1
|
Takenaka T, Kobori H, Kurosaki Y, Ishii N, Inoue T, Miyazaki T, Suzuki H, Hasan A, Nishiyama A, Hayashi M. Klotho supplementation decreases blood pressure and albuminuria in mice with lupus nephritis. Eur J Pharmacol 2025; 988:177229. [PMID: 39725133 DOI: 10.1016/j.ejphar.2024.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Klotho deficiency is prevalent in various chronic kidney diseases. Although klotho is known to bind transforming growth factor β (TGFβ) receptor 1 to antagonize renal fibrosis, TGFβ also maintains regulatory T cells with inducing forkhead box protein P3 (FOXP3). Female New Zealand Black/White F1 (NZBWF1) mice were divided into two groups (n = 10 for each): one group was treated with daily subcutaneous injection of klotho protein (30 μg/kg/day) for 8 weeks, and the other only received vehicle. Klotho supplementation suppressed blood pressure, 8-epi-prostaglandin F2α excretion, albuminuria, and renal angiotensin II levels (p < 0.05 for all) without affecting the glomerular filtration rate (GFR) in NZBWF1 mice. Klotho protein supplementation reduced the number of cluster of differentiation (CD)4+FOXP3+ T cells (p < 0.05) without altering the anti-DNA antibody levels. Klotho supplementation augmented glomerular cellularity, but decreased glomerular crescent formation and interstitial fibrosis in NZBWF1 mice (p < 0.05). Klotho protein supplementation inactivated renal renin-angiotensin system, ameliorating blood pressure and albuminuria in NZBWF1 mice. Klotho supplementation hampered regulatory T cells without altering autoantibodies, exerting dual effects on glomerular pathology in NZBWF1 mice without changes in GFR.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Tokyo, Japan.
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Kurosaki Y, Matsumoto T, Uematsu T, Kawakami F, Kawashima R, Tamaki S, Imai M, Ichikawa T, Ishii N, Kitasato H, Hanaki H, Kubo M. SARS-CoV-2 infection causes a decline in renal megalin expression and affects vitamin D metabolism in the kidney of K18-hACE2 mice. Sci Rep 2024; 14:24313. [PMID: 39414885 PMCID: PMC11484755 DOI: 10.1038/s41598-024-75338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) often experience acute kidney injury, linked to disease severity or mortality, along with renal tubular dysfunction and megalin loss in proximal tubules. Megalin plays a crucial role in kidney vitamin D metabolism. However, the impact of megalin loss on vitamin D metabolism during COVID-19 is unclear. This study investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection reduces megalin expression in proximal tubules and its subsequent effect on vitamin D metabolism in mice expressing human angiotensin converting enzyme 2 (K18-hACE2 mice). Histological and immunohistochemical staining analyses revealed glomerular and capillary congestion, and elevated renal neutrophil gelatinase-associated lipocalin levels, indicative of acute kidney injury in K18-hACE2 mice. In SARS-CoV-2-infected mice, immunohistochemical staining revealed suppressed megalin protein levels. Decreased vitamin D receptor (VDR) localization in the nucleus and increased mRNA expression of VDR, CYP27B1, and CYP24A1 were observed by quantitative PCR in SARS-CoV-2-infected mice. Serum vitamin D levels remained similar in infected and vehicle-treated mice, but an increase in tumor necrosis factor-alpha and a decrease in IL-4 mRNA expression were observed in the kidneys of the SARS-CoV-2 group. These findings suggest that megalin loss in SARS-CoV-2 infection may impact the local role of vitamin D in kidney immunomodulation, even when blood vitamin D levels remain unchanged.
Collapse
Affiliation(s)
- Yoshifumi Kurosaki
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Toshihide Matsumoto
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Pathology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, 364-8501, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Rei Kawashima
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Shun Tamaki
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Naohito Ishii
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Hidero Kitasato
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan.
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan.
| |
Collapse
|
4
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
5
|
Li T, Yang K, Gao W, Peng F, Zou X. Cellular senescence in acute kidney injury: Target and opportunity. Biochem Biophys Res Commun 2024; 706:149744. [PMID: 38479244 DOI: 10.1016/j.bbrc.2024.149744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Acute kidney injury (AKI) is a common clinical disease with a high incidence and mortality rate. It typically arises from hemodynamic alterations, sepsis, contrast agents, and toxic drugs, instigating a series of events that culminate in tissue and renal damage. This sequence of processes often leads to acute renal impairment, prompting the initiation of a repair response. Cellular senescence is an irreversible arrest of the cell cycle. Studies have shown that renal cellular senescence is closely associated with AKI through several mechanisms, including the promotion of oxidative stress and inflammatory response, telomere shortening, and the down-regulation of klotho expression. Exploring the role of cellular senescence in AKI provides innovative therapeutic ideas for both the prevention and treatment of AKI. Furthermore, it has been observed that targeted removal of senescent cells in vivo can efficiently postpone senescence, resulting in an enhanced prognosis for diseases associated with senescence. This article explores the effects of common anti-senescence drugs senolytics and senostatic and lifestyle interventions on renal diseases, and mentions the rapid development of mesenchymal stem cells (MSCs). These studies have taken senescence-related research to a new level. Overall, this article comprehensively summarizes the studies on cellular senescence in AKI, aiming is to elucidate the relationship between cellular senescence and AKI, and explore treatment strategies to improve the prognosis of AKI.
Collapse
Affiliation(s)
- Ting Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Kexin Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
6
|
Fukumitsu H, Soumiya H, Nakamura K, Nagashima K, Yamada M, Kobayashi H, Miwa T, Tsunoda A, Takeda-Kawaguchi T, Tezuka KI, Furukawa S. Effects of FGF2 Priming and Nrf2 Activation on the Antioxidant Activity of Several Human Dental Pulp Cell Clones Derived From Distinct Donors, and Therapeutic Effects of Transplantation on Rodents With Spinal Cord Injury. Cell Transplant 2024; 33:9636897241264979. [PMID: 39076100 PMCID: PMC11289817 DOI: 10.1177/09636897241264979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
In recent years, the interest in cell transplantation therapy using human dental pulp cells (DPCs) has been increasing. However, significant differences exist in the individual cellular characteristics of human DPC clones and in their therapeutic efficacy in rodent models of spinal cord injury (SCI); moreover, the cellular properties associated with their therapeutic efficacy for SCI remain unclear. Here, using DPC clones from seven different donors, we found that most of the clones were highly resistant to H2O2 cytotoxicity if, after transplantation, they significantly improved the locomotor function of rats with complete SCI. Therefore, we examined the effects of the basic fibroblast growth factor 2 (FGF2) and bardoxolone methyl (RTA402), which is a nuclear factor erythroid 2-related factor 2 (Nrf2) chemical activator, on the total antioxidant capacity (TAC) and the resistance to H2O2 cytotoxicity. FGF2 treatment enhanced the resistance of a subset of clones to H2O2 cytotoxicity. Regardless of FGF2 priming, RTA402 markedly enhanced the resistance of many DPC clones to H2O2 cytotoxicity, concomitant with the upregulation of heme oxygenase-1 (HO-1) and NAD(P)H-quinone dehydrogenase 1 (NQO1). With the exception of a subset of clones, the TAC was not increased by either FGF2 priming or RTA402 treatment alone, whereas it was significantly upregulated by both treatments in each clone, or among all seven DPC clones together. Thus, the TAC and resistance to H2O2 cytotoxicity were, to some extent, independently regulated and were strongly enhanced by both FGF2 priming and RTA402 treatment. Moreover, even a DPC clone that originally exhibited no therapeutic effect on SCI improved the locomotor function of mice with SCI after transplantation under both treatment regimens. Thus, combined with FGF2, RTA402 may increase the number of transplanted DPCs that migrate into and secrete neurotrophic factors at the lesion epicenter, where reactive oxygen species are produced at a high level.
Collapse
Affiliation(s)
- Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kaito Nakamura
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kosuke Nagashima
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Makoto Yamada
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroyuki Kobayashi
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Atsuki Tsunoda
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ken-ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
7
|
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2023; 12:1728. [PMID: 37760031 PMCID: PMC10525889 DOI: 10.3390/antiox12091728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Griffin
- Division of Nephrology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Xiang J, Shen J, Zhang L, Tang B. Identification and validation of senescence-related genes in circulating endothelial cells of patients with acute myocardial infarction. Front Cardiovasc Med 2022; 9:1057985. [PMID: 36582740 PMCID: PMC9792765 DOI: 10.3389/fcvm.2022.1057985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is the main clinical cause of death and cardiovascular disease and thus has high rates of morbidity and mortality. The increase in cardiovascular disease with aging is partly the result of vascular endothelial cell senescence and associated vascular dysfunction. This study was performed to identify potential key cellular senescence-related genes (SRGs) as biomarkers for the diagnosis of AMI using bioinformatics. Methods Using the CellAge database, we identified cellular SRGs. GSE66360 and GSE48060 for AMI patients and healthy controls and GSE19322 for mice were downloaded from the Gene Expression Omnibus (GEO) database. The GSE66360 dataset was divided into a training set and a validation set. The GSE48060 dataset was used as another validation set. The GSE19322 dataset was used to explore the evolution of the screened diagnostic markers in the dynamic process of AMI. Differentially expressed genes (DEGs) of AMI were identified from the GSE66360 training set. Differentially expressed senescence-related genes (DESRGs) selected from SRGs and DEGs were analyzed using Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed and targeted drug prediction was performed. Results A total of 520 DEGs were screened from the GSE66360 training set, and 279 SRGs were identified from the CellAge database. The overlapping DEGs and SRGs constituted 14 DESRGs, including 4 senescence suppressor genes and 10 senescence inducible genes. The top 10 hub genes, including FOS, MMP9, CEBPB, CDKN1A, CXCL1, ETS2, BCL6, SGK1, ZFP36, and IGFBP3, were screened. Furthermore, three diagnostic genes were identified: MMP9, ETS2, and BCL6. The ROC analysis showed that the respective area under the curves (AUCs) of MMP9, ETS2, and BCL6 were 0.786, 0.848, and 0.852 in the GSE66360 validation set and 0.708, 0.791, and 0.727 in the GSE48060 dataset. In the GSE19322 dataset, MMP9 (AUC, 0.888) and ETS2 (AUC, 0.929) had very high diagnostic values in the early stage of AMI. Finally, based on these three diagnostic genes, we found that drugs such as acetylcysteine and genistein may be targeted for the treatment of age-related AMI. Conclusion The results of this study suggest that cellular SRGs might play an important role in AMI. MMP9, ETS2, and BCL6 have potential as specific biomarkers for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Ling Zhang,
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,*Correspondence: Baopeng Tang,
| |
Collapse
|
9
|
Sanagawa A, Hotta Y, Sezaki R, Tomita N, Kataoka T, Furukawa-Hibi Y, Kimura K. Effect of Replicative Senescence on the Expression and Function of Transporters in Human Proximal Renal Tubular Epithelial Cells. Biol Pharm Bull 2022; 45:1636-1643. [DOI: 10.1248/bpb.b22-00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Rara Sezaki
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Natsumi Tomita
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University
| | - Yoko Furukawa-Hibi
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | |
Collapse
|