1
|
Gan P, Luo X, Wei H, Hu Y, Li R, Luo J. Identification of hub genes that variate the qCSS12-mediated cold tolerance between indica and japonica rice using WGCNA. PLANT CELL REPORTS 2023; 43:24. [PMID: 38150036 DOI: 10.1007/s00299-023-03093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/05/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Cold-tolerant QTL qCSS12-regulated 14 hub genes are involved in the chloroplastic biological processes and in the protein synthesis and degradation processes in japonica rice. Low temperature is a main constraint factor for rice growth and production. To better understand the regulatory mechanisms underlying the cold tolerance phenotype in rice, here, we selected a cold-sensitive nearly isogenic line (NIL) NIL(qcss12) as materials to identify hub genes that are mediated by the cold-tolerant locus qCSS12 through weighted gene co-expression network analysis (WGCNA). Fourteen cold-responsive genes were identified, of which, 6 are involved in regulating biological processes in chloroplasts, including the reported EF-Tu, Prk, and ChlD, and 8 are involved in the protein synthesis and degradation processes. Differential expression of these genes between NIL(qcss12) and its controls under cold stress may be responsible for qCSS12-mediated cold tolerance in japonica rice. Moreover, natural variations in 12 of these hub genes are highly correlated with the cold tolerance divergence in two rice subspecies. The results provide deep insights into a better understanding of the molecular basis of cold adaptation in rice and provide a theoretical basis for molecular breeding.
Collapse
Affiliation(s)
- Ping Gan
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Xianglan Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Hanxing Wei
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Yunfei Hu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Jijing Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Eller F, Lambertini C, Nielsen MW, Radutoiu S, Brix H. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature. Ecol Evol 2014; 4:4161-72. [PMID: 25505541 PMCID: PMC4242567 DOI: 10.1002/ece3.1282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 11/08/2022] Open
Abstract
It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na(+)/H(+) antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions.
Collapse
Affiliation(s)
- Franziska Eller
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark ; Biocenter Klein Flottbek, Hamburg University Ohnhorststrasse 18, Hamburg, D-22609, Germany
| | - Carla Lambertini
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark
| | - Mette W Nielsen
- Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark
| |
Collapse
|
3
|
Carmo LST, Resende RO, Silva LP, Ribeiro SG, Mehta A. Identification of host proteins modulated by the virulence factor AC2 of Tomato chlorotic mottle virus in Nicotiana benthamiana. Proteomics 2013; 13:1947-60. [PMID: 23533094 DOI: 10.1002/pmic.201200547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 11/09/2022]
Abstract
Tomato, one of the most important crops cultivated worldwide, has been severely affected by begomoviruses such as the Tomato chlorotic mottle virus (ToCMoV). Virulence factor AC2 is considered crucial for a successful virus-plant interaction and is known to act as a transcriptional activator and in some begomoviruses to function as an RNA silencing suppressor factor. However, the exact functions of the AC2 protein of the begomovirus ToCMoV are not yet established. The aim of the present study was to identify differentially expressed proteins of the model plant Nicotiana benthamiana in response to the expression of the AC2 gene, isolated from ToCMoV. N. benthamiana plants were inoculated with Agrobacterium tumefaciens containing the viral vector Potato virus X (PVX) and with the PVX-AC2 construction. 2DE was performed and proteins were identified by MS. The results showed that the expression of ToCMoV AC2 alters the levels of several host proteins, which are important for normal plant development, causing an imbalance in cellular homeostasis. This study highlights the effect of AC2 in the modulation of plant defense processes by increasing the expression of several oxidative stress-related and pathogenesis-related proteins, as well as its role in modulating the proteome of the photosynthesis and energy production systems.
Collapse
|
4
|
Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One 2012; 7:e49500. [PMID: 23152915 PMCID: PMC3496715 DOI: 10.1371/journal.pone.0049500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022] Open
Abstract
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4) plants.
Collapse
Affiliation(s)
- Xiuli Hu
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Chaohai Li
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Minghui Lu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Tianxue Liu
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ying Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
5
|
Molecular analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum). Mol Biol Rep 2010; 38:561-7. [PMID: 20358295 DOI: 10.1007/s11033-010-0141-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
In anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UFGT) catalyzes the transfer of the glucosyl moiety from UDP-glucose to the 3-hydroxyl group of anthocyanidins, producing the first stable anthocyanins. The full-length cDNA of UFGT (designated as StUFGT) was isolated and characterized from Solanum tuberosum. The full-length cDNA of StUFGT was 1536 bp containing a 1344 bp open reading frame (ORF) encoding 448 amino acids with a calculated molecular mass of 49.9 kDa and an isoelectric point of 5.62. Comparative and bioinformatic analyses revealed that StUFGT has extensive homology with UFGTs from other plant species. Phylogenetic analysis indicates that StUFGT belongs to the plant UFGT cluster. StUFGT was found to be expressed in roots, stems, leafstalks and leaves. Expression profiling analysis revealed that StUFGT expression was induced correspondingly by exogenous elicitors including gibberellic acid and sucrose, suggesting that UFGT might play a regulatory role in anthocyanin biosynthesis in Solanum tuberosum at the transcriptional level.
Collapse
|
6
|
Rumpho ME, Pochareddy S, Worful JM, Summer EJ, Bhattacharya D, Pelletreau KN, Tyler MS, Lee J, Manhart JR, Soule KM. Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. MOLECULAR PLANT 2009; 2:1384-96. [PMID: 19995736 PMCID: PMC2782795 DOI: 10.1093/mp/ssp085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/15/2009] [Indexed: 05/24/2023]
Abstract
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Biochemistry, Microbiology and Molecular Biology, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Caillot S, Rosiau E, Laplace C, Thomasset B. Influence of light intensity and selection scheme on regeneration time of transgenic flax plants. PLANT CELL REPORTS 2009; 28:359-71. [PMID: 19011860 DOI: 10.1007/s00299-008-0638-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/11/2008] [Accepted: 10/30/2008] [Indexed: 05/10/2023]
Abstract
This study aimed at establishing a protocol to increase the number of regenerated shoots and to limit the recovery of "escapes" during the regeneration of transgenic flax plants (cv Barbara). Here, we describe how light, adapted media and selection scheme could stimulate the transformation process, the organogenic potentiality of calli (by a factor of 3.2) and accelerate the transgenic shoot regeneration (by a factor of about 2). On comparison of the transformation rate observed while using low light (LL) and high light (HL) a considerable enhancement from 0.12 to 5.7% was evident. The promotive effect of light might also had a direct beneficial effect on transgenic plant production time leading to a reduction of more than 4 months in the time need to obtain transgenic seeds. All data indicate that HL plays a role on growth and on protein, rubisco and pigment contents by stimulating the gene implicated in photosynthetic and Calvin cycle processes.
Collapse
Affiliation(s)
- Sébastien Caillot
- Laboratoire de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS, Université de Technologie de Compiègne, Compiègne Cedex, France
| | | | | | | |
Collapse
|
8
|
Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 2007; 7:3369-83. [PMID: 17722143 DOI: 10.1002/pmic.200700266] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study investigated rice leaf proteome in response to heat stress. Rice seedlings were subjected to a temperature of 42 degrees C and samples were collected 12 and 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress frequently was generated in rice leaves exposed to high temperature. 2-DE, coupled with MS, was used to investigate and identify heat-responsive proteins in rice leaves. In order to identify the low-abundant proteins in leaves, samples were prefractionated by 15% PEG. The PEG supernatant and the pellet fraction samples were separated by 2-DE, and visualized by silver or CBB staining. Approximately 1000 protein spots were reproducibly detected on each gel, wherein 73 protein spots were differentially expressed at least at one time point. Of these differentially expressed proteins, a total of 34 and 39 protein spots were found in the PEG supernatant and pellet fractions, respectively. Using MALDI-TOF MS, a total of 48 proteins were identified. These proteins were categorized into classes related to heat shock proteins, energy and metabolism, redox homeostasis, and regulatory proteins. The results of the present study show that a group of low molecular small heat shock proteins (sHSPs) were newly induced by heat stress. Among these sHSPs, a low molecular weight mitochondrial (Mt) sHSP was validated further by Western blot analysis. Furthermore, four differentially accumulated proteins that correspond to antioxidant enzymes were analyzed at the mRNA level, which confirmed the differential gene expression levels, and revealed that transcription levels were not completely concomitant with translation. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Division of Applied Life Sciences (BK21 and EB-NCRC), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. PLANT PHYSIOLOGY 2006; 140:263-78. [PMID: 16361518 PMCID: PMC1326049 DOI: 10.1104/pp.105.071167] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 05/05/2023]
Abstract
The classic role of SUCROSE NONFERMENTING-1 (Snf1)-like kinases in eukaryotes is to adapt metabolism to environmental conditions such as nutrition, energy, and stress. During pea (Pisum sativum) seed maturation, developmental programs of growing embryos are adjusted to changing physiological and metabolic conditions. To understand regulation of the switch from cell proliferation to differentiation, SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE (SnRK1) was antisense repressed in pea seeds. Transgenic seeds show maturation defects, reduced conversion of sucrose into storage products, lower globulin content, frequently altered cotyledon surface, shape, and symmetry, as well as occasional precocious germination. Gene expression analysis of embryos using macroarrays of 5,548 seed-specific genes revealed 183 differentially expressed genes in two clusters, either delayed down-regulated or delayed up-regulated during transition. Delayed down-regulated genes are related to mitotic activity, gibberellic acid/brassinosteroid synthesis, stress response, and Ca2+ signal transduction. This specifies a developmentally younger status and conditional stress. Higher gene expression related to respiration/gluconeogenesis/fermentation is consistent with a role of SnRK1 in repressing energy-consuming processes in maturing cotyledons under low oxygen/energy availability. Delayed up-regulated genes are mainly related to storage protein synthesis and stress tolerance. Most of the phenotype resembles abscisic acid (ABA) insensitivity and may be explained by reduced Abi-3 expression. This may cause a reduction in ABA functions and/or a disconnection between metabolic and ABA signals, suggesting that SnRK1 is a mediator of ABA functions during pea seed maturation. SnRK1 repression also impairs gene expression associated with differentiation, independent from ABA functions, like regulation and signaling of developmental events, chromatin reorganization, cell wall synthesis, biosynthetic activity of plastids, and regulated proteolysis.
Collapse
Affiliation(s)
- Ruslana Radchuk
- Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|