1
|
Mahdipour R, Ebrahimzadeh-Bideskan A, Hosseini M, Shahba S, Lombardi G, Malvandi AM, Mohammadipour A. The benefits of grape seed extract in neurological disorders and brain aging. Nutr Neurosci 2023; 26:369-383. [PMID: 35343876 DOI: 10.1080/1028415x.2022.2051954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common neurological disorders, including neurodegenerative diseases, stroke, epilepsy, autism and psychiatric disorders, affect many people worldwide and threaten their lives and health by inducing movement disorders, behavioral disorders, or a combination of both. Oxidative stress and neuroinflammation play a central role in neuronal damage and neurological diseases induction and progression. In addition, protein homeostasis (proteostasis) impairment occurs in many neurodegenerative diseases, which plays a critical role in the progression of the pathology. Grape seed contains several flavonoids and non-flavonoids and exerts potent antioxidant and anti-inflammatory effects. In addition, polyphenols and flavanols can maintain cellular proteostasis. Since impaired proteostasis is closely involved in all amyloid diseases, particularly neurodegenerative diseases, grape seeds extract can be a valuable therapeutic agent. Therefore, this review discusses the protective and therapeutic mechanisms of grape seed against neurological disorders and, in the end, links GSE to microRNAs as future therapeutic developments.
Collapse
Affiliation(s)
- Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Nikam RM, Kecskemethy HH, Kandula VVR, Averill LW, Langhans SA, Yue X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int J Mol Sci 2023; 24:4463. [PMID: 36901893 PMCID: PMC10003453 DOI: 10.3390/ijms24054463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.
Collapse
Affiliation(s)
- Rahul M. Nikam
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Heidi H. Kecskemethy
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Lauren W. Averill
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| |
Collapse
|
3
|
Hsieh CW, Singh RK, Som S, Lu CH. Detection of Fe (III) using APTES-coated CsPbBr3–CsPb2Br5 perovskite quantum dots. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Roots of Astragalus propinquus Schischkin Regulate Transmembrane Iron Transport and Ferroptosis to Improve Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7410865. [PMID: 35958925 PMCID: PMC9363172 DOI: 10.1155/2022/7410865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Background The dried roots of the Astragalus propinquus Schischkin (RAP) plant, as a traditional Chinese medicine, has been widely used to treat stroke, cerebral ischemia, qi deficiency, and hypertension. Buyang Huanwu decoction is traditionally used to treat stroke in China for more than 200 years and has a significant effect on cerebral ischemia, and RAP is monarch medicine of Buyang Huanwu decoction. Therefore, this study was designed to observe the regulatory effect of RAP on transmembrane iron transporters and ferroptosis-related factors in cerebral ischemia-reperfusion injury (CIRI) in rats. Methods Middle cerebral artery occlusion (MCAO) was used to block blood flow in the blood supply area of the middle cerebral artery in seventy male SD rats to induce focal CIRI to establish a rat model of CIRI. RAP was administered to explore the regulatory effect of RAP on iron transmembrane transport under the condition of CIRI. The infarct size was measured using 2,3,5-triphenyl-tetrazolium chloride (TTC) staining, the pathological structure of brain tissue was observed by HE staining, and neuronal injury was evaluated by Nissl staining after treatment. Then, changes in the iron transporters ferritin (Fn), ferritin heavy chain (FHC), ferritin light chain (FLC), transferrin (Tf), transferrin receptor (TfR), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), transient receptor potential canonical 6 (TRPC6), and ferroportin 1 (FPN1) were observed by immunohistochemistry staining (IHC) and Western blotting. The expression of key factors of ferroptosis, including the membrane sodium-dependent cystine/glutamate antiporter System Xc− (System Xc−) light chain subunit (XCT) and heavy chain subunit (SLC3A2), glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor (NRF2), heme oxygenase-1 (HO-1), and iron-responsive element-binding protein 2 (IREB2) in the brain tissues of rats was assessed by Western blotting. RAP decreased the infarct size and neuronal injury after CIRI in rats. Similarly, RAP treatment regulated the expression of iron transporters. As such, RAP was able to reduce the expression of Fn, FHC, FLC, Tf, TfR, DMT1, and TRPC6 and increase the expression of FPN1 through a Tf/TfR-independent pathway after CIRI in rats. Conclusion RAP stimulation inhibited ferroptosis by regulating the expression of the key ferroptosis factors XCT, SLC3A2, GPX4, NRF2, HO-1, and IREB2. In conclusion, RAP regulates transmembrane iron transport and ferroptosis to improve CIRI.
Collapse
|
5
|
Grayston A, Zhang Y, Garcia-Gabilondo M, Arrúe M, Martin A, Kopcansky P, Timko M, Kovac J, Strbak O, Castellote L, Belloli S, Moresco RM, Picchio M, Roig A, Rosell A. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. J Cereb Blood Flow Metab 2022; 42:237-252. [PMID: 34229512 PMCID: PMC9122522 DOI: 10.1177/0271678x211028816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.
Collapse
Affiliation(s)
- Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Yajie Zhang
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Abraham Martin
- Achucarro Basque Center for Neuroscience, Laboratory of Neuroimaging and Biomarkers of Inflammation, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Peter Kopcansky
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Milan Timko
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Jozef Kovac
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Belloli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Medicine and Surgery, University of Milano - Bicocca, Monza (MB), Italy
| | - Maria Picchio
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Roig
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| |
Collapse
|
6
|
Yap SHK, Chan KK, Zhang G, Tjin SC, Yong KT. Carbon Dot-functionalized Interferometric Optical Fiber Sensor for Detection of Ferric Ions in Biological Samples. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28546-28553. [PMID: 31309830 DOI: 10.1021/acsami.9b08934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work reports an interferometric optical microfiber sensor functionalized with nitrogen- and sulfur-codoped carbon dots (CDs) for the detection of ferric ions (Fe3+). Compared to other CD-based ferric ion sensors, the sensing mechanism of this presented sensor is dependent on the refractive index modulations due to selective Fe3+ adsorption onto the CD binding sites at the tapered region. This is the first study in which CD-based sensing was performed at the solid phase as a chelator, which does not rely on its fluorescence properties. The detection performance of the proposed sensor is not only comparable to a conventional fluorescence-based CD nanoprobe sensor but also capable of delivering quantitative analysis results and ease of translation to a sensor device for on-site detection. The presented sensor exhibits Fe3+ detection sensitivity of 0.0061 nm/(μg/L) in the linear detection range between 0 and 300 μg/L and a detection limit of 0.77 μg/L based on the Langmuir isotherm model. Finally, the potential use of the CD-functionalized optical microfiber sensor in the real environmental and biological Fe3+ monitoring applications has also been validated in this work.
Collapse
Affiliation(s)
- Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Gong Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Swee Chuan Tjin
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
7
|
Repeated mild shaking of neonates induces transient cerebral microhemorrhages and anxiety-related behavior in adult rats. Neurosci Lett 2018; 684:29-34. [DOI: 10.1016/j.neulet.2018.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 01/15/2023]
|
8
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Chen WY, Mao FC, Liu CH, Kuan YH, Lai NW, Wu CC, Chen CJ. Chromium supplementation improved post-stroke brain infarction and hyperglycemia. Metab Brain Dis 2016; 31:289-97. [PMID: 26477944 DOI: 10.1007/s11011-015-9749-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/11/2015] [Indexed: 12/17/2022]
Abstract
Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Nai-Wei Lai
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Financial and Computational Mathematics, Providence University, Taichung, Taiwan
| | - Chun-Jung Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.
| |
Collapse
|
10
|
Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway. Acta Pharmacol Sin 2015; 36:1426-36. [PMID: 26592517 DOI: 10.1038/aps.2015.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/26/2015] [Indexed: 12/15/2022] Open
Abstract
AIM Carvacrol (2-methyl-5-isopropylphenol), a phenolic monoterpene in the essential oils of the genera Origanum and Thymus, has been shown to exert a variety of therapeutic effects. Here we examined whether carvacrol protected neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis and explored the underlying mechanisms. METHODS Neuroblastoma SH-SY5Y cells were incubated with Fe(2+) for 24 h, and the cell viability was assessed with CCK-8 assay. TUNEL assay and flow cytometric analysis were performed to evaluate cell apoptosis. The mRNA levels of pro-inflammatory cytokines and NF-κB p65 were determined using qPCR. The expression of relevant proteins was determined using Western blot analysis or immunofluorescence staining. RESULTS Treatment of SH-SY5Y cells with Fe(2+) (50-200 μmol/L) dose-dependently decreased the cell viability, which was significantly attenuated by pretreatment with carvacrol (164 and 333 μmol/L). Treatment with Fe(2+) increased the Bax level and caspase-3 activity, and decreased the Bcl-2 level, resulting in cell apoptosis. Furthermore, treatment with Fe(2+) significantly increased the gene expression of IL-1β, IL-6 and TNF-α, and induced the nuclear translocation of NF-κB. Treatment with Fe(2+) also significantly increased the phosphorylation of p38, ERK, JNK and IKK in the cells. Pretreatment with carvacrol significantly inhibited Fe(2+)-induced activation of NF-κB, expression of the pro-inflammatory cytokines, and cell apoptosis. Moreover, pretreatment with carvacrol inhibited Fe(2+)-induced phosphorylation of JNK and IKK, but not p38 and ERK in the cells. CONCLUSION Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis, which may result from suppressing the MAPK/JNK-NF-κB signaling pathways.
Collapse
|
11
|
Bax modulates neuronal survival while p53 is unaltered after Cytochrome C induced oxidative stress in the adult olfactory bulb in vivo. Ann Neurosci 2015; 22:19-25. [PMID: 26124546 PMCID: PMC4410523 DOI: 10.5214/ans.0972.7531.220105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 12/24/2022] Open
Abstract
Background The granule and periglomerular cells of the olfactory bulb migrate from the sub-ventricular zone (SVZ) as progenitor cell forming the neuronal stream of the rostral olfactory bulb. These cells are characterized by their ability to divide while expressing adult proteins; a phenomenon attributed to the prolonged cell cycle and the regulatory activities of proteins which modulates apoptosis and proliferation in the developing nervous system. Of interest are the proteins concerned with tumor suppression (p53) and cell cycle exit (Bax) and how they regulate survivability of these neurons in the adult system after an induced oxidative stress. Purpose This study sets to investigate the interplay between p53 and Bax in the adult olfactory bulb (periglomerular and granule cell layer), and how these proteins determine proliferation and neuronal survival after Cytochrome C induced-oxidative stress. Also, we demonstrate the effect of the induced-stress threshold on such regulation in vivo. Methods Adult Wistar rats were segregated into three groups. 10 and 20 mg/Kg BW of potassium cyanide (KCN) was administered to the treatment groups for 15 days while the control received normal saline for the same duration. The olfactory bulb was dissected and processed for general histology and immunohistochemistry of p53/Bax in the periglomerular and granule cell layers. Total (Histology) and immunopositive (p53 and Bax) cell count was done using Image J. Subsequently, we determined the analysis of variance with significance set at *P<0.05. Results We observed an increase in cell count for the 10 mg/KgBW treatment; this was characterized by a significant decrease in Bax expression and no change in p53 expression when this treatment group was compared to the control. However, no change was observed in the total cell count for 20 mg/Kg BW treatment for the same duration of exposure. Interestingly, there was also no significant change in Bax and p53 for this treatment when compared with the control. Conclusion Although p53 plays an important role in development of the olfactory bulb neurons, our findings suggests it has little contribution in neuronal cell viability and proliferation in the adult olfactory bulb. No significant change in p53 was observed irrespective of treatment dose and cell count while Bax expression was reduced at 10 mg/Kg BW treatment and was associated with an increased cell count. We conclude that regulation of survival of neurons in the adult olfactory bulb, following induced-oxidative stress was more dependent of the expression of Bax and the threshold of the induced stress rather than p53 expression.
Collapse
|
12
|
Safwen K, Selima S, Mohamed E, Ferid L, Pascal C, Mohamed A, Ezzedine A, Meherzia M. Protective effect of grape seed and skin extract on cerebral ischemia in rat: implication of transition metals. Int J Stroke 2014; 10:415-24. [PMID: 25365917 DOI: 10.1111/ijs.12391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Ischemic stroke is a leading cause of long lasting disability in humans and oxidative stress an important underlying cause. The present study aims to determine the effect of short term (seven-days) administration of high dosage grape seed and skin extract (GSSE 2.5 g/kg) on ischemia/reperfusion (I/R) injury in a rat model of global ischemia. Ischemia was induced by occlusion of the common carotid arteries for 30 min followed by one-hour reperfusion on control or GSSE treated animals. I/R induced a drastic oxidative stress characterized by high lipid and protein oxidation, a drop in antioxidant enzyme defenses, disturbed transition metals as free iron overload and depletion of copper, zinc and manganese as well as of associated brain enzyme activities as glutamine synthetase and lactate dehydrogenase. I/R also induced NO and calcium disruption and an increase in calpain activity, a calcium-sensitive cysteine protease. Interestingly, almost all I/R-induced disturbances were prevented by GSSE pretreatment as oxidative stress, transition metals associated enzyme activities, brain damage size and histology. Owing to its antioxidant potential, high dosage GSSE protected efficiently the brain against ischemic stroke and should be translated to humans.
Collapse
Affiliation(s)
- Kadri Safwen
- Bioactive Substance Laboratory, Biotechnology Centre, Hammam-Lif, Tunis
| | | | | | | | | | | | | | | |
Collapse
|