1
|
Xing C, Zhang X, Wang D, Chen H, Gao X, Sun C, Guo W, Roshan S, Li Y, Hang Z, Cai S, Lei T, Bi W, Hou L, Li L, Wu Y, Li L, Zeng Z, Du H. Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis. Brain Behav Immun 2024; 122:510-526. [PMID: 39191350 DOI: 10.1016/j.bbi.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024] Open
Abstract
The intricacy and multifaceted nature of Alzheimer's disease (AD) necessitate therapies that target multiple aspects of the disease. Mesenchymal stromal cells (MSCs) emerge as potential agents to mitigate AD symptoms; however, whether their therapeutic efficacy involves modulation of gut microbiota and the microbiome-gut-brain axis (MGBA) remains unexplored. In this study, we evaluated the effects of three distinct MSCs types-derived from the umbilical cord (UCMSC), dental pulp (SHED), and adipose tissue (ADSC)-in an APP/PS1 mouse model of AD. In comparison to saline control, MSCs administration resulted in a significant reduction of behavioral disturbances, amyloid plaques, and phosphorylated tau in the hippocampus and frontal cortex, accompanied by an increase in neuronal count and Nissl body density across AD-afflicted brain regions. Through 16S rRNA gene sequencing, we identified partial restoration of gut microbial balance in AD mice post-MSCs treatment, evidenced by the elevation of neuroprotective Akkermansia and reduction of the AD-associated Sphingomonas. To examine whether gut microbiota involved in MSCs efficacy in treating AD, SHED with better anti-inflammatory and gut microbiota recovery effects among three MSCs, and another AD model 5 × FAD mice with earlier and more pathological proteins in brain than APP/PS1, were selected for further studies. Antibiotic-mediated gut microbial inactivation attenuated MSCs efficacy in 5 × FAD mice, implicating the involvement of gut microbiota in the therapeutic mechanism. Functional analysis of altered gut microbiota and targeted bile acid metabolism profiling revealed a significant enhancement in bile acid variety following MSCs therapy. A chief bile acid constituent, taurocholic acid (TCA), was orally administered to AD mice and similarly abated AD symptoms. Nonetheless, the disruption of intestinal neuronal integrity with enterotoxin abrogated the ameliorative impact of both MSCs and TCA treatments. Collectively, our findings substantiate that MSCs confer therapeutic benefits in AD within a paradigm that primarily involves regulation of gut microbiota and their metabolites through the MGBA.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Donghui Wang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Gao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wenhua Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Shah Roshan
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Shanglin Cai
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Tong Lei
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wangyu Bi
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
2
|
Shi H, Gao X, Yu J, Zhang L, Fan B, Liu Y, Wang X, Fan S, Huang C. Isotschimgine promotes lifespan, healthspan and neuroprotection of Caenorhabditis elegans via the activation of nuclear hormone receptors. Biogerontology 2024; 26:2. [PMID: 39470855 DOI: 10.1007/s10522-024-10142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Isotschimgine (ITG) is a bornane-type monoterpenoid derivative naturally occurring in genus Ferula plants and propolis. Its effects on aging and the underlying mechanisms are not yet well understood. This study employed Caenorhabditis elegans (C. elegans) as a model organism to evaluate the potential of ITG in extending lifespan, enhancing healthspan, and promoting neuroprotection, while exploring the underlying mechanisms involved. The results showed that ITG extended the lifespan and healthspan of C. elegans, significantly enhanced stress resistance and detoxification functions. Studies on mutants and qPCR data indicated that ITG-mediated lifespan extension was modulated by the insulin/IGF-1 signaling pathway and nuclear hormone receptors. Furthermore, ITG markedly increased stress-responsive genes, including daf-16 and its downstream genes sod-3 and hsp-16.2, as well as NHR downstream detoxification-related genes cyp35a1, cyp35b3, cyp35c1, gst-4, pgp-3 and pgp-13. Additionally, ITG alleviated β-amyloid-induced paralysis and behavioral dysfunction in transgenic C. elegans strains. The neuroprotective efficacy of ITG was weakened by RNAi knockdown of nuclear hormone receptors daf-12 and nhr-8. Overall, our study identifies ITG as a potential compound for promoting longevity and neuroprotection, mediated through nuclear hormone receptors.
Collapse
Affiliation(s)
- Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bingbing Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Li C, Wang L, Xie W, Chen E, Chen Y, Li H, Can D, Lei A, Wang Y, Zhang J. TGR5 deficiency in excitatory neurons ameliorates Alzheimer's pathology by regulating APP processing. SCIENCE ADVANCES 2024; 10:eado1855. [PMID: 38941459 PMCID: PMC11212731 DOI: 10.1126/sciadv.ado1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Bile acids (BAs) metabolism has a significant impact on the pathogenesis of Alzheimer's disease (AD). We found that deoxycholic acid (DCA) increased in brains of AD mice at an early stage. The enhanced production of DCA induces the up-regulation of the bile acid receptor Takeda G protein-coupled receptor (TGR5), which is also specifically increased in neurons of AD mouse brains at an early stage. The accumulation of exogenous DCA impairs cognitive function in wild-type mice, but not in TGR5 knockout mice. This suggests that TGR5 is the primary receptor mediating these effects of DCA. Furthermore, excitatory neuron-specific knockout of TGR5 ameliorates Aβ pathology and cognition impairments in AD mice. The underlying mechanism linking TGR5 and AD pathology relies on the downstream effectors of TGR5 and the APP production, which is succinctly concluded as a "p-STAT3-APH1-γ-secretase" signaling pathway. Our studies identified the critical role of TGR5 in the pathological development of AD.
Collapse
Affiliation(s)
- Chenli Li
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangjie Wang
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenting Xie
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Erqu Chen
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanbing Chen
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huifang Li
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Dan Can
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Aiyu Lei
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yue Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jie Zhang
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350122, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
McCormick JW, Ammerman L, Chen G, Vogel PD, Wise JG. Transport of Alzheimer's associated amyloid-β catalyzed by P-glycoprotein. PLoS One 2021; 16:e0250371. [PMID: 33901197 PMCID: PMC8075256 DOI: 10.1371/journal.pone.0250371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
P-glycoprotein (P-gp) is a critical membrane transporter in the blood brain barrier (BBB) and is implicated in Alzheimer’s disease (AD). However, previous studies on the ability of P-gp to directly transport the Alzheimer’s associated amyloid-β (Aβ) protein have produced contradictory results. Here we use molecular dynamics (MD) simulations, transport substrate accumulation studies in cell culture, and biochemical activity assays to show that P-gp actively transports Aβ. We observed transport of Aβ40 and Aβ42 monomers by P-gp in explicit MD simulations of a putative catalytic cycle. In in vitro assays with P-gp overexpressing cells, we observed enhanced accumulation of fluorescently labeled Aβ42 in the presence of Tariquidar, a potent P-gp inhibitor. We also showed that Aβ42 stimulated the ATP hydrolysis activity of isolated P-gp in nanodiscs. Our findings expand the substrate profile of P-gp, and suggest that P-gp may contribute to the onset and progression of AD.
Collapse
Affiliation(s)
- James W. McCormick
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JGW); (JWM)
| | - Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
| | - Gang Chen
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - Pia D. Vogel
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - John G. Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
- The Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
- * E-mail: (JGW); (JWM)
| |
Collapse
|
5
|
Li H, Illés P, Karunaratne CV, Nordstrøm LU, Luo X, Yang A, Qiu Y, Kurland IJ, Lukin DJ, Chen W, Jiskrová E, Krasulová K, Pečinková P, DesMarais VM, Liu Q, Albanese JM, Akki A, Longo M, Coffin B, Dou W, Mani S, Dvořák Z. Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg Chem 2021; 109:104661. [PMID: 33636438 PMCID: PMC8646148 DOI: 10.1016/j.bioorg.2021.104661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | | | | - Xiaoping Luo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Annie Yang
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunping Qiu
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin J Kurland
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dana J Lukin
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Jiskrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Vera M DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qiang Liu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph M Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ashwin Akki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Michael Longo
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breyen Coffin
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Dou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
6
|
Illés P, Krasulová K, Vyhlídalová B, Poulíková K, Marcalíková A, Pečinková P, Sirotová N, Vrzal R, Mani S, Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett 2020; 334:87-93. [DOI: 10.1016/j.toxlet.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
|
7
|
Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020; 11:1203-1219. [PMID: 32401136 PMCID: PMC7524279 DOI: 10.1080/19490976.2020.1758008] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) is not only a nutrient enhancer but also has systemic effects. Trp metabolites signaling through the well-known aryl hydrocarbon receptor (AhR) constitute the interface of microbiome-gut-brain axis. However, the pathway through which Trp metabolites affect central nervous system (CNS) function have not been fully elucidated. AhR participates in a broad variety of physiological and pathological processes that also highly relevant to intestinal homeostasis and CNS diseases. Via the AhR-dependent mechanism, Trp metabolites connect bidirectional signaling between the gut microbiome and the brain, mediated via immune, metabolic, and neural (vagal) signaling mechanisms, with downstream effects on behavior and CNS function. These findings shed light on the complex Trp regulation of microbiome-gut-brain axis and add another facet to our understanding that dietary Trp is expected to be a promising noninvasive approach for alleviating systemic diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing100193, China
| |
Collapse
|
8
|
Auzmendi J, Palestro P, Blachman A, Gavernet L, Merelli A, Talevi A, Calabrese GC, Ramos AJ, Lazarowski A. Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Front Behav Neurosci 2020; 14:32. [PMID: 32256321 PMCID: PMC7090129 DOI: 10.3389/fnbeh.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The “transporters hypothesis” indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Palestro
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Agustín Blachman
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Amalia Merelli
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Graciela Cristina Calabrese
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol 2019; 48:99-106. [PMID: 31525562 DOI: 10.1016/j.coph.2019.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
The wealth of biotransformational capabilities encoded in the microbiome expose the host to an array of bioactive xenobiotic products. Several of these metabolites participate in the communication between the gastrointestinal tract and the central nervous system and have potential to modulate central physiological and pathological processes. This biochemical interplay can occur through various direct and indirect mechanisms. These include binding to host receptors in the brain, stimulation of the vagus nerve in the gut, alteration of central neurotransmission, and modulation of neuroinflammation. Here, the potential for short chain fatty acids, bile acids, neurotransmitters and other bioactive products of the microbiome to participate in the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Giorgia Caspani
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
10
|
Kaur J, Sodhi RK, Madan J, Chahal SK, Kumar R. Forskolin convalesces memory in high fat diet-induced dementia in wistar rats—Plausible role of pregnane x receptors. Pharmacol Rep 2018; 70:161-171. [DOI: 10.1016/j.pharep.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
11
|
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:33-57. [DOI: 10.1016/bs.apcsb.2017.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Padala AK, Wani A, Vishwakarma RA, Kumar A, Bharate SB. Functional induction of P-glycoprotein efflux pump by phenyl benzenesulfonamides: Synthesis and biological evaluation of T0901317 analogs. Eur J Med Chem 2016; 122:744-755. [PMID: 27497733 DOI: 10.1016/j.ejmech.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/17/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
N-(2,2,2-Trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317, 6) is a potent activator of pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. Herein, we aimed to investigate P-gp induction activity of T0901317 and establish its structure-activity relationship. T0901317 along with a series of N-triazolyl-methylene-linked benzenesulfonamides were synthesized and screened for P-gp induction activity using a rhodamine-123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein several compounds showed potent P-gp induction activity at 5 μM. Treatment with benzene sulphonamides led to the decrease in intracellular accumulation of a fluorescent P-gp substrate rhodamine-123 up to 48% (control 100%). In the western-blot studies, T0901317 (6) and its triazole linked analog 26e at 5 μM displayed induction of P-gp expression in LS180 cells. These compounds were non-toxic in LS-180 and human neuroblastoma SH-SY5Y cells (IC50 > 50 μM). The compound 26e showed significant P-gp induction even at 0.3 μM, indicating an excellent therapeutic window. These results clearly indicate promise of this class of compounds as potential agents to enhance amyloid-β clearance in Alzheimers patients.
Collapse
Affiliation(s)
- Anil K Padala
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Abubakar Wani
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
13
|
Huang F, Wang T, Lan Y, Yang L, Pan W, Zhu Y, Lv B, Wei Y, Shi H, Wu H, Zhang B, Wang J, Duan X, Hu Z, Wu X. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Front Behav Neurosci 2015; 9:70. [PMID: 25870546 PMCID: PMC4378301 DOI: 10.3389/fnbeh.2015.00070] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.
Collapse
Affiliation(s)
- Fei Huang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Tingting Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yunyi Lan
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center Baton Rouge, LA, USA
| | - Yonghui Zhu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Boyang Lv
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yuting Wei
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hailian Shi
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Beibei Zhang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jie Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaofeng Duan
- Pharmacy Department, Shanghai East Hospital Shanghai, China
| | - Zhibi Hu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|