1
|
Bisle E, Varadarajan S, Kolassa IT. Vitamin-mediated interaction between the gut microbiome and mitochondria in depression: A systematic review-based integrated perspective. Brain Behav Immun Health 2024; 38:100790. [PMID: 38974216 PMCID: PMC11225645 DOI: 10.1016/j.bbih.2024.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 07/09/2024] Open
Abstract
Depression is one of the world's most prevalent mental disorders and its treatment remains suboptimal. Depression is a systemic disease with highly complex biological mechanisms. Emerging evidence points towards the involvement of mitochondria, microbiome and vitamins in its pathophysiology. Mitochondrial energy production was shown to be lowered in patients with depression. Mitochondrial energy production depends on vitamins, which are available from food, but are also synthesized by the gut microbiota. Several studies reported altered vitamin levels as well as changes in the gut microbiome composition and its vitamin metabolism in patients with depression. Therefore, the question of a connection between mitochondria and gut microbiome and vitamins influencing the mental health arises. This review aims to systematically investigate a combination of the topics - depression, mitochondria, microbiome, and vitamins - to generate an overview of a novel yet extremely complex and interconnected research field. A systematic literature search yielded 34 articles, and the results were summarized and bundled to develop this new integrative perspective on mitochondrial function mediated by the microbiome and microbiome-derived vitamins in depression. Furthermore, by discussing the research gaps this review aims to encourage innovative research approaches to better understand the biology of depression, which could result in optimized therapeutic approaches.
Collapse
Affiliation(s)
- Ellen Bisle
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Suchithra Varadarajan
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Iris-Tatjana Kolassa
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
2
|
Wegener AJ, Hyer MM, Targett I, Kloster A, Shaw GA, Rodriguez AMM, Dyer SK, Neigh GN. Behavior, synaptic mitochondria, and microglia are differentially impacted by chronic adolescent stress and repeated endotoxin exposure in male and female rats. Stress 2024; 27:2299971. [PMID: 38179979 PMCID: PMC11064104 DOI: 10.1080/10253890.2023.2299971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Early life adversity and chronic inflammation have both been associated with cognitive impairment and neural compromise. In this study, we investigated the interactions between a history of chronic adolescent stress (CAS) and repeated endotoxin exposure on behavior, synaptic mitochondria, and microglia in adult male and female Wistar rats. Adult rats from chronic stress and control conditions were exposed to either repeated endotoxin (lipopolysaccharide; LPS) or saline injections every 3 days for 9 weeks. In both sexes, repeated LPS, regardless of stress history, impaired working memory in the Y maze. Regarding spatial memory, LPS impaired function for females; whereas, CAS altered function in males. Although males had an increase in anxiety-like behavior shortly after CAS, there were no long-term effects on anxiety-like behavior or social interaction observed in males or females. Stress did not alter synaptic mitochondrial function in either sex. Repeated LPS altered synaptic mitochondrial function such that ATP production was increased in females only. There were no observed increases in IBA-1 positive cells within the hippocampus for either sex. However, LPS and CAS altered microglia morphology in females. Impact of repeated LPS was evident at the terminal endpoint with increased spleen weight in both sexes and decreased adrenal weight in males only. Circulating cytokines were not impacted by repeated LPS at the terminal endpoint, but evidence of CAS effects on cytokines in females were evident. These data suggest a long-term impact of chronic stress and an impact of repeated endotoxin challenge in adulthood; however, not all physiological and behavioral metrics examined were impacted by the paradigm employed in this study and the two environmental challenges rarely interacted.
Collapse
Affiliation(s)
- A J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - M M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - I Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - A Kloster
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - G A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - A M M Rodriguez
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - S K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - G N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Alteration in the Expression of Genes Involved in Cerebral Glucose Metabolism as a Process of Adaptation to Stressful Conditions. Brain Sci 2022; 12:brainsci12040498. [PMID: 35448030 PMCID: PMC9030173 DOI: 10.3390/brainsci12040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to chronic stress leads to disturbances in glucose metabolism in the brain, and changes in the functioning of neurons coexisting with the development of depression. The detailed molecular mechanism and cerebral gluconeogenesis during depression are not conclusively established. The aim of the research was to assess the expression of selected genes involved in cerebral glucose metabolism of mice in the validated animal paradigm of chronic stress. To confirm the induction of depression-like disorders, we performed three behavioral tests: sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). In order to study the cerebral glucose metabolism of the brain, mRNA levels of the following genes were determined in the prefrontal cortex of mice: Slc2a3, Gapdh, Ldha, Ldhb, and Pkfb3. It has been shown that exogenous, chronic administration of corticosterone developed a model of depression in behavioral tests. There were statistically significant changes in the mRNA level of the Slc2a3, Ldha, Gapdh, and Ldhb genes. The obtained results suggest changes in cerebral glucose metabolism as a process of adaptation to stressful conditions, and may provide the basis for introducing new therapeutic strategies for chronic stress-related depression.
Collapse
|
4
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
5
|
Herbet M, Szumełda I, Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Dudka J. Beneficial effects of combined administration of fluoxetine and mitochondria-targeted antioxidant at in behavioural and molecular studies in mice model of depression. Behav Brain Res 2021; 405:113185. [PMID: 33617903 DOI: 10.1016/j.bbr.2021.113185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
Chronic or recurrent stress is associated with reactive oxygen species (ROS) overproduction and can lead to oxidative damage, which plays important roles in neurodegenerative diseases. Mito - TEMPO is an antioxidant targeted at mitochondria. The aim of the presented study was to assess antidepressant and antioxidant efficacy of Mito - TEMPO administered alone or with fluoxetine in mice exposed to chronic stress. The evaluation of the antidepressant-like activity was based on forced swimming test (FST) and tail suspension test (TST). In order to evaluate the antioxidant potential, the level of mRNA expression of Adora1, Ogg1, Msra, Nrf2 and Tfam in the hippocampus of mice was determined. Behavioural research data showed the antidepressant effect of fluoxetine and Mito - TEMPO administered to mice alone and in combination. The molecular research results indicate a significant impact of chronic stress on the oxidation-reduction balance and an antioxidant effect of Mito - TEMPO. The results obtained in the study suggest that Mito - TEMPO protects DNA against oxidative damage and may be beneficial in the way of cellular function improvement under the conditions of chronic stress. Adora1, Msra, Nrf2 and Tfam genes may be involved in mediating the antioxidant effect of the combined treatment with fluoxetine and Mito - TEMPO.
Collapse
Affiliation(s)
- Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| | - Izabela Szumełda
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| |
Collapse
|
6
|
Filipović D, Perić I, Costina V, Stanisavljević A, Gass P, Findeisen P. Social isolation stress-resilient rats reveal energy shift from glycolysis to oxidative phosphorylation in hippocampal nonsynaptic mitochondria. Life Sci 2020; 254:117790. [DOI: 10.1016/j.lfs.2020.117790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
|
7
|
da Cruz Jung IE, da Cruz IBM, Barbisan F, Trott A, Houenou LJ, Osmarin Turra B, Duarte T, de Souza Praia R, Maia-Ribeiro EA, da Costa Escobar Piccoli J, Bica CG, Duarte MMMF. Superoxide imbalance triggered by Val16Ala-SOD2 polymorphism increases the risk of depression and self-reported psychological stress in free-living elderly people. Mol Genet Genomic Med 2019; 8:e1080. [PMID: 31891227 PMCID: PMC7005615 DOI: 10.1002/mgg3.1080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammatory states triggered by a single-nucleotide polymorphism (SNP) in superoxide dismutase manganese-dependent gene (Val16Ala-SOD2) have been associated with the risk of developing several chronic, nontransmissible diseases. However, it is still not clear whether the VV-SOD2 genotype that causes higher basal superoxide anion levels has any impact on the risk for depression and self-reported psychological stress in elderly people. METHODS In the present study, we tested this hypothesis using a case-control study where depression was detected using the Geriatric Depression Scale-15 (GDS-15). A total of 612 Brazilian free-living elderly subjects with a mean age of 67.1 ± 7.1 years old (number of controls, C = 497, and depressive individuals, D = 115) were included in this study. All participants had similar social, health, and lifestyle variables, with the exception of polypharmacy (≥5 medicines daily intake), which was higher in the D group, compared to C subjects. RESULTS Our results showed that the VV-SOD2 genotype significantly increased the risk for depression and psychological stress in the elderly subjects, independently of sex/gender, age, and other prior diseases and health indicators (depression risk = 1.842, 1.109-3.061 95% CI, p = .018). VV-subjects also had a higher daily intake of antidepressants, anxiolytics, and anti-inflammatory drugs than A-allele subjects. CONCLUSION Our findings support the hypothesis that genetically induced oxidative superoxide-hydrogen peroxide imbalance may be involved in an increased risk for developing depression and psychological stress in free-living elderly people without other chronic nontransmissible diseases.
Collapse
Affiliation(s)
- Ivo Emilio da Cruz Jung
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexis Trott
- Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, RS, Brazil
| | - Lucien J Houenou
- Biotechnology Department, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Bárbara Osmarin Turra
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Duarte
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Claudia Giugliano Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
8
|
Khedr LH, Nassar NN, Rashed L, El-Denshary ED, Abdel-Tawab AM. TLR4 signaling modulation of PGC1-α mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: Effect of fluoxetine and pentoxiyfylline. Life Sci 2019; 239:116869. [PMID: 31678277 DOI: 10.1016/j.lfs.2019.116869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022]
Abstract
AIM The addition of repeated lipopolysaccharide (LPS) to chronic mild stress was recently proposed in our lab as an alternative model of depression, highlighting the possible interaction between stress and immune-inflammatory pathways in predisposing depression. Given that CMS-induced depressive behavior was previously related to impaired hippocampal energy metabolism and mitochondrial dysfunction, our current study aimed to investigate the interplay between toll-like receptor 4 (TLR4) signaling and peroxisome proliferator-activated receptor gamma coactivators-1-alpha (PGC1-α) as a physiological regulator of energy metabolism and mitochondrial biogenesis in the combined LPS/CMS model. MAIN METHODS Male Wistar rats were exposed to either LPS (50 μg/kg i.p.) over 2 weeks, CMS protocol for 4 weeks or LPS over 2 weeks followed by 4 weeks of CMS (LPS/CMS). Three additional groups of rats were exposed to LPS/CMS protocol and treated with either pentoxifylline (PTX), fluoxetine (FLX) or a combination of both. Rats were examined for behavioral, neurochemical, gene expression and mitochondrial ultra-structural changes. KEY FINDINGS LPS/CMS increased the expression of TLR4 and its downstream players; MyD88, NFκB and TNF-α along with an escalation in hippocampal-energy metabolism and p-AMPK. Simultaneously LPS/CMS attenuated the expression of PGC1-α/NRF1/Tfam and mt-DNA. The antidepressant (AD) 'FLX', the TNF-α inhibitor 'PTX' and their combination ameliorated the LPS/CMS-induced changes. Interestingly, all the aforementioned changes induced by the LPS/CMS combined model were significantly less than those induced by CMS alone. SIGNIFICANCE Blocking the TLR4/NFκB signaling enhanced the activation of the PGC1-α/NRF1/Tfam and mt-DNA content independent on the activation of the energy-sensing kinase AMPK.
Collapse
Affiliation(s)
- L H Khedr
- Departmment of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - N N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - E D El-Denshary
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - A M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
α-Tocopherol Ameliorates Redox Equilibrium and Reduces Inflammatory Response Caused by Chronic Variable Stress. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7210783. [PMID: 30533439 PMCID: PMC6250045 DOI: 10.1155/2018/7210783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/20/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress factors contributes to the development of depression by generating excess of reactive oxygen species which leads to oxidative stress and inflammatory processes. The aim of the study was to assess the potential protective properties of α-tocopherol supplementation on the rats exposed to chronic variable stress (CVS). Male Wistar rats (50-55 days old, weighing 200-250 g) were divided into three groups (n=10): control, stressed, and stressed and receiving (+)-α-tocopherol solution in a dose of 100 mg/kg/day. Rats in the stressed groups were exposed to CVS for 40 days. Markers of redox disorders (glutathione reduced and oxidized levels, GSH/GSSG ratio, glutathione peroxidase, glutathione reductase activities, total antioxidant status, and lipid peroxidation) and inflammatory response (IL-1β, IL6, and TNF-α) were determined in the blood. Additionally, molecular biomarkers of depression (expression of Fkbp5 and Tph2) were studied in hippocampus. The biochemical analysis was inconclusive about the presence of oxidative stress in the blood of rats exposed to CVS. However, changes in all parameters suggest presence of redox equilibrium disorders. Similarly, activation of inflammatory processes was observed as a result of CVS. Molecular effects of environmental stress in hippocampus were also observed. Generally, α-tocopherol ameliorated redox equilibrium disorders, tempered inflammatory response, and protected from changes in determined molecular markers of depression.
Collapse
|
10
|
López López AL, Escobar Villanueva MC, Brianza Padilla M, Bonilla Jaime H, Alarcón Aguilar FJ. CHRONIC UNPREDICTABLE MILD STRESS PROGRESSIVELY DISTURBS GLUCOSE METABOLISM AND APPETITE HORMONES IN RATS. ACTA ENDOCRINOLOGICA-BUCHAREST 2018; 14:16-23. [PMID: 31149231 DOI: 10.4183/aeb.2018.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context Chronic stress is characterized by increased release of catecholamines, glucocorticoids and other neurohumoral factors, predisposing individuals to obesity, insulin resistance and vascular disease, pathologies considered priority health problems. Study of alterations induced by stress on metabolism in association with food intake modulatory hormones (insulin, leptin and ghrelin) is mandatory. Objective This research studied temporal course during 60 days of chronic unpredictable mild stress (CUMS) on glucose and lipids metabolism, and on the neuroendocrine system that regulates appetite-satiety balance. Materials and Methods Wistar rats were exposed to CUMS for 20, 40 and 60 days. Corticosterone stayed high during 60 days of CUMS; after 40 days, body weight, cholesterol and triglycerides decreased and glucose intolerance was evident at day 60; insulin and ghrelin increased at 20 and 40 days, respectively; leptin decreased after day 20. Data suggest that 60 days of CUMS progressively disturb metabolism of carbohydrates and lipids as well as food intake regulatory hormones, affecting the metabolism, and can lead to the development of chronic degenerative diseases, such as cardiovascular disease, metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- A L López López
- Faculty of Nursing, Universidad Autónoma de Baja California. Mexicali, Baja California, Mexico City, Mexico
| | - M C Escobar Villanueva
- Laboratory of Pharmacology, Department of Health Sciences, D.C.B.S., Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - M Brianza Padilla
- Laboratory of Reproductive Pharmacology, Department of Reproduction Biology, D.C.B.S., Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - H Bonilla Jaime
- Laboratory of Reproductive Pharmacology, Department of Reproduction Biology, D.C.B.S., Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - F J Alarcón Aguilar
- Laboratory of Pharmacology, Department of Health Sciences, D.C.B.S., Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
11
|
Chronic Variable Stress Is Responsible for Lipid and DNA Oxidative Disorders and Activation of Oxidative Stress Response Genes in the Brain of Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7313090. [PMID: 29085557 PMCID: PMC5612311 DOI: 10.1155/2017/7313090] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Chronic environmental stress is associated with reactive oxygen species (ROS) overproduction and the pathogenesis of depression. The purpose of this study was to evaluate biochemical and molecular changes associated with ROS generation in the brains of rats submitted to chronic variable stress. Male Wistar rats (50–55 days old, weighing 200–250 g) were divided in two groups (n = 10): control and stressed. Rats in the stressed group were exposed to stress conditions for 40 days. The animals were decapitated and the brain samples were collected. In prefrontal cortex, we measured the following biochemical parameters: lipid peroxidation and concentration of glutathione—GSH, GSSG, GSH/GSSG ratio, glutathione peroxidase, and glutathione reductase activities. In the hippocampus marker of DNA, oxidative damage and expression of DNA-repairing genes (Ogg1, MsrA) and gene-encoding antioxidative transcriptional factor (Nrf2) were determined. The results demonstrate indirect evidence of ROS overproduction and presence of oxidative stress. They also reveal disruption of oxidative defense systems (decreased GR activity, diminished GSH/GSSG ratio, and decreased Nrf2 expression) and activation of the oxidative DNA repair system (increased Ogg1 and MsrA expression). Together, the presented data suggest that independent activation of oxidative stress response genes occurs in chronic variable stress conditions.
Collapse
|
12
|
Adzic M, Mitic M, Radojcic M. Mitochondrial estrogen receptors as a vulnerability factor of chronic stress and mediator of fluoxetine treatment in female and male rat hippocampus. Brain Res 2017; 1671:77-84. [DOI: 10.1016/j.brainres.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
|
13
|
The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 2017; 28:441-453. [DOI: 10.1515/revneuro-2016-0087] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022]
Abstract
AbstractMajor depressive disorder is a common debilitating mood disorder that affects quality of life. Prefrontal cortex abnormalities, an imbalance in neurotransmitters, neuroinflammation, and mitochondrial dysfunction are the major factors in the etiology of major depressive disorder. Despite the efficacy of pharmacotherapy in the treatment of major depressive disorder, 30%–40% of patients do not respond to antidepressants. Given this, exploring the alternative therapies for treatment or prevention of major depressive disorder has aroused interest among scientists. Transcranial photobiomodulation therapy is the use of low-power lasers and light-emitting diodes in the far-red to near-infrared optical region for stimulation of neuronal activities. This non-invasive modality improves the metabolic capacity of neurons due to more oxygen consumption and ATP production. Beneficial effects of transcranial photobiomodulation therapy in the wide range of neurological and psychological disorders have been already shown. In this review, we focus on some issue relating to the application of photobiomodulation therapy for major depressive disorder. There is some evidence that transcranial photobiomodulation therapy using near-infrared light on 10-Hz pulsed mode appears to be a hopeful technique for treatment of major depressive disorder. However, further studies are necessary to find the safety of this method and to determine its effective treatment protocol.
Collapse
|
14
|
Harlé G, Lalonde R, Fonte C, Ropars A, Frippiat JP, Strazielle C. Repeated corticosterone injections in adult mice alter stress hormonal receptor expression in the cerebellum and motor coordination without affecting spatial learning. Behav Brain Res 2017; 326:121-131. [DOI: 10.1016/j.bbr.2017.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
|
15
|
Chronic treatment with coenzyme Q10 reverses restraint stress-induced anhedonia and enhances brain mitochondrial respiratory chain and creatine kinase activities in rats. Behav Pharmacol 2016; 24:552-60. [PMID: 23928691 DOI: 10.1097/fbp.0b013e3283654029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several recent studies suggest a close link between mitochondrial dysfunction and depression. Coenzyme Q10 (CoQ10) is a mobile electron carrier in the mitochondrial respiratory chain (MRC) with antioxidant and potential neuroprotective activities. This study investigated the effect of chronic administration of CoQ10 (50, 100, and 200 mg/kg/day, intraperitoneally, for 4 weeks) on anhedonia and on the activities of MRC complexes and creatine kinase in the frontal cortex and hippocampus of Wistar rats subjected to chronic restraint stress (CRS, 6 h × 28 days). Exposure to CRS-induced anhedonic-like behavior (decreased sucrose preference), reduced body weight gain and food intake, increased adrenal gland weight, and altered the activity of the MRC complexes in the brain areas tested. CoQ10 dose-dependently antagonized CRS-induced depressive behavior by increasing sucrose preference (reversal of anhedonia), body weight, and food intake and reducing adrenal gland weight. CoQ10 also enhanced the activities of MRC complexes (I-IV) and creatine kinase in the frontal cortex and hippocampus. Thus, the reversal of CRS-induced anhedonia may be partially mediated by amelioration of brain mitochondrial function. The findings also support the hypothesis that brain energy impairment is involved in the pathophysiology of depression and enhancing mitochondrial function could provide an opportunity for development of a potentially more efficient drug therapy for depression.
Collapse
|
16
|
do Prado CH, Narahari T, Holland FH, Lee HN, Murthy SK, Brenhouse HC. Effects of early adolescent environmental enrichment on cognitive dysfunction, prefrontal cortex development, and inflammatory cytokines after early life stress. Dev Psychobiol 2015; 58:482-91. [PMID: 26688108 DOI: 10.1002/dev.21390] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Early postnatal stress such as maternal separation causes cognitive dysfunction later in life, including working memory deficits that are largely mediated by the prefrontal cortex. Maternal separation in male rats also yields a loss of parvalbumin-containing prefrontal cortex interneurons in adolescence, which may occur via inflammatory or oxidative stress mechanisms. Environmental enrichment can prevent several effects of maternal separation; however, effects of enrichment on prefrontal cortex development are not well understood. Here, we report that enrichment prevented cognitive dysfunction in maternally separated males and females, and prevented elevated circulating pro-inflammatory cytokines that was evident in maternally separated males, but not females. However, enrichment did not prevent parvalbumin loss or adolescent measures of oxidative stress. Significant correlations indicated that adolescents with higher oxidative damage and less prefrontal cortex parvalbumin in adolescence committed more errors on the win-shift task; therefore, maternal separation may affect cognitive dysfunction via aberrant interneuron development. © 2015 Wiley Periodicals, Inc. Dev Psychobiol 58: 482-491, 2016.
Collapse
Affiliation(s)
- Carine H do Prado
- Department of Psychology, Northeastern University, Boston, MA.,Developmental Cognitive Neuroscience Research Group (GNCD), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tanya Narahari
- Department of Chemical Engineering, Northeastern University, Boston, MA
| | | | - Ha-Neul Lee
- Department of Psychology, Northeastern University, Boston, MA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | | |
Collapse
|
17
|
da Silva Dias IC, Carabelli B, Ishii DK, de Morais H, de Carvalho MC, Rizzo de Souza LE, Zanata SM, Brandão ML, Cunha TM, Ferraz AC, Cunha JM, Zanoveli JM. Indoleamine-2,3-Dioxygenase/Kynurenine Pathway as a Potential Pharmacological Target to Treat Depression Associated with Diabetes. Mol Neurobiol 2015; 53:6997-7009. [PMID: 26671617 DOI: 10.1007/s12035-015-9617-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Diabetes is a chronic disease associated with depression whose pathophysiological mechanisms that associate these conditions are not fully elucidated. However, the activation of the indoleamine-2,3-dioxygenase (IDO), an enzyme that participate of the tryptophan metabolism leading to a decrease of serotonin (5-HT) levels and whose expression is associated with an immune system activation, has been proposed as a common mechanism that links depression and diabetes. To test this hypothesis, diabetic (DBT) and normoglycemic (NGL) groups had the cytokines (TNFα, IL-1β, and IL-6) and 5-HT and norepinephrine (NE) levels in the hippocampus (HIP) evaluated. Moreover, the effect of the selective serotonin reuptake inhibitor fluoxetine (FLX), IDO direct inhibitor 1-methyl-tryptophan (1-MT), anti-inflammatory and IDO indirect inhibitor minocycline (MINO), or non-selective cyclooxygenase inhibitor ibuprofen (IBU) was evaluated in DBT rats submitted to the modified forced swimming test (MFST). After the behavioral test, the HIP was obtained for IDO expression by Western blotting analysis. DBT rats exhibited a significant increase in HIP levels of TNFα, IL-1β, and IL-6 and a decrease in HIP 5-HT and NA levels. They also presented a depressive-like behavior which was reverted by all employed treatments. Interestingly, treatment with MINO, IBU, or FLX but not with 1-MT reduced the increased IDO expression in the HIP from DBT animals. Taken together, our data support our hypothesis that neuroinflammation in the HIP followed by IDO activation with a consequent decrease in the 5-HT levels can be a possible pathophysiological mechanism that links depression to diabetes.
Collapse
Affiliation(s)
- Isabella Caroline da Silva Dias
- Department of Pharmacology, Federal University of Paraná, Rua Coronel H dos Santos S/N, P.O. Box 19031, Curitiba, PR, 81540-990, Brazil
| | - Bruno Carabelli
- Department of Physiology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil
| | - Daniela Kaori Ishii
- Department of Pharmacology, Federal University of Paraná, Rua Coronel H dos Santos S/N, P.O. Box 19031, Curitiba, PR, 81540-990, Brazil
| | - Helen de Morais
- Department of Pharmacology, Federal University of Paraná, Rua Coronel H dos Santos S/N, P.O. Box 19031, Curitiba, PR, 81540-990, Brazil
| | - Milene Cristina de Carvalho
- Institute of Neurosciences and Behavior (INeC) and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luiz E Rizzo de Souza
- Department of Basic Pathology, Laboratory of Neurobiology, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Laboratory of Neurobiology, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Marcus Lira Brandão
- Institute of Neurosciences and Behavior (INeC) and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Anete Curte Ferraz
- Department of Physiology, Federal University of Paraná, Curitiba, PR, 81540-990, Brazil
| | - Joice Maria Cunha
- Department of Pharmacology, Federal University of Paraná, Rua Coronel H dos Santos S/N, P.O. Box 19031, Curitiba, PR, 81540-990, Brazil
| | - Janaina Menezes Zanoveli
- Department of Pharmacology, Federal University of Paraná, Rua Coronel H dos Santos S/N, P.O. Box 19031, Curitiba, PR, 81540-990, Brazil.
| |
Collapse
|
18
|
Detka J, Kurek A, Kucharczyk M, Głombik K, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B. Brain glucose metabolism in an animal model of depression. Neuroscience 2015; 295:198-208. [PMID: 25819664 DOI: 10.1016/j.neuroscience.2015.03.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to all experimental conditions, i.e., prenatal stress, acute stress, and glucose administration. Our data indicate that glycolysis is increased and the Krebs cycle is decreased in the brain of a prenatal stress animal model of depression.
Collapse
Affiliation(s)
- J Detka
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - A Kurek
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - M Kucharczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - K Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - A Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - M Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - W Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - B Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
19
|
Noorafshan A, Abdollahifar MA, Karbalay-Doust S. Stress changes the spatial arrangement of neurons and glial cells of medial prefrontal cortex and sertraline and curcumin prevent it. Psychiatry Investig 2015; 12:73-80. [PMID: 25670949 PMCID: PMC4310924 DOI: 10.4306/pi.2015.12.1.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/09/2014] [Accepted: 04/28/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The present study explored the three-dimensional spatial arrangements of the neurons and glial cells within the medial prefrontal cortex (mPFC) of rats. METHODS It evaluated the arrangement for differences after stress with or without treatment with curcumin and sertraline using second-order stereology. Orientator method was applied to obtain isotropic uniform random sections of mPFC. The pair correlation g(r) and cross-correlation functions were estimated by counting dipole probes superimposed on histological sections of mPFC. RESULTS The mean total volume of neurons and glial cells was 0.80 (0.05) and 0.40 (0.07), respectively in the control group. The corresponding values decreased by 50% in the stressed group. The curve of g(r) for the neurons and glial cells showed a wider gap between the stressed rats' mPFC. Theses indicate a negative correlation (repulsion) between the neurons and glial cells in the stressed rats. Evaluation of the cross-correlation function of the neurons and glial cells also showed a negative correlation in the stressed group. The estimated values of the global degree of order in the spatial point pattern for neurons and glial cells were 0.62 and 0.20 in control and stressed animals, respectively. Curcumin and sertraline protected the spatial arrangements of the cells after stress induction in rats. In addition, the volume of the neurons and glial cells remained unchanged after stress. CONCLUSION Dissociation of the neurons and glial cells can is seen at some places in the stressed rats' cortex. However, the spatial arrangement of the cells was remained unchanged in curcumin+stress and sertraline+stress rats.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Khedr LH, Nassar NN, El-Denshary ES, Abdel-Tawab AM. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats. Neuropsychiatr Dis Treat 2015; 11:2887-901. [PMID: 26622178 PMCID: PMC4654549 DOI: 10.2147/ndt.s87089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS) model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX) in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally). Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT) was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c), caspase-3 (Casp-3), as well as nitric oxide metabolites (NOx) were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001) as well as the changes in adenos-ine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001). Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression.
Collapse
Affiliation(s)
- Lobna H Khedr
- Department of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Antoniazzi CT, Boufleur N, Dolci G, Roversi K, Kuhn F, Pase CS, Dias VT, Roversi K, Barcelos R, Benvegnú DM, Bürger ME. Influence of neonatal tactile stimulation on amphetamine preference in young rats: Parameters of addiction and oxidative stress. Pharmacol Biochem Behav 2014; 124:341-9. [DOI: 10.1016/j.pbb.2014.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/20/2014] [Accepted: 07/06/2014] [Indexed: 01/13/2023]
|
22
|
dos Santos FS, da Silva LA, Pochapski JA, Raczenski A, da Silva WC, Grassiolli S, Malfatti CRM. Effects of l-arginine and creatine administration on spatial memory in rats subjected to a chronic variable stress model. PHARMACEUTICAL BIOLOGY 2014; 52:1033-1038. [PMID: 24617967 DOI: 10.3109/13880209.2013.876654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Chronic stress results from repeated exposure to one or more types of stressors over a period, ranging from days to months, and can be associated with physical, behavioral, and neuropsychiatric manifestations. Some physiological alterations resulting from chronic stress can potentially cause deficits on spatial learning and memory. OBJECTIVE This study investigated the effects of chronic variable stress (CVS) and administration of l-arginine and creatine on spatial memory in rats. Furthermore, body, heart, adrenal weight, and plasma glucose and corticosterone levels were analyzed. MATERIAL AND METHODS Male Wistar rats were subjected to a CVS model for 40 days and evaluated for spatial memory after the stress period. Chronically stressed animals were treated daily by gavage with: 0.5% carboxymethylcellulose (Group Cs), 500 mg/kg l-arginine (Group Cs/La), 300 mg/kg creatine (Group Cs/Cr); and 500 mg/kg l-arginine and 300 mg/kg creatine (Group Cs/La + Cr) during the entire experimental period. RESULTS Our results showed that animals in the Cs/Cr and Cs/La + Cr groups presented significantly decreased corticosterone levels compared to group Cs (p < 0.05); animals in group Cs/Cr were more efficient in finding the platform, in the working memory task, compared to all other groups (p < 0.01); and animals in group Cs/La + Cr significantly improved in reference memory retention compared to controls (p < 0.05). DISCUSSION AND CONCLUSION Overall, these results demonstrated that a single administration of creatine improves working memory efficiency, and, when co-administrated with l-arginine, improves reference memory retention, a phenomenon that is possibly associated with increased creatine/phosphocreatine levels and l-arginine-derived NO synthesis.
Collapse
Affiliation(s)
- Fabio Seidel dos Santos
- Department of Physiotherapy, Biomedical Science Laboratory, Midwest State University , Guarapuava , Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
de Morais H, de Souza CP, da Silva LM, Ferreira DM, Werner MF, Andreatini R, da Cunha JM, Zanoveli JM. Increased oxidative stress in prefrontal cortex and hippocampus is related to depressive-like behavior in streptozotocin-diabetic rats. Behav Brain Res 2014; 258:52-64. [DOI: 10.1016/j.bbr.2013.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/11/2022]
|
24
|
Adzic M, Lukic I, Mitic M, Djordjevic J, Elaković I, Djordjevic A, Krstic-Demonacos M, Matić G, Radojcic M. Brain region- and sex-specific modulation of mitochondrial glucocorticoid receptor phosphorylation in fluoxetine treated stressed rats: effects on energy metabolism. Psychoneuroendocrinology 2013; 38:2914-24. [PMID: 23969420 DOI: 10.1016/j.psyneuen.2013.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022]
Abstract
Antidepressants affect glucocorticoid receptor (GR) functioning partly through modulation of its phosphorylation but their effects on mitochondrial GR have remained undefined. We investigated the ability of chronic fluoxetine treatment to affect chronic stress-induced changes of mitochondrial GR and its phosphoisoforms (pGRs) in the prefrontal cortex and hippocampus of female and male rats. Since mitochondrial GR regulates oxidative phosphorylation, expression of mitochondrial-encoded subunits of cytochrome (cyt) c oxidase and its activity were also investigated. Chronic stress caused accumulation of the GR in mitochondria of female prefrontal cortex, while the changes in the hippocampus were sex-specific at the levels of pGRs. Expression of mitochondrial COXs genes corresponded to chronic stress-modulated mitochondrial GR in both tissues of both genders and to cyt c oxidase activity in females. Moreover, the metabolic parameters in stressed animals were affected by fluoxetine therapy only in the hippocampus. Namely, fluoxetine effects on mitochondrial COXs and cyt c oxidase activity in the hippocampus seem to be conveyed through pGR232 in females, while in males this likely occurs through other mechanisms. In summary, sex-specific regulation of cyt c oxidase by the stress and antidepressant treatment and its differential convergence with mitochondrial GR signaling in the prefrontal cortex and hippocampus could contribute to clarification of sex-dependent vulnerability to stress-related disorders and sex-specific clinical impact of antidepressants.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang M, Kim SH, Kim JC, Shin T, Moon C. Toluene induces depression-like behaviors in adult mice. Toxicol Res 2013; 26:315-20. [PMID: 24278539 PMCID: PMC3834495 DOI: 10.5487/tr.2010.26.4.315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 10/29/2010] [Accepted: 11/06/2010] [Indexed: 11/20/2022] Open
Abstract
It has been clinically reported that toluene causes mental depression in humans. However, the detrimental effects of toluene exposure on brain function and the relation between features of mental depression and toluene exposure are poorly understood. This study evaluated depression-like behaviors in adult C57BL/6 mice after administration of toluene, and elucidated the effects of classical antidepressants on the depression-like behaviors. For the estimation of depression-like behaviors, tail suspension test (TST) and forcedswim test (FST) were performed 1, 4 and 16 days after toluene (0~1000 mg/kg bw) treatment. In addition, classical antidepressants such as fluoxetine (FLX, 20 mg/kg bw) and imipramine (IMI, 40 mg/kg bw) were administered 12 h and 1 h before the tests. In the TST and FST, toluene-treated mice exhibited a longer duration of immobility than vehicle-treated mice 1 and 4 days after toluene treatment. The depression-like behaviors were significantly reversed by FLX and IMI. The weight of the adrenal gland and the size of adrenocortical cells were significantly higher in toluene-treated mice compared to vehicle-treated controls. It is suggested that acute toluene exposure of adult mice is sufficiently detrimental to induce depression. In addition, this study has established a mouse model for a depressive state induced by toluene treatment.
Collapse
Affiliation(s)
- Miyoung Yang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine,Chonnam National University, Gwangju 500-757
| | | | | | | | | |
Collapse
|
26
|
Neuroendocrine link between stress, depression and diabetes. Pharmacol Rep 2013; 65:1591-600. [DOI: 10.1016/s1734-1140(13)71520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/15/2013] [Indexed: 12/13/2022]
|
27
|
Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:224-35. [PMID: 23022673 DOI: 10.1016/j.pnpbp.2012.09.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/10/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment.
Collapse
Affiliation(s)
- Seung-Yup Lee
- Department of Medicine, Medical Science, The Graduate School of Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Noorafshan A, Abdollahifar MA, Karbalay-Doust S, Asadi-Golshan R, Rashidian-Rashidabadi A. Protective effects of curcumin and sertraline on the behavioral changes in chronic variable stress-induced rats. Exp Neurobiol 2013; 22:96-106. [PMID: 23833558 PMCID: PMC3699679 DOI: 10.5607/en.2013.22.2.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
Behavioral characteristics of the animal models and humans are impaired in chronic stress. The present study aimed to evaluate and compare the protective effects of sertraline and curcumin on stress-induced learning and memory impairment, anxiety and anhedonia in rats. Male rats were divided into seven groups: stress+water, stress+olive oil, stress+curcumin (100 mg/kg/day), stress+sertraline (10 mg/kg/day), curcumin, sertraline, and control groups. The rats were exposed to chronic variable stress for 56 days. At the end of 40 days and while the previous treatments were continued, the rats were tested in the eight radial maze, elevated plus maze, and sucrose consumption for learning and memory, anxiety, and anhedonia, respectively. In comparison to the non-stressed group, stress+water and stress+olive oil groups revealed a significantly lower percent of correct choices and higher reference and working memory errors during learning and retention phases (p<0.001). In addition these stress groups showed a significant lower percent of the open arms time and open arms entries in the elevated plus maze and consuming less sucrose solution. In addition, the stress+curcumin and stress+sertraline groups showed a better performance in the evaluated parameters of the radial arm maze, elevated plus maze, and sucrose consumption tests. It appears that curcumin and sertraline have the similar effectiveness on behavioral changes in chronic variable stress-induced rats.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | | | | | | | | |
Collapse
|
29
|
Effects of early life interventions and palatable diet on anxiety and on oxidative stress in young rats. Physiol Behav 2012; 106:491-8. [DOI: 10.1016/j.physbeh.2012.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/01/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022]
|
30
|
Isolation Stress During the Prepubertal Period in Rats Induces Long-Lasting Neurochemical Changes in the Prefrontal Cortex. Neurochem Res 2012; 37:1063-73. [DOI: 10.1007/s11064-012-0709-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/20/2011] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
|
31
|
Kanarik M, Alttoa A, Matrov D, Kõiv K, Sharp T, Panksepp J, Harro J. Brain responses to chronic social defeat stress: effects on regional oxidative metabolism as a function of a hedonic trait, and gene expression in susceptible and resilient rats. Eur Neuropsychopharmacol 2011; 21:92-107. [PMID: 20656462 DOI: 10.1016/j.euroneuro.2010.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 12/17/2022]
Abstract
Chronic social defeat stress, a depression model in rats, reduced struggling in the forced swimming test dependent on a hedonic trait-stressed rats with high sucrose intake struggled less. Social defeat reduced brain regional energy metabolism, and this effect was also more pronounced in rats with high sucrose intake. A number of changes in gene expression were identified after social defeat stress, most notably the down-regulation of Gsk3b and Map1b. The majority of differences were between stress-susceptible and resilient rats. Conclusively, correlates of inter-individual differences in stress resilience can be identified both at gene expression and oxidative metabolism levels.
Collapse
Affiliation(s)
- Margus Kanarik
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
32
|
Tagliari B, dos Santos TM, Cunha AA, Lima DD, Delwing D, Sitta A, Vargas CR, Dalmaz C, Wyse ATS. Chronic variable stress induces oxidative stress and decreases butyrylcholinesterase activity in blood of rats. J Neural Transm (Vienna) 2010; 117:1067-76. [PMID: 20686907 DOI: 10.1007/s00702-010-0445-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/09/2010] [Indexed: 01/01/2023]
Abstract
Depressive disorders, including major depression, are serious and disabling, whose mechanisms are not clearly understood. Since life stressors contribute in some fashion to depression, chronic variable stress (CVS) has been used as an animal model of depression. In the present study we evaluated some parameters of oxidative stress [thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], and inflammatory markers (interleukin 6, C reactive protein, tumor necrosis factor-alpha and nitrites), as well as the activity of butyrylcholinesterase in blood of rats subjected to chronic stress. Homocysteine and folate levels also were measured. Stressed animals were submitted to different mild stressors for 40 days. After CVS, a reduction in weight gain was observed in the stressed group, as well as an increase in immobility time in the forced swimming test as compared with controls. Stressed animals presented a significant increase on TBARS and SOD/CAT ratio, but stress did not alter GPx activity and any inflammatory parameters studied. CVS caused a significant inhibition on serum butyrylcholinesterase activity. Stressed rats had higher plasmatic levels of homocysteine without differences in folate levels. Although it is difficult to extrapolate our findings to the human condition, the alterations observed in this work may be useful to help to understand, at least in part, the pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Bárbara Tagliari
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|