1
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
2
|
Kumar P, Gill HS, Singh M, Kaur K, Koupal D, Talukder S, Bernardo A, Amand PS, Bai G, Sehgal SK. Characterization of flag leaf morphology identifies a major genomic region controlling flag leaf angle in the US winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:205. [PMID: 39141073 PMCID: PMC11324803 DOI: 10.1007/s00122-024-04701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Multi-environmental characterization of flag leaf morphology traits in the US winter wheat revealed nine stable genomic regions for different flag leaf-related traits including a major region governing flag leaf angle. Flag leaf in wheat is the primary contributor to accumulating photosynthetic assimilates. Flag leaf morphology (FLM) traits determine the overall canopy structure and capacity to intercept the light, thus influencing photosynthetic efficiency. Hence, understanding the genetic control of these traits could be useful for breeding desirable ideotypes in wheat. We used a panel of 272 accessions from the hard winter wheat (HWW) region of the USA to investigate the genetic architecture of five FLM traits including flag leaf length (FLL), width (FLW), angle (FLANG), length-width ratio, and area using multilocation field experiments. Multi-environment GWAS using 14,537 single-nucleotide polymorphisms identified 36 marker-trait associations for different traits, with nine being stable across environments. A novel and major stable region for FLANG (qFLANG.1A) was identified on chromosome 1A accounting for 9-13% variation. Analysis of spatial distribution for qFLANG.1A in a set of 2354 breeding lines from the HWW region showed a higher frequency of allele associated with narrow leaf angle. A KASP assay was developed for allelic discrimination of qFLANG.1A and was used for its independent validation in a diverse set of spring wheat accessions. Furthermore, candidate gene analysis for two regions associated with FLANG identified seven putative genes of interest for each of the two regions. The present study enhances our understanding of the genetic control of FLM in wheat, particularly FLANG, and these results will be useful for dissecting the genes underlying canopy architecture in wheat facilitating the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Mandeep Singh
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Karanjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Dante Koupal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shyamal Talukder
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research Center, Beaumont, TX, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
3
|
Zhang X, Xing P, Lin C, Wang H, Bao Y, Li X. QTL mapping for the flag leaf-related traits using RILs derived from Trititrigia germplasm line SN304 and wheat cultivar Yannong15 in multiple environments. BMC PLANT BIOLOGY 2024; 24:297. [PMID: 38632517 PMCID: PMC11025246 DOI: 10.1186/s12870-024-04993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Developing and enriching genetic resources plays important role in the crop improvement. The flag leaf affects plant architecture and contributes to the grain yield of wheat (Triticum aestivum L.). The genetic improvement of flag leaf traits faces problems such as a limited genetic basis. Among the various genetic resources of wheat, Thinopyrum intermedium has been utilized as a valuable resource in genetic improvement due to its disease resistance, large spikes, large leaves, and multiple flowers. In this study, a recombinant inbred line (RIL) population was derived from common wheat Yannong15 and wheat-Th. intermedium introgression line SN304 was used to identify the quantitative trait loci (QTL) for flag leaf-related traits. RESULTS QTL mapping was performed for flag leaf length (FLL), flag leaf width (FLW) and flag leaf area (FLA). A total of 77 QTLs were detected, and among these, 51 QTLs with positive alleles were contributed by SN304. Fourteen major QTLs for flag leaf traits were detected on chromosomes 2B, 3B, 4B, and 2D. Additionally, 28 QTLs and 8 QTLs for flag leaf-related traits were detected in low-phosphorus and drought environments, respectively. Based on major QTLs of positive alleles from SN304, we identified a pair of double-ended anchor primers mapped on chromosome 2B and amplified a specific band of Th. intermedium in SN304. Moreover, there was a major colocated QTL on chromosome 2B, called QFll/Flw/Fla-2B, which was delimited to a physical interval of approximately 2.9 Mb and contained 20 candidate genes. Through gene sequence and expression analysis, four candidate genes associated with flag leaf formation and growth in the QTL interval were identified. CONCLUSION These results promote the fine mapping of QFll/Flw/Fla-2B, which have pleiotropic effects, and will facilitate the identification of candidate genes for flag leaf-related traits. Additionally, this work provides a theoretical basis for the application of Th. intermedium in wheat breeding.
Collapse
Affiliation(s)
- Xia Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Piyi Xing
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Caicai Lin
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Honggang Wang
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yinguang Bao
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xingfeng Li
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
- Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
4
|
Thakur V, Rane J, Pandey GC, Yadav S. Image facilitated assessment of intra-spike variation in grain size in wheat under high temperature and drought stress. Sci Rep 2023; 13:19850. [PMID: 37963937 PMCID: PMC10645968 DOI: 10.1038/s41598-023-44503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
In wheat (Triticum aestivum L.), the grain size varies according to position within the spike. Exposure to drought and high temperature stress during grain development in wheat reduces grain size, and this reduction also varies across the length of the spike. We developed the phenomics approach involving image-based tools to assess the intra-spike variation in grain size. The grains were arranged corresponding to the spikelet position and the camera of smart phone was used to acquire 333 images. The open-source software ImageJ was used to analyze features of each grain and the image-derived parameters were used to calculate intra-spike variation as standard deviation (ISVAD). The effect of genotype and environment were highly significant on the ISVAD of grain area. Sunstar and Raj 4079 contrasted in the ISVAD of grain area under late sown environment, and RNA sequencing of the spike was done at 25 days after anthesis. The genes for carbohydrate transport and stress response were upregulated in Sunstar as compared to Raj 4079, suggesting that these play a role in intra-spike assimilate distribution. The phenomics method developed may be useful for grain phenotyping and identifying germplasm with low intra-spike variation in grain size for their further validation as parental material in breeding.
Collapse
Affiliation(s)
- Vidisha Thakur
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, 334006, India.
| | - Girish Chandra Pandey
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Satish Yadav
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, India
| |
Collapse
|
5
|
Ren Y, Sun X, Nie J, Guo P, Wu X, Zhang Y, Gao M, Niaz M, Yang X, Sun C, Zhang N, Chen F. Mapping QTL conferring flag leaf senescence in durum wheat cultivars. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:66. [PMID: 37564974 PMCID: PMC10409934 DOI: 10.1007/s11032-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Flag leaf senescence is a critical factor affecting the yield and quality of wheat. The aim of this study was to identify QTLs associated with flag leaf senescence in an F10 recombinant inbred line population derived from durum wheats UC1113 and Kofa. Bulked segregant analysis using the wheat 660K SNP array identified 3225 SNPs between extreme-phenotype bulks, and the differential SNPs were mainly clustered on chromosomes 1A, 1B, 3B, 5A, 5B, and 7A. BSR-Seq indicated that the significant SNPs were mainly located in two intervals of 354.0-389.0 Mb and 8.0-15.0 Mb on 1B and 3B, respectively. Based on the distribution of significant SNPs on chromosomes 1B and 3B, a total of 109 insertion/deletion (InDel) markers were developed, and 8 of them were finally used to map QTL in UC1113/Kofa population for flag leaf senescence. Inclusive composite interval mapping identified two major QTL in marker intervals Mar2005-Mar2116 and Mar207-Mar289, explaining 14.2-15.4% and 31.4-68.6% of the phenotypic variances across environments, respectively. Using BSR-Seq, gene expression and sequence analysis, the TraesCS1B02G211600 and TraesCS3B02G023000 were identified as candidate senescence-associated genes. This study has potential to be used in cloning key genes for flag leaf senescence and provides available molecular markers for genotyping and marker-assisted selection breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01410-3.
Collapse
Affiliation(s)
- Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaohui Wu
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mengjuan Gao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xia Yang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
6
|
Guo Y, Wang G, Guo X, Chi S, Yu H, Jin K, Huang H, Wang D, Wu C, Tian J, Chen J, Bao Y, Zhang W, Deng Z. Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1189887. [PMID: 37377808 PMCID: PMC10291175 DOI: 10.3389/fpls.2023.1189887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
Protein, starch, and their components are important for wheat grain yield and end-products, which are affected by wheat grain development. Therefore, QTL mapping and a genome-wide association study (GWAS) of grain protein content (GPC), glutenin macropolymer content (GMP), amylopectin content (GApC), and amylose content (GAsC) were performed on wheat grain development at 7, 14, 21, and 28 days after anthesis (DAA) in two environments using a recombinant inbred line (RIL) population of 256 stable lines and a panel of 205 wheat accessions. A total of 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations (MTAs), and 14 conditional MTAs significantly associated (p < 10-4) with four quality traits were found to be distributed on 15 chromosomes, with the phenotypic variation explained (PVE) ranging from 5.35% to 39.86%. Among these genomic variations, three major QTLs [QGPC3B, QGPC2A, and QGPC(S3|S2)3B] and SNP clusters on the 3A and 6B chromosomes were detected for GPC, and the SNP TA005876-0602 was stably expressed during the three periods in the natural population. The QGMP3B locus was detected five times in three developmental stages in two environments with 5.89%-33.62% PVE, and SNP clusters for GMP content were found on the 3A and 3B chromosomes. For GApC, the QGApC3B.1 locus had the highest PVE of 25.69%, and SNP clusters were found on chromosomes 4A, 4B, 5B, 6B, and 7B. Four major QTLs of GAsC were detected at 21 and 28 DAA. Most interestingly, both QTL mapping and GWAS analysis indicated that four chromosomes (3B, 4A, 6B, and 7A) were mainly involved in the development of protein, GMP, amylopectin, and amylose synthesis. Of these, the wPt-5870-wPt-3620 marker interval on chromosome 3B seemed to be most important because it played an important role in the synthesis of GMP and amylopectin before 7 DAA, in the synthesis of protein and GMP from 14 to 21 DAA, and in the development of GApC and GAsC from 21 to 28 DAA. Using the annotation information of IWGSC Chinese Spring RefSeq v1.1 genome assembly, we predicted 28 and 69 candidate genes for major loci from QTL mapping and GWAS, respectively. Most of them have multiple effects on protein and starch synthesis during grain development. These results provide new insights and information for the potential regulatory network between grain protein and starch synthesis.
Collapse
Affiliation(s)
- Yingxin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong, China
| | - Guanying Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- Taiyuan Agro-Tech Extension and Service Center, Taiyuan, Shanxi, China
| | - Songqi Chi
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hui Yu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Kaituo Jin
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Heting Huang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Dehua Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chongning Wu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jichun Tian
- R&D Department, Shandong Huatian Agricultural Technology Co., Ltd, Feicheng, Shandong, China
| | - Jiansheng Chen
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yinguang Bao
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Weidong Zhang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhiying Deng
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
7
|
Zhao L, Yang Y, Hu P, Qiao Q, Lv G, Li J, Liu L, Wei J, Ren Y, Dong Z, Chen F. Genetic mapping and analysis of candidate leaf color genes in common winter wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:48. [PMID: 37313222 PMCID: PMC10248616 DOI: 10.1007/s11032-023-01395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
Leaf color-related genes play key roles in chloroplast development and photosynthetic pigment biosynthesis and affect photosynthetic efficiency and grain yield in crops. In this study, a recessive homozygous individual displaying yellow leaf color (yl1) was identified in the progeny population derived from a cross between wheat cultivars Xingmai1 (XM1) and Yunong3114 (YN3114). Phenotypic identification showed that yl1 exhibited the yellow character state over the entire growth period. Compared with XM1, yl1 plants had significantly lower chlorophyll content and net photosynthetic rate, and similar results were found between the green-type lines and yellow-type lines in the BC2F3 XM1 × yl1 population. Gene mapping via the bulked segregant exome capture sequencing (BSE-seq) method showed that the target gene TaYL1 was located within the region of 582,556,971-600,837,326 bp on chromosome 7D. Further analysis by RNA-seq suggested TraesCS7D02G469200 as a candidate gene for yellow leaf color in common wheat, which encodes a protein containing the AP2 domain. Moreover, comparative transcriptome profiling revealed that most differentially expressed genes (DEGs) were enriched in chlorophyll metabolism and photosynthesis pathways. Together, these results indicate that TaYL1 potentially affects chlorophyll synthesis and photosynthesis. This study further elucidates the biological mechanism of chlorophyll synthesis, metabolism, and photosynthesis in wheat and provides a theoretical basis for high photosynthetic efficiency in wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01395-z.
Collapse
Affiliation(s)
- Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yulu Yang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Pengyu Hu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Qi Qiao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Jiaqi Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Jiajie Wei
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|
8
|
Niu J, Si Y, Tian S, Liu X, Shi X, Ma S, Yu Z, Ling HQ, Zheng S. A Wheat 660 K SNP array-based high-density genetic map facilitates QTL mapping of flag leaf-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:51. [PMID: 36913011 DOI: 10.1007/s00122-023-04248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
A high-density genetic map containing 122,620 SNP markers was constructed, which facilitated the identification of eight major flag leaf-related QTL in relatively narrow intervals. The flag leaf plays an important role in photosynthetic capacity and yield potential in wheat. In this study, we used a recombinant inbred line population containing 188 lines derived from a cross between 'Lankao86' (LK86) and 'Ermangmai' to construct a genetic map using the Wheat 660 K single-nucleotide polymorphism (SNP) array. The high-density genetic map contains 122,620 SNP markers spanning 5185.06 cM. It shows good collinearity with the physical map of Chinese Spring and anchors multiple sequences of previously unplaced scaffolds onto chromosomes. Based on the high-density genetic map, we identified seven, twelve, and eight quantitative trait loci (QTL) for flag leaf length (FLL), width (FLW), and area (FLA) across eight environments, respectively. Among them, three, one, and four QTL for FLL, FLW, and FLA are major and stably express in more than four environments. The physical distance between the flanking markers for QFll.igdb-3B/QFlw.igdb-3B/QFla.igdb-3B is only 444 kb containing eight high confidence genes. These results suggested that we could directly map the candidate genes in a relatively small region by the high-density genetic map constructed with the Wheat 660 K array. Furthermore, the identification of environmentally stable QTL for flag leaf morphology laid a foundation for the following gene cloning and flag leaf morphology improvement.
Collapse
Affiliation(s)
- Jianqing Niu
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengwei Ma
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhongqing Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Hong-Qing Ling
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Zanella CM, Rotondo M, McCormick‐Barnes C, Mellers G, Corsi B, Berry S, Ciccone G, Day R, Faralli M, Galle A, Gardner KA, Jacobs J, Ober ES, Sánchez del Rio A, Van Rie J, Lawson T, Cockram J. Longer epidermal cells underlie a quantitative source of variation in wheat flag leaf size. THE NEW PHYTOLOGIST 2023; 237:1558-1573. [PMID: 36519272 PMCID: PMC10107444 DOI: 10.1111/nph.18676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.
Collapse
Affiliation(s)
| | - Marilena Rotondo
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | | | | | | | | | - Giulia Ciccone
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | - Rob Day
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | - Michele Faralli
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Alexander Galle
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | - John Jacobs
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | | | - Jeroen Van Rie
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | |
Collapse
|
10
|
Du B, Wu J, Islam MS, Sun C, Lu B, Wei P, Liu D, Chen C. Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat. PLoS One 2022; 17:e0276602. [PMID: 36279291 PMCID: PMC9591062 DOI: 10.1371/journal.pone.0276602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
11
|
Mehla S, Kumar U, Kapoor P, Singh Y, Sihag P, Sagwal V, Balyan P, Kumar A, Ahalawat N, Lakra N, Singh KP, Pesic V, Djalovic I, Mir RR, Dhankher OP. Structural and functional insights into the candidate genes associated with different developmental stages of flag leaf in bread wheat ( Triticum aestivum L.). Front Genet 2022; 13:933560. [PMID: 36092892 PMCID: PMC9449350 DOI: 10.3389/fgene.2022.933560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Grain yield is one of the most important aims for combating the needs of the growing world population. The role of development and nutrient transfer in flag leaf for higher yields at the grain level is well known. It is a great challenge to properly exploit this knowledge because all the processes, starting from the emergence of the flag leaf to the grain filling stages of wheat (Triticum aestivum L.), are very complex biochemical and physiological processes to address. This study was conducted with the primary goal of functionally and structurally annotating the candidate genes associated with different developmental stages of flag leaf in a comprehensive manner using a plethora of in silico tools. Flag leaf-associated genes were analyzed for their structural and functional impacts using a set of bioinformatics tools and algorithms. The results revealed the association of 17 candidate genes with different stages of flag leaf development in wheat crop. Of these 17 candidate genes, the expression analysis results revealed the upregulation of genes such as TaSRT1-5D, TaPNH1-7B, and TaNfl1-2B and the downregulation of genes such as TaNAP1-7B, TaNOL-4D, and TaOsl2-2B can be utilized for the generation of high-yielding wheat varieties. Through MD simulation and other in silico analyses, all these proteins were found to be stable. Based on the outcome of bioinformatics and molecular analysis, the identified candidate genes were found to play principal roles in the flag leaf development process and can be utilized for higher-yield wheat production.
Collapse
Affiliation(s)
- Sheetal Mehla
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Prexha Kapoor
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P. G. College, CCS University, Meerut, India
| | - Anuj Kumar
- Shantou University Medical College, Shantou, China
- Dalhousie University, Halifax, NS, Canada
| | - Navjeet Ahalawat
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, India
- Vice-Chancellor’s Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Vladan Pesic
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Chen S, Liu F, Wu W, Jiang Y, Zhan K. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3895-3909. [PMID: 34436627 DOI: 10.1007/s00122-021-03935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The genetic architecture of five flag leaf morphology traits was dissected by the functional haplotype-based GWAS and a standard SNP-based GWAS in a diverse population consisting of 197 varieties. Flag leaf morphology (FLM) is a critical factor affecting plant architecture and grain yield in wheat. The genetic architecture of FLM traits has been extensively studied with QTL mapping in bi-parental populations, while few studies exploited genome-wide association studies (GWAS) in diverse populations. In this study, a panel of 197 elite and historical varieties from China was evaluated for five FLM traits including the length (FLL), width (FLW), ratio (FLR), area (FLA) and angle (FLANG) as well as yield in nine environments. Based on the phenotypic correlation between yield and FLL (-0.43), FLA (- 0.32) and FLW (0.11), an empirical FLM index combining the three FLM traits proved to be a good predictor for yield. Two GWAS approaches were applied to dissect the genetic architecture of five FLM traits with a Wheat660K SNP array. The functional haplotype-based GWAS revealed 6, 5 and 7 QTL for FLANG, FLL and FLR, respectively, whereas two QTL for FLW and one for FLR were identified by the standard SNP-based GWAS. Due to co-localization, there were 18 independent QTL and 10 of them were close to known ones. One co-localized QTL on chromosome 5A was associated with FLL, FLANG and FLR. Moreover, both GWAS approaches identified a novel QTL for FLR on chromosome 6B which was not reported in previous studies. This study provides new insights into the relationship between FLM and yield and broadens our understanding of the genetic architecture of FLM traits in wheat.
Collapse
Affiliation(s)
- Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fang Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Wenxue Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Kehui Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2079-2095. [PMID: 33687497 PMCID: PMC8263538 DOI: 10.1007/s00122-021-03806-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Four genomic regions on chromosomes 4A, 6A, 7B, and 7D were discovered, each with multiple tightly linked QTL (QTL clusters) associated with two to three yield components. The 7D QTL cluster was associated with grain yield, fertile spikelet number per spike, thousand kernel weight, and heading date. It was located in the flanking region of FT-D1, a homolog gene of Arabidopsis FLOWERING LOCUS T, a major gene that regulates wheat flowering. Genetic manipulation of yield components is an important approach to increase grain yield in wheat (Triticum aestivum). The present study used a mapping population comprised of 181 doubled haploid lines derived from two high-yielding spring wheat cultivars, UI Platinum and LCS Star. The two cultivars and the derived population were assessed for six traits in eight field trials primarily in Idaho in the USA. The six traits were grain yield, fertile spikelet number per spike, productive tiller number per unit area, thousand kernel weight, heading date, and plant height. Quantitative Trait Locus (QTL) analysis of the six traits was conducted using 14,236 single-nucleotide polymorphism (SNP) markers generated from the wheat 90 K SNP and the exome and promoter capture arrays. Of the 19 QTL detected, 14 were clustered in four chromosomal regions on 4A, 6A, 7B and 7D. Each of the four QTL clusters was associated with multiple yield component traits, and these traits were often negatively correlated with one another. As a result, additional QTL dissection studies are needed to optimize trade-offs among yield component traits for specific production environments. Kompetitive allele-specific PCR markers for the four QTL clusters were developed and assessed in an elite spring wheat panel of 170 lines, and eight of the 14 QTL were validated. The two parents contain complementary alleles for the four QTL clusters, suggesting the possibility of improving grain yield via genetic recombination of yield component loci.
Collapse
Affiliation(s)
- Kyle Isham
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Rui Wang
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Weidong Zhao
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Justin Wheeler
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Natalie Klassen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Eduard Akhunov
- Department of Plant Sciences, Kansas State University, Manhattan, KS, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA.
| |
Collapse
|
14
|
Tu Y, Liu H, Liu J, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Pu Z, Chen G, Peng Y, Jiang Y, Xu Q, Kang H, Lan X, Wei Y, Zheng Y, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:261-278. [PMID: 33026461 DOI: 10.1007/s00122-020-03695-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 05/24/2023]
Abstract
Eight major and stably expressed QTL for flag leaf morphology across eleven environments were identified and validated using newly developed KASP markers in seven biparental populations with different genetic backgrounds. Flag leaf morphology is a determinant trait influencing plant architecture and yield potential in wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population with a 55 K SNP-based constructed genetic map was used to map quantitative trait loci (QTL) for flag leaf length (FLL), width (FLW), area (FLA), angle (FLANG), opening angle (FLOA), and bend angle (FLBA) in eleven environments. Eight major QTL were detected in 11 environments with 5.73-54.38% of explained phenotypic variation. These QTL were successfully verified using the newly developed Kompetitive Allele Specific PCR (KASP) markers in six biparental populations with different genetic backgrounds. Among these 8 major QTL, two co-located intervals were identified. Significant interactions for both FLL- and FLW-related QTL were detected. Comparison analysis showed that QFll.sau-SY-2B and QFla.sau-SY-2B are likely new loci. Significant relationships between flag leaf- and yield-related traits were observed and discussed. Several genes associated with leaf development including the ortholog of maize ZmRAVL1, a B3-domain transcription factor involved in regulation of leaf angle, were predicted in physical intervals harboring these major QTL on reference genomes of bread wheat 'Chinese spring', T. turgidum, and Aegilops tauschii. Taken together, these results broaden our understanding on genetic basis of flag leaf morphology and provide clues for fine mapping and marker-assisted breeding wheat with optimized plant architecture for promising loci.
Collapse
Affiliation(s)
- Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Zakieh M, Gaikpa DS, Leiva Sandoval F, Alamrani M, Henriksson T, Odilbekov F, Chawade A. Characterizing Winter Wheat Germplasm for Fusarium Head Blight Resistance Under Accelerated Growth Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:705006. [PMID: 34512690 PMCID: PMC8425451 DOI: 10.3389/fpls.2021.705006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.
Collapse
Affiliation(s)
- Mustafa Zakieh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - David S. Gaikpa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Marwan Alamrani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- Lantmännen Lantbruk, Svalöv, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Aakash Chawade,
| |
Collapse
|
16
|
Wang Z, Hu H, Jiang X, Tao Y, Lin Y, Wu F, Hou S, Liu S, Li C, Chen G, Liu Y. Identification and Validation of a Novel Major Quantitative Trait Locus for Plant Height in Common Wheat ( Triticum aestivum L.). Front Genet 2020; 11:602495. [PMID: 33193748 PMCID: PMC7642865 DOI: 10.3389/fgene.2020.602495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
Plant height (PH) plays a pivotal role in plant morphological architecture and is associated with yield potential in wheat. For the quantitative trait locus (QTL) analysis, a recombinant inbred line population was developed between varieties differing significantly in PH. Two major QTL were identified on chromosomes 4B (QPh.sicau-4B) and 6D (QPh.sicau-6D) in multiple environments, which were then validated in two different backgrounds by using closely linked markers. QPh.sicau-4B explained 10.1-21.3% of the phenotypic variance, and the location corresponded to the dwarfing gene Rht-B1. QPh.sicau-6D might be a novel QTL for PH, explaining 6.6-13.6% of the phenotypic variance and affecting spike length, thousand-kernel weight, and spikelet compactness. Three candidate genes associated with plant growth and development were identified in the physical interval of QPh.sicau-6D. Collectively, we identified a novel stable and major PH QTL, QPh.sicau-6D, which could aid in the development of closely linked markers for marker-assisted breeding and cloning genes underlying this QTL.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Hu
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Tao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuai Hou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
17
|
Abstract
Wheat was one of the first grain crops domesticated by humans and remains among the major contributors to the global calorie and protein budget. The rapidly expanding world population demands further enhancement of yield and performance of wheat. Phenotypic information has historically been instrumental in wheat breeding for improved traits. In the last two decades, a steadily growing collection of tools and imaging software have given us the ability to quantify shoot, root, and seed traits with progressively increasing accuracy and throughput. This review discusses challenges and advancements in image analysis platforms for wheat phenotyping at the organ level. Perspectives on how these collective phenotypes can inform basic research on understanding wheat physiology and breeding for wheat improvement are also provided.
Collapse
|
18
|
Lin Y, Jiang X, Tao Y, Yang X, Wang Z, Wu F, Liu S, Li C, Deng M, Ma J, Chen G, Wei Y, Zheng Y, Liu Y. Identification and validation of stable quantitative trait loci for grain filling rate in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2377-2385. [PMID: 32430666 DOI: 10.1007/s00122-020-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/09/2020] [Indexed: 05/19/2023]
Abstract
We identified and validated two stable grain filling rate (GFR) quantitative trait loci (QTL) in wheat that positively influenced several yield-related traits. Among them, QGfr.sicau-7D.1 was a novel GFR QTL. The grain filling rate (GFR) plays a crucial role in determining grain yield. To advance the current understanding of the genetic characteristics underlying the GFR in common wheat, three recombinant inbred line populations were used to map and validate GFR quantitative trait loci (QTL). Using a high-density genetic linkage map, 10 GFR QTL were detected. They were located on chromosomes 2D, 4A, 4B, 5B, 6D, 7A and 7D, explained 4.99-12.62% of the phenotypic variation. Two of them, QGfr.sicau-6D and QGfr.sicau-7D.1, were detected in all four environments tested and their genetic effect was validated by closely linked kompetitive allele specific PCR (KASP) markers in different genetic backgrounds. The effects of these two GFR QTL on other yield-related traits were also estimated. QGfr.sicau-6D had a significant positive influence (p < 0.01) on thousand kernel weight, kernel width, kernel volume, and kernel surface area. QGfr.sicau-7D.1 had a significant positive influence (p < 0.01) on thousand kernel weight and kernel length. Furthermore, QGfr.sicau-7D.1 was a completely novel QTL for GFR; several genes associated with grain growth and development were predicted in its physical interval. These results will facilitate molecular marker-assisted selection of wheat with high-confidence QTL for GFR and fine mapping of genes associated with GFR, thereby contributing to yield improvement.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yang Tao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xilan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
19
|
Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y. A Genome-Wide Association Study of Coleoptile Length in Different Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2020; 11:677. [PMID: 32582239 PMCID: PMC7287122 DOI: 10.3389/fpls.2020.00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 05/26/2023]
Abstract
From the perspective of wheat yield improvement, the coleoptile is vital for successful crop establishment, and long coleoptile lengths (CLs) are preferred in wheat-growing regions where deep planting is practiced. To determine the genetic basis of CL, we performed a genome-wide association study on a set of 707 Chinese wheat landraces using 18,594 single-nucleotide polymorphisms and 38,678 diversity array technology sequencing markers. We accordingly detected a total of 29 significant markers [-log10 (P) > 4.76] distributed on chromosomes 2B, 2D, 3A, 4A, 5A, 6A, 6B, 6D, and 7B. Based on linkage disequilibrium decay distance, we identified a total of 17 quantitative trait loci associated with CL, among which QCl.sicau-6B.2, located at 508.17-509.26 Mb on chromosome 6B, was recognized as a novel major locus. We subsequently developed a high-resolution melt marker for QCl.sicau-6B.2, which was validated in an F 2 : 3 population. Our findings provide important insights into the genetic mechanisms underlying coleoptile growth and could be applied to marker-assisted wheat selection.
Collapse
Affiliation(s)
- Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Si Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuonan Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
20
|
Yan X, Wang S, Yang B, Zhang W, Cao Y, Shi Y, Sun D, Jing R. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS One 2020; 15:e0229912. [PMID: 32191715 PMCID: PMC7082017 DOI: 10.1371/journal.pone.0229912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/17/2020] [Indexed: 11/29/2022] Open
Abstract
The flag leaf is the main organ of photosynthesis during grain-filling period of wheat, and flag leaf-related traits affect plant morphology and yield potential. In this study, two BC3F6 introgression line (IL) populations derived from the common recipient parent Lumai 14 with Jing 411 and Shaanhan 8675, respectively, were used to map quantitative trait loci (QTL) for flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA) and chlorophyll content (CC) at flowering stage and 15 and 20 days after anthesis (DAA) in 2016–2017 (E1) and 2017–2018 (E2) two environments. A total of 14 and 15 QTLs for flag leaf-related traits were detected in Lumai 14 / Jing 411 and Lumai 14 / Shaanhan 8675 populations, respectively. Among them, Both QFLW-6A and QFLA-6A were detected in Lumai 14 / Jing 411 population under E2 and in Lumai 14 / Shaanhan 8675 population under E1 and E2 environments, respectively. QCCS2-3A from Lumai 14 / Jing 411 population and QCCS3-1A, QFLL-4A and QFLL-6A from Lumai 14 / Shaanhan 8675 population were repeatedly identified under two tested environments. Moreover, eight QTL clusters controlling flag leaf-related traits were identified, which provided a genetic basis for significant correlations in phenotype among these traits. On the other hand, positive alleles of QFLW-6A for FLW detected in two populations were derived from their donors. Eighteen lines and 44 lines carried this QTL were found in Lumai 14 / Jing 411 and Lumai 14 / Shaanhan 8675 populations, respectively. The means of FLW in these lines were wider than that of the recipient parent, Lumai 14, in two environments, suggesting that QFLW-6A played an important role for increasing FLW. The IL 124 in Lumai 14 / Jing 411 population and the IL 59 and IL 127 in Lumai 14 / Shaanhan 8675 population had five, five and four donor chromosomal segments which carried no other QTL controlling FLW than QFLW-6A, respectively. And the FLWs of these lines were significantly greater than that of Lumai 14 under two environments. So these lines and their donor parent can be regarded as potential near-isogenic lines. Further, a synteny analysis found QFLW-6A was near the 574,283,851–574,283,613 bp fragment on chromosome 6A and 10 genes were in the range of 500 kb upstream and downstream of the fragment. These results provide the basis for identification of candidate gene and map-based cloning and functional verification of the QTL.
Collapse
Affiliation(s)
- Xue Yan
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuguang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bin Yang
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Wenjun Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yaping Cao
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
- * E-mail: (DS); (RJ)
| | - Ruilian Jing
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing, China
- * E-mail: (DS); (RJ)
| |
Collapse
|
21
|
Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, Ma X, Xu S, Jia J, Kong L, Wang H. QTL mapping for yield-related traits in wheat based on four RIL populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:917-933. [PMID: 31897512 DOI: 10.1007/s00122-019-03515-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Eight environmentally stable QTL for grain yield-related traits were detected by four RIL populations, and two of them were validated by a natural wheat population containing 580 diverse varieties or lines. Yield and yield-related traits are important factors in wheat breeding. In this study, four RIL populations derived from the cross of one common parent Yanzhan 1 (a Chinese domesticated cultivar) and four donor parents including Hussar (a British domesticated cultivar) and three semi-wild wheat varieties in China were phenotyped for 11 yield-related traits in eight environments. An integrated genetic map containing 2009 single-nucleotide polymorphism (SNP) markers generated from a 90 K SNP array was constructed to conduct quantitative trait loci (QTL) analysis. A total of 161 QTL were identified, including ten QTL for grain yield per plant (GYP) and yield components, 49 QTL for spike-related traits, 43 QTL for flag leaf-related traits, 22 QTL for plant height (PH), and 37 QTL for heading date and flowering date. Eight environmentally stable QTL were validated in individual RIL population where the target QTL was notably detected, and six of them had a significant effect on GYP. Furthermore, Two QTL, QSPS-2A.4 and QSL-4A.1, were also validated in a natural wheat population containing 580 diverse varieties or lines, which provided valuable resources for further fine mapping and genetic improvement in yield in wheat.
Collapse
Affiliation(s)
- Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000, China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
22
|
Hu W, Gao D, Wu H, Liu J, Zhang C, Wang J, Jiang Z, Liu Y, Li D, Zhang Y, Lu C. Genome-wide association mapping revealed syntenic loci QFhb-4AL and QFhb-5DL for Fusarium head blight resistance in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2020; 20:29. [PMID: 31959107 PMCID: PMC6971946 DOI: 10.1186/s12870-019-2177-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We conducted a genome-wide association study (GWAS) using the high-density wheat 90 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. RESULTS The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90 K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. CONCLUSION The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.
Collapse
Affiliation(s)
- Wenjing Hu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 45002, Henan, China
| | - Derong Gao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Hongya Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Jian Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Chunmei Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Junchan Wang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Zhengning Jiang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yeyu Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Dongsheng Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yong Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China.
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
| | - Chengbin Lu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China.
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China.
| |
Collapse
|
23
|
Guo H, Xiong H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Functional mutation allele mining of plant architecture and yield-related agronomic traits and characterization of their effects in wheat. BMC Genet 2019; 20:102. [PMID: 31888475 PMCID: PMC6937682 DOI: 10.1186/s12863-019-0804-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. RESULTS Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. CONCLUSION Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.
Collapse
Affiliation(s)
- Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
24
|
Tshikunde NM, Mashilo J, Shimelis H, Odindo A. Agronomic and Physiological Traits, and Associated Quantitative Trait Loci (QTL) Affecting Yield Response in Wheat ( Triticum aestivum L.): A Review. FRONTIERS IN PLANT SCIENCE 2019; 10:1428. [PMID: 31749826 PMCID: PMC6848381 DOI: 10.3389/fpls.2019.01428] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/15/2019] [Indexed: 05/21/2023]
Abstract
Enhanced grain yield has been achieved in bread wheat (Triticum aestivum L.) through development and cultivation of superior genotypes incorporating yield-related agronomic and physiological traits derived from genetically diverse and complementary genetic pool. Despite significant breeding progress, yield levels in wheat have remained relatively low and stagnant under marginal growing environments. There is a need for genetic improvement of wheat using yield-promoting morpho-physiological attributes and desired genotypes under the target production environments to meet the demand for food and feed. This review presents breeding progress in wheat for yield gains using agronomic and physiological traits. Further, the paper discusses globally available wheat genetic resources to identify and select promising genotypes possessing useful agronomic and physiological traits to enhance water, nutrient-, and radiation-use efficiency to improve grain yield potential and tolerance to abiotic stresses (i.e. elevated CO2, high temperature, and drought stresses). Finally, the paper highlights quantitative trait loci (QTL) linked to agronomic and physiological traits to aid breeding of high-performing wheat genotypes.
Collapse
Affiliation(s)
- Nkhathutsheleni Maureen Tshikunde
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Jacob Mashilo
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Limpopo Department of Agriculture and Rural Development, Research Services, Towoomba Research Station, Bela-Bela, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Alfred Odindo
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
25
|
Sheoran S, Jaiswal S, Kumar D, Raghav N, Sharma R, Pawar S, Paul S, Iquebal MA, Jaiswar A, Sharma P, Singh R, Singh CP, Gupta A, Kumar N, Angadi UB, Rai A, Singh GP, Kumar D, Tiwari R. Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS. FRONTIERS IN PLANT SCIENCE 2019; 10:527. [PMID: 31134105 PMCID: PMC6511880 DOI: 10.3389/fpls.2019.00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 05/13/2023]
Abstract
Wheat genetic improvement by integration of advanced genomic technologies is one way of improving productivity. To facilitate the breeding of economically important traits in wheat, SNP loci and underlying candidate genes associated with the 36 agro-morphological traits were studied in a diverse panel of 404 genotypes. By using Breeders' 35K Axiom array in a comprehensive genome-wide association study covering 4364.79 cM of the wheat genome and applying a compressed mixed linear model, a total of 146 SNPs (-log10 P ≥ 4) were found associated with 23 traits out of 36 traits studied explaining 3.7-47.0% of phenotypic variance. To reveal this a subset of 260 genotypes was characterized phenotypically for six quantitative traits [days to heading (DTH), days to maturity (DTM), plant height (PH), spike length (SL), awn length (Awn_L), and leaf length (Leaf_L)] under five environments. Gene annotations mined ∼38 putative candidate genes which were confirmed using tissue and stage specific gene expression data from RNA Seq. We observed strong co-localized loci for four traits (glume pubescence, SL, PH, and awn color) on chromosome 1B (24.64 cM) annotated five putative candidate genes. This study led to the discovery of hitherto unreported loci for some less explored traits (such as leaf sheath wax, awn attitude, and glume pubescence) besides the refined chromosomal regions of known loci associated with the traits. This study provides valuable information of the genetic loci and their potential genes underlying the traits such as awn characters which are being considered as important contributors toward yield enhancement.
Collapse
Affiliation(s)
- Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Deepender Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ruchika Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sushma Pawar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Surinder Paul
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - M. A. Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Akanksha Jaiswar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Arun Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeraj Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - U. B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
26
|
Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)). PLoS One 2018; 13:e0206226. [PMID: 30352102 PMCID: PMC6198983 DOI: 10.1371/journal.pone.0206226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
The canopy leaves including the top three, i.e., the flag, the 2nd and 3rd from the top, are important for photosynthesis and grain yield of wheat. Molecular markers associated with traits of these leaves should be helpful for the high-yielding breeding. In this study, 1366 single nucleotide polymorphisms (SNP) markers covering the whole genome of durum wheat were used to genotype 150 cultivars collected from 46 countries and regions in the world. Leaf length, leaf width and chlorophyll content of the top three leaves were measured, respectively, in three consecutive years. Association analyses were performed on the leaf traits and SNP markers. A total of 120 SNP marker associations were detected on 13 of the 14 chromosomes. Among these markers, 83 were associated with the canopy leaf traits, 10 with 1000-grain weight, and 29 with kernel number per spike. This study is helpful for better understanding the potential and genetic basis of functional leaves, and facilitates pyramiding of the favorable alleles using marker assisted selection for ideal plant-type and high photosynthesis efficiency in durum wheat breeding.
Collapse
|
27
|
Yang X, Liu Y, Wu F, Jiang X, Lin Y, Wang Z, Zhang Z, Ma J, Chen G, Wei Y, Zheng Y. Quantitative trait loci analysis of root traits under phosphorus deficiency at the seedling stage in wheat. Genome 2018; 61:209-215. [PMID: 29373804 DOI: 10.1139/gen-2017-0159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficiency of available phosphorus (P) in soil limits wheat production and creates a need to develop P-deficiency-tolerant cultivars. Plant roots, important organs for absorbing nutrients and synthesizing growth regulators, are good candidates for P-efficiency screening. In this study, we evaluated five root traits under hydroponic culture conditions either with (AP) or without (NP) applied P in a recombinant inbred line population (H461/CM107) of Triticum aestivum L. at the seedling stage. Four significant quantitative trait loci (QTL) were detected, on chromosomes 1D, 2D, 3D, and 7D in NP-treated plants, explaining up to 13.0%, 11.0%, 14.4%, and 12.8% of the phenotypic variance, respectively. Among these QTL, Qrt.sicau-3D and Qrt.sicau-7D showed pleiotropic and additive effects. All QTL were found to be novel. The diversity array technology markers flanking the QTL were converted to simple sequence repeat markers that can be deployed in future genetic studies of P deficiency. These QTL lead to an increase in root biomass and respond to P-deficiency stress; these characteristics are crucial to improve root traits for breeding or further investigation of the gene(s) involved in P-deficiency tolerance.
Collapse
Affiliation(s)
- Xilan Yang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yaxi Liu
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Fangkun Wu
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaojun Jiang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yu Lin
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhiqiang Wang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhengli Zhang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jian Ma
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Guangdeng Chen
- b College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yuming Wei
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Youliang Zheng
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|