1
|
Albadawi E, El-Tokhy A, Albadrani M, Adel M, El-Gamal R, Zaarina W, El-Agawy MSED, Elsayed HRH. The role of stinging nettle (Urtica dioica L.) in the management of rotenone-induced Parkinson's disease in rats. Tissue Cell 2024; 87:102328. [PMID: 38387425 DOI: 10.1016/j.tice.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Emad Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Ahmed El-Tokhy
- Plant Protection Department, Faculty of Agriculture, New Valley University, El-Kharga, Egypt
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Mohammed Adel
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| | - Wael Zaarina
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Mosaab Salah El-Din El-Agawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman.
| |
Collapse
|
2
|
Semwal P, Rauf A, Olatunde A, Singh P, Zaky MY, Islam MM, Khalil AA, Aljohani ASM, Al Abdulmonem W, Ribaudo G. The medicinal chemistry of Urtica dioica L.: from preliminary evidence to clinical studies supporting its neuroprotective activity. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:16. [PMID: 37171512 PMCID: PMC10176313 DOI: 10.1007/s13659-023-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Urtica dioica is a perennial herb from the family of Urticaceae that is commonly known as stinging nettle. This plant is widespread in Europe, Africa, America, and a part of Asia, as it adapts to different environments and climatic conditions. The leaves, stalk, and bark of U. dioica found applications in the field of nutrition, cosmetics, textile, pest control and pharmacology. In this connection, bioactive chemical constituents such as flavonoids, phenolic acids, amino acids, carotenoids, and fatty acids have been isolated from the plant. With this review, we aim at providing an updated and comprehensive overview of the contributions in literature reporting computational, in vitro, pre-clinical and clinical data supporting the therapeutic applications of U. dioica. Experimental evidence shows that U. dioica constituents and extracts can provide neuroprotective effects by acting through a combination of different molecular mechanisms, that are discussed in the review. These findings could lay the basis for the identification and design of more effective tools against neurodegenerative diseases.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Biotechnology, Graphic Era Deemed to be University, 566/6 Bell Road, Clement Town, Dehra Dun, India.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Pooja Singh
- Department of Biotechnology, Graphic Era Deemed to be University, 566/6 Bell Road, Clement Town, Dehra Dun, India
| | - Mohamed Y Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Oncology Division, Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Md Mozahidul Islam
- Department of Environmental Management, SESM, Independent University, Bangladesh, Bashundhara R/A, Dhaka, Bangladesh
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Synthesis, characterization and inhibitor properties of benzimidazolium salts bearing 4-(methylsulfonyl)benzyl side arms. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int J Mol Sci 2022; 23:ijms232113531. [PMID: 36362316 PMCID: PMC9653761 DOI: 10.3390/ijms232113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
Collapse
|
5
|
Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 2021; 39:5449-5460. [PMID: 32691682 DOI: 10.1080/07391102.2020.1790422] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health Services, Iğdır University, Iğdır, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Abu Almaaty AH, Mosaad RM, Hassan MK, Ali EHA, Mahmoud GA, Ahmed H, Anber N, Alkahtani S, Abdel-Daim MM, Aleya L, Hammad S. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18134-18145. [PMID: 33405105 DOI: 10.1007/s11356-020-12025-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by alterations in monoamines, oxidative stress, and metabolic dysfunctions. We aim to assess the therapeutic impacts of roots or leaf extract from Urtica dioica (UD; stinging nettle) against scopolamine (SCOP)-induced memory dysfunction, amnesia, and oxidative stress in rats. Spatial memory was assessed by Y maze test. Tissue analyses of norepinephrine (NE), dopamine (DA), serotonin (5-HT), malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH, GSSG), AMP, ADP, and ATP were assessed by HPLC. mRNA levels of Tau and Hsp70 were estimated by PCR. UD extracts particularly nettle root (NR) significantly normalized the SCOP-induced memory deficits even more potent than sermion (SR) and donepezil (DON). Similarly, NR had potent therapeutic impacts on the levels of cortical and hippocampal monoamines e.g. DA, NE, and 5-HT. SCOP induced a dramatic oxidative stress as measured by MDA, NO, and GSSG levels; however, UD extracts showed significant anti-oxidative stress impacts. Additionally, UD extracts restored ATP levels and reduced the levels of AMP and ADP compared to SCOP-treated rats. Furthermore, cortical Tau and hippocampal Hsp70 were modulated by UD extracts particularly NR compared to the SCOP group. In conclusion, UD extracts particularly roots have potential therapeutic impacts against SCOP-induced neuroinflammatory and/or Alzheimer-like phenotype in rats.
Collapse
Affiliation(s)
- Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Rehab M Mosaad
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mohamed K Hassan
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ghada A Mahmoud
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
7
|
Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y, Türkeş C, Gülçin İ, Beydemir Ş. Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α‐Glycosidase and Cholinesterase Inhibitors. Chem Biodivers 2021; 18:e2000958. [DOI: 10.1002/cbdv.202000958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartın University Bartın 74100 Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Mesut Işık
- Department of Bioengineering Faculty of Engineering Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Mustafa Durgun
- Department of Chemistry Faculty of Arts and Sciences Harran University Şanlıurfa 63290 Turkey
| | - Yakup Budak
- Department of Chemistry Faculty of Arts and Sciences Gaziosmanpaşa University Tokat 60250 Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University Erzurum 25240 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
8
|
Khazaei H, Pesce M, Patruno A, Aneva IY, Farzaei MH. Medicinal plants for diabetes associated neurodegenerative diseases: A systematic review of preclinical studies. Phytother Res 2020; 35:1697-1718. [DOI: 10.1002/ptr.6903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hosna Khazaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mirko Pesce
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Ina Y. Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Mohammad H. Farzaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
9
|
Dhouibi R, Affes H, Ben Salem M, Hammami S, Sahnoun Z, Zeghal KM, Ksouda K. Screening of pharmacological uses of Urtica dioica and others benefits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:67-77. [DOI: 10.1016/j.pbiomolbio.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
10
|
Review of the Effect of Natural Compounds and Extracts on Neurodegeneration in Animal Models of Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20102533. [PMID: 31126031 PMCID: PMC6566911 DOI: 10.3390/ijms20102533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease with a high prevalence in the Western population. It is characterized by pancreas failure to produce insulin, which involves high blood glucose levels. The two main forms of diabetes are type 1 and type 2 diabetes, which correspond with >85% of the cases. Diabetes shows several associated alterations including vascular dysfunction, neuropathies as well as central complications. Brain alterations in diabetes are widely studied; however, the mechanisms implicated have not been completely elucidated. Diabetic brain shows a wide profile of micro and macrostructural changes, such as neurovascular deterioration or neuroinflammation leading to neurodegeneration and progressive cognition dysfunction. Natural compounds (single isolated compounds and/or natural extracts) have been widely assessed in metabolic disorders and many of them have also shown antioxidant, antiinflamatory and neuroprotective properties at central level. This work reviews natural compounds with brain neuroprotective activities, taking into account several therapeutic targets: Inflammation and oxidative stress, vascular damage, neuronal loss or cognitive impairment. Altogether, a wide range of natural extracts and compounds contribute to limit neurodegeneration and cognitive dysfunction under diabetic state. Therefore, they could broaden therapeutic alternatives to reduce or slow down complications associated with diabetes at central level.
Collapse
|
11
|
El Haouari M, Rosado JA. Phytochemical, Anti-diabetic and Cardiovascular Properties of Urtica dioica L. (Urticaceae): A Review. Mini Rev Med Chem 2018; 19:63-71. [DOI: 10.2174/1389557518666180924121528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes mellitus and cardiovascular diseases (CVD) have become the main cause of morbidity and death worldwide. In addition, current anti-diabetic and cardiovascular therapy is based on conventional drugs that have limited effectiveness and adverse side effects. In this regard, the role of medicinal herbs as a complementary or an alternative medicine is of great interest. Urtica dioica L. (Urticaceae), which is the focus of this review, has been widely used in traditional medicine to treat a variety of ailments, including, diabetes, hypertension and prostate cancer. The aim of this article is to review current knowledge related to the anti-diabetic and cardiovascular properties of U. dioica, with particular emphasis on the bioactive compounds, the plant parts used, and the action mechanism behind lowering blood glucose level and reducing risk of CVD. We also discuss the chemical composition and toxicological properties of the plant. From this review, it was suggested that the anti-diabetic and the cardiovascular effects of U. dioica are attributed to different classes of compounds, such as polyphenols, triterpens, sterols, flavonoids, and lectin which reduce the blood glucose level and the risk of CVD by their antihypertensive, antioxidant and anti-inflammatory properties and/or by interfering with different cellular signalization pathways, including increase of NO, inhibition of α-amylase and α-glycosidase, modulation of GLUT4 and protection of pancreatic β-cells, among others. The identification of the plant constituents and the understanding of their exact action mechanisms are necessary to prove the efficacy of the plant and develop it as pharmacological drug.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| | - Juan A. Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
12
|
Patel SS, Raghuwanshi R, Masood M, Acharya A, Jain SK. Medicinal plants with acetylcholinesterase inhibitory activity. Rev Neurosci 2018; 29:491-529. [PMID: 29303784 DOI: 10.1515/revneuro-2017-0054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer's disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer's disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Misha Masood
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ashish Acharya
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Surendra Kumar Jain
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| |
Collapse
|
13
|
Patel SS, Ray RS, Sharma A, Mehta V, Katyal A, Udayabanu M. Antidepressant and anxiolytic like effects of Urtica dioica leaves in streptozotocin induced diabetic mice. Metab Brain Dis 2018; 33:1281-1292. [PMID: 29704081 DOI: 10.1007/s11011-018-0243-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/17/2018] [Indexed: 01/17/2023]
Abstract
The present study was aimed to investigate the effect of Urtica dioica Linn. (UD) extract against chronic diabetes mediated anxiogenic and depressive like behavior in mice. Streptozotocin (STZ) (50 mg/kg, i.p.) for 5 consecutive days was used to induce diabetes followed by treatment with UD leaves extract (50 mg/kg, p.o.) and rosiglitazone (ROSI) (5 mg/kg, p.o.) for 8 weeks. STZ induced chronic diabetes significantly induced anxiety and depressive like behavior in mice. Chronic diabetes significantly downregulated BDNF (p < 0.001), TrKB (p < 0.001), Cyclin D1 (p < 0.001), Bcl2 (p < 0.05) and autophagy7 (p < 0.001), while upregulated iNOS (p < 0.05) mRNA expression in the hippocampus as compared to control mice. In addition, chronic diabetes significantly increased the expression of TNF-α in CA1 (p < 0.001), CA2 (p < 0.01), CA3 (p < 0.001) and DG (p < 0.001) regions of hippocampus as compared to control mice. Chronic diabetes mediated neuronal damage in the CA2, CA3 and DG regions of hippocampus. Chronic administration of UD leaves extract significantly reversed diabetes mediated anxiogenic and depressive like behavior in mice. Further, UD treatment significantly upregulated BDNF (p < 0.01), TrKB (p < 0.001), Cyclin D1 (p < 0.001), Bcl2 (p < 0.01), autophagy5 (p < 0.01) and autophagy7 (p < 0.001), while downregulated iNOS (p < 0.05) mRNA expression in the hippocampus of diabetic mice. Concomitantly, UD administration significantly decreased the expression of TNF-α in hippocampal CA1 (p < 0.001), CA2 (p < 0.01), CA3 (p < 0.001) and DG (p < 0.001) regions of diabetic mice. Diabetes mediated neuronal damage and DNA fragmentation in the hippocampus was substantially attenuated following UD treatment. UD leaves extract might prove to be effective for diabetes mediated anxiety and depressive like behavior.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - R S Ray
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi, 110 007, India
| | - Arun Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Vineet Mehta
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi, 110 007, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| |
Collapse
|
14
|
Ghasemi S, Moradzadeh M, Hosseini M, Beheshti F, Sadeghnia HR. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage. Drug Chem Toxicol 2018; 42:167-175. [DOI: 10.1080/01480545.2018.1463238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Simagol Ghasemi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moradzadeh
- Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Patel SS, Udayabanu M. Effect of natural products on diabetes associated neurological disorders. Rev Neurosci 2018; 28:271-293. [PMID: 28030360 DOI: 10.1515/revneuro-2016-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus, a metabolic disorder, is associated with neurological complications such as depression, anxiety, hypolocomotion, cognitive dysfunction, phobias, anorexia, stroke, pain, etc. Traditional system of medicine is long known for its efficient management of diabetes. The current review discusses the scope of some common medicinal herbs as well as secondary metabolites with a special focus on diabetes-mediated central nervous system complications. Literatures suggest that natural products reduce diabetes-mediated neurological complications partly by reducing oxidative stress and/or inflammation or apoptosis in certain brain regions. Natural products are known to modulate diabetes-mediated alterations in the level of acetylcholinesterase, choline acetyltransferase, monoamine oxidase, serotonin receptors, muscarinic receptors, insulin receptor, nerve growth factor, brain-derived neurotrophic factor, and neuropeptide in brain. Further, there are several natural products reported to manage diabetic complications with unknown mechanism. In conclusion, medicinal plants or their secondary metabolites have a wide scope and possess therapeutic potential to effectively manage neurological complications associated with chronic diabetes.
Collapse
|
16
|
Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway. Physiol Behav 2017; 182:10-16. [DOI: 10.1016/j.physbeh.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
|
17
|
Abdel-Moneim A, Yousef AI, Abd El-Twab SM, Abdel Reheim ES, Ashour MB. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab Brain Dis 2017; 32:1279-1286. [PMID: 28573601 DOI: 10.1007/s11011-017-0039-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Ahmed I Yousef
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Eman S Abdel Reheim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed B Ashour
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
18
|
Parashar A, Mehta V, Udayabanu M. Rutin alleviates chronic unpredictable stress-induced behavioral alterations and hippocampal damage in mice. Neurosci Lett 2017; 656:65-71. [PMID: 28732760 DOI: 10.1016/j.neulet.2017.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 01/20/2023]
Abstract
Chronic stress results in neurological complications like depression, cognitive dysfunction, and anxiety disorders. In our previous study, we observed that Urtica dioica leaf extract attenuated chronic stress-induced complications. Further, we observed that Urtica dioica contained a great amount of the flavonoid rutin in it. Hence, we aimed to evaluate the effect of rutin on 21days chronic unpredictable stress (CUS) mouse model. CUS led to a decline in locomotion & muscle coordination abilities, cognitive deficits, anxiety, and depression. These neurobehavioral outcomes were associated with neurodegeneration in the CA3 region of the hippocampus as found by H&E staining. Rutin efficiently rescued the CUS-induced behavioral deficits by reducing depression, anxiety, improving cognition, and locomotor & muscle coordination skills. Further, rutin treatment protected the CUS-induced hippocampal neuronal loss. This study establishes the neuroprotective effect of rutin in chronic stress.
Collapse
Affiliation(s)
- Arun Parashar
- Jaypee University of Information Technology, Waknaghat, Teh- Kandaghat, Solan, Himachal Pradesh, 173234, India
| | - Vineet Mehta
- Jaypee University of Information Technology, Waknaghat, Teh- Kandaghat, Solan, Himachal Pradesh, 173234, India
| | - Malairaman Udayabanu
- Jaypee University of Information Technology, Waknaghat, Teh- Kandaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
19
|
Pandey S, Garabadu D. Piracetam Facilitates the Anti-Amnesic but not Anti-Diabetic Activity of Metformin in Experimentally Induced Type-2 Diabetic Encephalopathic Rats. Cell Mol Neurobiol 2017; 37:791-802. [PMID: 27585927 DOI: 10.1007/s10571-016-0418-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 01/11/2023]
Abstract
Piracetam exhibits anti-amnesic activity in several animal models of dementia. However, its anti-amnesic potential has yet to be evaluated in type-2 diabetes mellitus (T2DM)-induced encephalopathy. Therefore, in the present study, piracetam (25, 50 and 100 mg/kg) was screened for anti-amnesic and anti-diabetic activity in T2DM-induced encephalopathic male rats. Subsequently, anti-amnesic and anti-diabetic activities were evaluated for piracetam, metformin and their combination in T2DM-induced encephalopathic animals. Rats received streptozotocin (45 mg/kg) and nicotinamide (110 mg/kg) injections on day-1 (D-1) of the experimental schedule and were kept undisturbed for 35 days to exhibit T2DM-induced encephalopathy. All drug treatments were continued from D-7 to D-35 in both experiments. Piracetam (100 mg/kg) attenuated loss in learning and memory in terms of increase in escape latency on D-4 (D-34) and decrease in time spent in the target quadrant on D-5 (D-35) of Morris water maze test protocol, and spatial memory in terms of reduced spontaneous alternation behavior in Y-maze test of encephalopathic rats. Additionally, piracetam attenuated altered levels of fasting plasma glucose and insulin, HOMA-IR and HOMA-B in encephalopathic animals, comparatively lesser than metformin. In the next experiment, combination of piracetam and metformin exhibited better anti-amnesic but not anti-diabetic activity than respective monotherapies in encephalopathic rats. Further, the combination attenuated reduced acetylcholine level and increased acetylcholinesterase activity, increased glycogen synthase kinase-3β level and decreased brain-derived neurotropic factor level in hippocampus and pre-frontal cortex of encephalopathic animals. Thus, piracetam could be used as an adjuvant to metformin in the management of dementia in T2DM-induced encephalopathy.
Collapse
Affiliation(s)
- Shruti Pandey
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
20
|
Mehta V, Verma P, Sharma N, Sharma A, Thakur A, Malairaman U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: A comparative in-vitro study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Inhibition of DPP-4 Activity and Neuronal Atrophy with Genistein Attenuates Neurological Deficits Induced by Transient Global Cerebral Ischemia and Reperfusion in Streptozotocin-Induced Diabetic Mice. Inflammation 2017; 40:623-635. [PMID: 28091829 DOI: 10.1007/s10753-017-0509-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genistein, an isoflavonoid phytoestrogen, has been known for its potential pharmacological properties especially for neuroprotection and treating diabetes. The present study aims to determine the neuroprotective efficacy of genistein against global cerebral ischemia-reperfusion-induced neuronal injury in streptozotocin-induced diabetic mice and explore the underlying mechanisms. Streptozotocin-induced diabetic mice were subjected to transient cerebral ischemia by occluding both common carotid arteries for 30 min followed by 24 h reperfusion to induce neuronal injury. Effect of genistein (2.5, 5.0, and 10.0 mg/kg, i.p., o.d.) treatment on ischemia-reperfusion-induced neuronal injury in diabetic mice was evaluated in terms of cerebral infarct size, oxidative damage, mitochondrial activity in terms of neuronal apoptosis and cellular viability, dipeptidyl peptidase-4 activity and active glucagon-like peptide-1 concentration, and neurological functions measured as short-term memory and motor performance. Genistein administration following transient cerebral ischemia significantly (p ˂ 0.0001) counteracted cognitive impairment and re-established (p ˂ 0.001) motor performance in diabetic mice. Ischemia-reperfusion increased the infarct size, genistein administration prevented the increase in cerebral infarct size (p ˂ 0.0001) and significantly suppressed (p ˂ 0.001) the increase in cerebral oxidative stress in transient cerebral ischemia-reperfusion subjected diabetic mice. Genistein treatment significantly (p ˂ 0.001) reduced neuronal apoptosis and increased cellular viability (p ˂ 0.0001), almost completely suppressed (p ˂ 0.0001) the circulating dipeptidyl peptidase-4 activity, and enhanced (p ˂ 0.0001) glucagon-like peptide-1 concentration in diabetic mice with cerebral ischemia-reperfusion. This study suggests that genistein has potent neuroprotective activity against global cerebral ischemia-reperfusion-induced neuronal injury and consequent neurological deficits in streptozotocin-induced diabetic mice.
Collapse
|
22
|
Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav 2017; 89:13-22. [PMID: 28025042 DOI: 10.1016/j.yhbeh.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023]
Abstract
Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling.
Collapse
Affiliation(s)
- Vineet Mehta
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Arun Parashar
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Arun Sharma
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Tiratha Raj Singh
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Malairaman Udayabanu
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India.
| |
Collapse
|
23
|
Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol Behav 2017; 171:69-78. [DOI: 10.1016/j.physbeh.2017.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
|
24
|
Patel SS, Mahindroo N, Udayabanu M. Urtica dioica leaves modulates hippocampal smoothened-glioma associated oncogene-1 pathway and cognitive dysfunction in chronically stressed mice. Biomed Pharmacother 2016; 83:676-686. [PMID: 27470568 DOI: 10.1016/j.biopha.2016.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
The present study was aimed to evaluate the effect of Urtica dioica (UD) extract against chronic unpredictable stress (CUS)-induced associative memory dysfunction and attempted to explore the possible mechanism. Male Swiss albino mice (25-30g) were divided into six groups, viz. group-I received 0.3% carboxymethyl cellulose and served as control (CTRL), group II was exposed to CUS (21days) and received vehicle (CUS), group III was subjected to CUS and received Hypericum perforatum extract (350mg/kg, p.o.) (CUS+HYP), group IV received Hypericum perforatum extract (350mg/kg, p.o.) (CTRL+HYP); group V was subjected to CUS and received UD extract (50mg/kg, p.o.) (CUS+UD), group VI received UD extract (50mg/kg, p.o.) (CTRL+UD). CUS significantly induced body weight loss (p<0.05) and associative memory impairment in step down task (p<0.05) as compared to control mice. CUS significantly downregulated Smo (p<0.05), Gli1 (p<0.01), cyclin D1 (p<0.05), BDNF (p<0.01), TrKB (p<0.01) and MAPK1 (p<0.01) mRNA expression in hippocampus as compared to control mice. CUS significantly increased the levels of TBARS (p<0.01) and nitric oxide (p<0.001), and decreased catalase (p<0.001) and total thiol (p<0.01) in plasma resulting in oxidative stress and inflammation. Chronic UD administration significantly reverted CUS mediated body weight loss (p<0.05) and cognitive impairment (p<0.05). UD administration significantly decreased the levels of TBARS (p<0.01) and nitric oxide (p<0.05), and increased the levels of catalase (p<0.01) and total thiol (p<0.05) in plasma. Chronic UD administration significantly upregulated hippocampal Smo (p<0.05), Gli1 (p<0.001), cyclin D1 (p<0.05), BDNF (p<0.05), TrKB (p<0.05) and MAPK1 (p<0.05) in stressed mice. Further, UD extract did not reverse cyclopamine induced downregulation of Gli1 and Ptch1 mRNA in hippocampal slices. UD modulated Smo-Gli1 pathway in the hippocampus as well as exerted anti-inflammatory and antioxidant effects. UD extract might prove to be effective for stress mediated neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India
| | - Neeraj Mahindroo
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India; School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India.
| |
Collapse
|
25
|
Patel SS, Gupta S, Udayabanu M. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice. Metab Brain Dis 2016; 31:601-11. [PMID: 26767366 DOI: 10.1007/s11011-016-9791-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Sahil Gupta
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| |
Collapse
|