetic properties. Microglia cells, the resident immune cells in the central nervous system (CNS), play a key role in neurodegenerative diseases. In this study, the neuroinflammatory effects of OMT and its mechanisms were investigated by Aβ1-42-induced rat brain tissue model and primary microglia cells model. The hematoxylin-eosin (HE) staining and immunohistochemistry results showed that OMT could reduce neuronal damage and inhibit microglia activation in the model tissue. The in vitro experiments revealed that OMT could decrease the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nitric oxide (NO), and down-regulate the expression of iNOS and COX-2 in a dose-dependent manner. Furthermore, OMT inhibited phosphorylation of JNK, ERK 1/2, P-p38 and NF-κB in Aβ1-42-induced microglia cells. In summary, OMT exhibits anti-neuroinflammatory effects and the anti-inflammatory activity of OMT is related to the regulation of MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaomeng Ji
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Han
- Guiyang College of Traditional Chinese Medicine, China
| | - Hua Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
30
|
Xia X, Huang C, Liao Y, Liu Y, He J, Guo Z, Jiang L, Wang X, Liu J, Huang H. Inhibition of USP14 enhances the sensitivity of breast cancer to enzalutamide. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:220. [PMID: 31126320 PMCID: PMC6534920 DOI: 10.1186/s13046-019-1227-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Androgen receptor (AR) is expressed in approximately 70% of breast tumors. Recent studies increasingly support AR as a potential therapeutic target of AR-positive breast cancer. We have previously reported that deubiquitinase USP14 stabilizes AR proteins by deubiquitination and USP14 inhibition results in inhibition of cell growth and tumor progression in AR-positive prostate cancer and breast cancer. The current study aims to explore the anticancer effect of a treatment combining AR antagonist enzalutamide with USP14 inhibition on breast cancer cells. METHODS The combining effects of enzalutamide and USP14 inhibition on breast cancer cell proliferation and apoptosis and associated cell signaling were evaluated in vitro and in vivo. RESULTS USP14 inhibition via administration of IU1 or USP14-specific siRNA/shRNA enhanced cell growth inhibition and apoptosis induction by enzalutamide in breast cancer cell lines in vitro and in vivo. Additionally, the combination of enzalutamide with USP14 inhibition/knockdown induced significant downregulation of AR proteins and suppression of AR-related signaling pathways, including Wnt/β-catenin and PI3K/AKT pathways. Moreover, AKT inhibition via MK2206 increased the antiproliferative and proapoptotic effects of enzalutamide+IU1 combined treatment. CONCLUSION Collectively, our data suggest that USP14 inhibition in combination with enzalutamide represents a potentially new therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Xiaohong Xia
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Chuyi Huang
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yuning Liao
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yuan Liu
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jinchan He
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Zhiqiang Guo
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Lili Jiang
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Jinbao Liu
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital and institute of Guangzhou Medical University; Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
31
|
Xie Z, Wang Y, Huang J, Qian N, Shen G, Chen L. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages. Int J Biol Macromol 2019; 129:61-67. [DOI: 10.1016/j.ijbiomac.2019.02.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
|
32
|
USP14-mediated IκBα degradation exacerbates NF-κB activation and IL-1β-stimulated chondrocyte dedifferentiation. Life Sci 2019; 218:147-152. [DOI: 10.1016/j.lfs.2018.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
|
33
|
Li H, Zhao Z, Ling J, Pan L, Zhao X, Zhu H, Yu J, Xie B, Shen J, Chen W. USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur J Immunol 2019; 49:42-53. [PMID: 30466171 DOI: 10.1002/eji.201847603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/15/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) is a critical RNA virus sensor that initiates antiviral immune response through K63-linked ubiquitination. In this study, we demonstrated USP14, a deubiquitinating enzyme, as a negative regulator in antiviral responses by directly deubiquitinating K63-linked RIG-I. USP14 knockdown significantly enhanced RIG-I-triggered type I IFN signaling and inhibited vesicular stomatitis virus (VSV) replication both in mouse peritoneal macrophages and THP1 cells. USP14 overexpression in HeLa cells attenuated RIG-I-triggered IFN-β expression and promoted VSV replication. Besides, USP14-specific inhibitor, IU1, increased RIG-I-mediated type I IFN production and antiviral responses in vitro and in vivo. In addition, USP14 could interact with RIG-I and remove RIG-I K63-linked polyubiquitination chains. This article is the first to report that USP14 acts as a negative regulator in antiviral response through deubiquitinating K63-linked RIG-I. These findings provide insights into a potential new therapy targeting USP14 for RNA virus-related diseases.
Collapse
Affiliation(s)
- Hongrui Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zizhao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Ling
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linhui Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xibao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Sheng, China
| | - Huihui Zhu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Xie
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Sheng, China
| |
Collapse
|
34
|
Li S, Zhu Y, Zhang T, Hang Y, Chen Q, Jin Y. Cai's Neiyi Prescription promotes apoptosis and inhibits inflammation in endometrial stromal cells with endometriosis through inhibiting USP10. Biotechnol Appl Biochem 2018; 66:231-239. [PMID: 30468519 DOI: 10.1002/bab.1715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/21/2018] [Indexed: 11/12/2022]
Abstract
To observe the effect of Cai's Neiyi Prescription (CNYP) on the apoptosis and inflammation in endometrial stromal cells with endometriosis (EM) both in vivo and in vitro, EM model rats and endometrial stromal cells were treated with CNYP and the level of USP10, p-ERK1/2, ERK1/2, and apoptosis-related protein as well as the levels of proinflammatory factors were measured by Western blotting and ELISA, respectively. Rats with surgically induced EM showed increased USP10 expression and ERK/2 activation. Intragastric administration of CNYP granule significantly inhibited EM-induced ERK1/2 activation and expression of USP10 and Bcl-2, but increased the expression of Bax and Caspase-7 in EM-induced rats. CNYP granule administration also inhibited EM-induced inflammation in rats. Moreover, the ectopic endometrial stromal cells isolated from EM patients demonstrated decreased ERK1/2 activation and expression of USP10 and Bcl-2 and increased expression of Bax and Caspase-7 after cultured in DMEM containing CNYP-medicated rat serum, which were reversed by USP10 overexpression and were enhanced by USP10 siRNA. USP10 overexpression also inhibited while USP10 siRNA enhanced the CNYP-induced inhibition of inflammation in ectopic endometrial stromal cells. Taken together, our results suggest that CNYP granule promotes apoptosis and inhibits inflammation in endometrial stromal cells with EM through inhibiting USP10.
Collapse
Affiliation(s)
- Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yaping Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tingting Zhang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Hang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiong Chen
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuli Jin
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Fu Y, Ma G, Liu G, Li B, Li H, Hao X, Liu L. USP14 as a novel prognostic marker promotes cisplatin resistance via Akt/ERK signaling pathways in gastric cancer. Cancer Med 2018; 7:5577-5588. [PMID: 30296012 PMCID: PMC6246950 DOI: 10.1002/cam4.1770] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) ranks the third leading cause of global cancer mortality. Despite recent progress in surgery combined with chemotherapy, the outcomes of GC patients have barely improved. Therefore, better understanding of the molecular mechanisms involved in chemoresistance of GC may help develop novel strategies to treat this deadly disease. Previous evidence has shown aberrant expressions of USP14 in multiple malignancies, suggesting an important role of USP14 in tumorigenesis. However, its role in modulating chemoresistance in GC still remains elusive. In this study, we observed that USP14 levels were significantly increased in GC tissues compared to the paired normal tissues. Multivariate analysis demonstrated that USP14 level was an independent prognostic factor for DFS in GC patients. Silencing of USP14 promoted proteasomal degradation of p‐ERK (T202/Y204) and p‐Akt (T308/S473), thus inactivating Akt and ERK signaling pathways. Interestingly, silencing of USP14 alone was not sufficient to cause overt effects on cell growth, proliferation, and apoptosis, while resulting in significant apoptosis in the presence of cisplatin in GC cells. Thus, knockdown of USP14 sensitized GC cells to cisplatin by triggering cisplatin‐induced apoptosis via impeding Akt and ERK signaling pathways. These results revealed a novel role of USP14 in modulating chemosensitivity of GC cells, suggesting USP14 may serve as not only a prognostic marker, but also a potential therapeutic target for GC patients.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Gang Ma
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guolong Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bin Li
- Department of Gastrointestinal Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xishan Hao
- Department of Gastrointestinal Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
36
|
Hu M, Guo G, Huang Q, Cheng C, Xu R, Li A, Liu N, Liu S. The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: the role of injured cardiomyocytes-derived exosomes. Cell Death Dis 2018; 9:357. [PMID: 29500342 PMCID: PMC5834521 DOI: 10.1038/s41419-018-0392-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Stem cell therapy can be used to repair and regenerate damaged hearts tissue; nevertheless, the low survival rate of transplanted cells limits their therapeutic efficacy. Recently, it has been proposed that exosomes regulate multiple cellular processes by mediating cell survival and communication among cells. The following study investigates whether injured cardiomyocytes-derived exosomes (cardiac exosomes) affect the survival of transplanted bone marrow mesenchymal stem cells (BMSCs) in infarcted heart. To mimic the harsh microenvironment in infarcted heart that the cardiomyocytes or transplanted BMSCs encounter in vivo, cardiomyocytes conditioned medium and cardiac exosomes collected from H2O2-treated cardiomyocytes culture medium were cultured with BMSCs under oxidative stress in vitro. Cardiomyocytes conditioned medium and cardiac exosomes significantly accelerated the injury of BMSCs induced by H2O2; increased cleaved caspase-3/caspase-3 and apoptotic percentage, and decreased the ratio of Bcl-2/Bax and cell viability in those cells. Next, we explored the role of cardiac exosomes in the survival of transplanted BMSCs in vivo by constructing a Rab27a knockout (KO) mice model by a transcription activator-like effector nuclease (TALEN) genome-editing technique; Rab27a is a family of GTPases, which has critical role in secretion of exosomes. Male mouse GFP-modified BMSCs were implanted into the viable myocardium bordering the infarction in Rab27a KO and wild-type female mice. The obtained results showed that the transplanted BMSCs survival in infarcted heart was increased in Rab27a KO mice by the higher level of Y-chromosome Sry DNA, GFP mRNA, and the GFP fluorescence signal intensity. To sum up, these findings revealed that the injured cardiomyocytes-derived exosomes accelerate transplanted BMSCs injury in infarcted heart, thus highlighting a new mechanism underlying the survival of transplanted cells after myocardial infarction.
Collapse
Affiliation(s)
- Ming Hu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Guixian Guo
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Qiang Huang
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chuanfang Cheng
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Aiqun Li
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
37
|
de Poot SAH, Tian G, Finley D. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J Mol Biol 2017; 429:3525-3545. [PMID: 28988953 DOI: 10.1016/j.jmb.2017.09.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023]
Abstract
Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation. Rpn11, situated over the port, can remove these chains without compromising degradation because substrates must be irreversibly committed to degradation before Rpn11 acts. This coupling between deubiquitination and substrate degradation is ensured by the Ins-1 loop of Rpn11, which controls ubiquitin access to its catalytic site. In contrast to Rpn11, Usp14 and Uch37 can rescue substrates from degradation by promoting substrate dissociation from the proteasome prior to the commitment step. Uch37 is unique in being a component of both the proteasome and a second multisubunit assembly, the INO80 complex. However, only recruitment into the proteasome activates Uch37. Recruitment to the proteasome likewise activates Usp14. However, the influence of Usp14 on the proteasome depends on the substrate, due to its marked preference for proteins that carry multiple ubiquitin chains. Usp14 exerts complex control over the proteasome, suppressing proteasome activity even when inactive in deubiquitination. A major challenge for the field will be to elucidate the specificities of Rpn11, Usp14, and Uch37 in greater depth, employing not only model in vitro substrates but also their endogenous targets.
Collapse
Affiliation(s)
- Stefanie A H de Poot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|