1
|
Yin T, Xu R, Zhu L, Yang X, Zhang M, Li X, Zi Y, Wen K, Zhao K, Cai H, Liu X, Zhang H. Comparative analysis of the PAL gene family in nine citruses provides new insights into the stress resistance mechanism of Citrus species. BMC Genomics 2024; 25:1020. [PMID: 39482587 PMCID: PMC11526608 DOI: 10.1186/s12864-024-10938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The phenylalanine ammonia-lyase (PAL) gene, a well-studied plant defense gene, is crucial for growth, development, and stress resistance. The PAL gene family has been studied in many plants. Citrus is among the most vital cash crops worldwide. However, the PAL gene family has not been comprehensively studied in most Citrus species, and the biological functions and specific underlying mechanisms are unclear. RESULTS We identified 41 PAL genes from nine Citrus species and revealed different patterns of evolution among the PAL genes in different Citrus species. Gene duplication was found to be a vital mechanism for the expansion of the PAL gene family in citrus. In addition, there was a strong correlation between the ability of PAL genes to respond to stress and their evolutionary duration in citrus. PAL genes with shorter evolutionary times were involved in more multiple stress responses, and these PAL genes with broad-spectrum resistance were all single-copy genes. By further integrating the lignin and flavonoid synthesis pathways in citrus, we observed that PAL genes contribute to the synthesis of lignin and flavonoids, which enhance the physical defense and ROS scavenging ability of citrus plants, thereby helping them withstand stress. CONCLUSIONS This study provides a comprehensive framework of the PAL gene family in citrus, and we propose a hypothetical model for the stress resistance mechanism in citrus. This study provides a foundation for further investigations into the biological functions of PAL genes in the growth, development, and response to various stresses in citrus.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Rong Xu
- Yuxi Normal University, Yuxi, 653100, China
| | - Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Mengjie Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yinqiang Zi
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Ke Wen
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Hanbing Cai
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
2
|
Zhiponova M, Yordanova Z, Zaharieva A, Ivanova L, Gašić U, Mišić D, Aničić N, Skorić M, Petrović L, Rusanov K, Rusanova M, Mantovska D, Tsacheva I, Petrova D, Yocheva L, Hinkov A, Mihaylova N, Hristozkova M, Georgieva Z, Karcheva Z, Krumov N, Todorov D, Shishkova K, Vassileva V, Chaneva G, Kapchina-Toteva V. Cytokinins enhance the metabolic activity of in vitro-grown catmint (Nepeta nuda L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108884. [PMID: 38945096 DOI: 10.1016/j.plaphy.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.
Collapse
Affiliation(s)
- Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Neda Aničić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Luka Petrović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Yocheva
- Department of Human Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolina Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| | - Marieta Hristozkova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolay Krumov
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| |
Collapse
|
3
|
Wang YR, Yao Y, Chen YH, Huang C, Guo YF, Fang Y, Gao SJ, Hou YM, Wang JD. A ScWIP5 gene confers fall armyworm resistance by reducing digestive enzyme activities in sugarcane. PEST MANAGEMENT SCIENCE 2024; 80:1930-1939. [PMID: 38072905 DOI: 10.1002/ps.7925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda, is one of the most dangerous pests to various crops. As the most crucial sugar crop, sugarcane is also constantly threatened by these pests. Plant wound-induced proteinase inhibitors (WIP) are natural defense proteins that play important roles in the defense system against insect attack. Breeding for resistance would be the best way to improve the variety characteristics and productivity of sugarcane. Screening and verification for potential plant endogenous insect-resistant genes would greatly improve the insect-resistant breeding progress of sugarcane. RESULTS A sugarcane WIP5 gene (ScWIP5) was up-regulated 536 times after insect feeding treatment on previous published transcriptome databases. ScWIP5 was then cloned and its potential role in sugarcane resistance to fall armyworm evaluated by construction of transgenic Nicotiana benthamiana. The toxicity of ScWIP5 transgenic N. benthamiana to fall armyworm showed lower weight gain and higher mortality compared to wild-type N. benthamiana feeding group. Furthermore, the concentration of JA and NbAOC, NbAOS, and NbLOX from the Jasmin acid biosynthesis pathway was significantly induced in ScWIP5 transgenic N. benthamiana compared to the control. In addition, digestive enzyme actives from the insect gut were also evaluated, and trypsin and cathepsin were significantly lower in insects fed with ScWIP5 transgenic N. benthamiana. CONCLUSION These results indicate that ScWIP5 might enhance insect resistance by increasing JA signal transduction processes and reducing insect digestive enzyme activities, thus impacting insect growth and development. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Ru Wang
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
- Xianghu Laboratory, Hangzhou, People's Republic of China
| | - Yang Yao
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - Yao-Hui Chen
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - Cheng Huang
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - Yan-Fang Guo
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture science, Changsha, People's Republic of China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - You-Ming Hou
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, People's Republic of China
| |
Collapse
|
4
|
Zhong M, Zhang L, Yu H, Liao J, Jiang Y, Chai S, Yang R, Wang L, Deng X, Zhang S, Li Q, Zhang L. Identification and characterization of a novel tyrosine aminotransferase gene (SmTAT3-2) promotes the biosynthesis of phenolic acids in Salvia miltiorrhiza Bunge. Int J Biol Macromol 2024; 254:127858. [PMID: 37924917 DOI: 10.1016/j.ijbiomac.2023.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Rosmarinic acid (RA) and salvianolic acid B (SAB) are main phenolic acids in Salvia miltiorrhiza Bunge have been widely used in the treatment of cardiovascular and cerebrovascular diseases due to their excellent pharmacological activity. RA is a precursor of SAB, and tyrosine transaminase (TAT, EC 2.6.1.5) is a crucial rate-limiting enzyme in their metabolism pathway. This study identified a novel TAT gene, SmTAT3-2, and found that it is a new transcript derived from unconventional splicing of SmTAT3. We used different substrates for enzymatic reaction with SmTAT1, SmTAT3 and SmTAT3-2. Subcellular localization of SmTAT1 and SmTAT3-2 was completed based on submicroscopic techniques. In addition, they were overexpressed and CRISPR/Cas9 gene edited in hairy roots of S. miltiorrhiza. Revealed SmTAT3-2 and SmTAT1 showed a stronger affinity for L-tyrosine than SmTAT3, localized in the cytoplasm, and promoted the synthesis of phenolic acid. In overexpressed SmTAT3-2 hairy roots, the content of RA and SAB was significantly increased by 2.53 and 3.38 fold, respectively, which was significantly higher than that of overexpressed SmTAT1 strain compared with EV strain. These findings provide a valuable key enzyme gene for the phenolic acids metabolism pathway and offer a theoretical basis for the clinical application.
Collapse
Affiliation(s)
- Mingzhi Zhong
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Lei Zhang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China
| | - Haomiao Yu
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Songlin Zhang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China
| | - Qingmiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China.
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
5
|
Zhang F, Wang J, Li X, Zhang J, Liu Y, Chen Y, Yu Q, Li N. Genome-wide identification and expression analyses of phenylalanine ammonia-lyase gene family members from tomato ( Solanum lycopersicum) reveal their role in root-knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1204990. [PMID: 37346127 PMCID: PMC10280380 DOI: 10.3389/fpls.2023.1204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is a key enzyme and rate-limiting enzyme of phenylpropanoid metabolism, which is a very important pathway in plants, and the secondary products it produces play an important role in plant growth and development, disease resistance, and stress resistance responses. However, PALs still lack systematic characterization in tomato. Based on a bioinformatics methods, PAL family genes were identified and characterized from tomato. qRT-PCR was used to study the expression of PAL genes in cultivated tomato after root-knot nematode infection. In this study, 14 and 11 PAL genes were identified in cultivated and wild tomatoes, and phylogenetic analysis classified them into three subfamilies, with different subfamilies of PAL proteins evolving in different directions in monocotyledonous and dicotyledonous plants. The extensive presence of stress, growth, hormone, and light response elements in the promoter sequences of SlPAL (Solanum lycopersicum) and SpenPAL (Solanum pennellii) genes suggests that this family has a critical role in abiotic stress. Collinearity indicates that members of the tomato and Arabidopsis PAL genes family are from the same ancestor, and the SlPAL10 gene is directly homologous to monocotyledonous rice and maize, suggesting that the SlPAL10 gene was present before monocotyledonous differentiation. Two co-expressed gene modules containing PAL genes were screened by WGCNA, and the core genes in the network were mined and functionally annotated by calculating the connectivity of genes within the modules. In addition, the expression of some genes changed significantly after root-knot nematode infection, with up-regulation of 4 genes and down-regulation of 3 genes. This result provides a data reference for the study of PAL family gene functions in tomato, and also provides a potential application for the subsequent selection of PAL genes in tomato for root-knot nematode resistance.
Collapse
Affiliation(s)
- Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xianguo Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jun Zhang
- Comprehensive Proving Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yuxiang Liu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Yijia Chen
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
6
|
Zhan C, Li Y, Li H, Wang M, Gong S, Ma D, Li Y. Phylogenomic analysis of phenylalanine ammonia-lyase (PAL) multigene family and their differential expression analysis in wheat ( Triticum aestivum L.) suggested their roles during different stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:982457. [PMID: 36247561 PMCID: PMC9561908 DOI: 10.3389/fpls.2022.982457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 05/24/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is a key enzyme in the phenylalanine metabolism pathway and plays an important role in plant growth and stress response. It has been widely reported in plants, but less studied in wheat. In this study, 54 PAL genes were identified in the wheat genome. Based on phylogenetic analysis, the 54 TaPAL genes were divided into four groups (I, II, III, and IV). Then, the expression levels of TaPALs under biotic stresses were analyzed by transcriptome data analysis. The results showed that 31 genes were up-regulated and one gene was down-regulated after inoculation with Fusarium graminearum, 11 genes were up-regulated and 14 genes were down-regulated after inoculation with Puccinia striiformis, and 32 up-regulated and three down-regulated genes after inoculation with powdery mildew. The expression patterns of the five TaPALs were further analyzed by qRT-PCR. After inoculation with F. graminearum, the expression levels of five TaPALs were up-regulated. However, the TaPALs (expect TaPAL49) were down-regulated when inoculated with P. striiformis. Finally, the functions of TaPAL32 and TaPAL42 in resistance of wheat to the stripe rust were further analyzed by virus induced gene silencing (VIGS) assays. The results showed that the disease severity of TaPAL32 and TaPAL42 silenced plants was higher than that of control plants at 14 days after inoculation. It indicated that these two genes played a positive role in wheat stripe rust resistance. This study provided new evidence support for the functional study of PAL genes in wheat, and provided potential application value for the breeding of wheat resistant varieties.
Collapse
Affiliation(s)
- Chuang Zhan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiting Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Han Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Mengru Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
7
|
Lu LL, Zhang YX, Yang YF. Integrative transcriptomic and metabolomic analyses unveil tanshinone biosynthesis in Salvia miltiorrhiza root under N starvation stress. PLoS One 2022; 17:e0273495. [PMID: 36006940 PMCID: PMC9409544 DOI: 10.1371/journal.pone.0273495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Salvia miltiorrhiza is a model plant for Chinese herbal medicine with significant pharmacologic effects due to its tanshinone components. Our previous study indicated that nitrogen starvation stress increased its tanshinone content. However, the molecular mechanism of this low nitrogen-induced tanshinone biosynthesis is still unclear. Thus, this study aimed to elucidate the molecular mechanism of tanshinone biosynthesis in S. miltiorrhiza under different N conditions [N-free (N0), low-N (Nl), and full-N (Nf, as control) conditions] by using transcriptome and metabolome analyses. Our results showed 3,437 and 2,274 differentially expressed unigenes between N0 and Nf as well as Nl and Nf root samples, respectively. N starvation (N0 and Nl) promoted the expression of the genes involved in the MVA and MEP pathway of tanshinone and terpenoid backbone biosynthesis. Gene ontology and KEGG analyses revealed that terpenoid backbone biosynthesis, hormone signal transduction, and phenylpropanoid biosynthesis were promoted under N starvation conditions, whereas starch and sucrose metabolisms, nitrogen and phosphorus metabolisms, as well as membrane development were inhibited. Furthermore, metabolome analysis showed that metabolite compounds and biosynthesis of secondary metabolites were upregulated. This study provided a novel insight into the molecular mechanisms of tanshinone production in S. miltiorrhiza in response to nitrogen stress.
Collapse
Affiliation(s)
- Li-Lan Lu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, China
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- * E-mail:
| | - Yu-Xiu Zhang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, China
| | - Yan-Fang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
8
|
Qin Y, Li Q, An Q, Li D, Huang S, Zhao Y, Chen W, Zhou J, Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway. Int J Biol Macromol 2022; 213:574-588. [PMID: 35643154 DOI: 10.1016/j.ijbiomac.2022.05.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
Abstract
Drought is one of the key threatening environmental factors for plant and agriculture. Phenylalanine ammonia lyase (PAL) is a key enzyme involved in plant defense against abiotic stress, however, the role of PAL in drought tolerance remains elusive. Here, a PAL member (FuPAL1) containing noncanonical Ala-Ser-Gly triad was isolated from Fritillaria unibracteata, one important alpine pharmaceutical plant. FuPAL1, mainly distributed in cytosol, was more conserved than FuCOMT and FuCHI at both nucleotide and amino acid levels. FuPAL1 was overexpressed in Escherichia coli and the purified recombinant FuPAL1 protein showed catalytic preference on L-Phe than L-Tyr. Homology modeling and site-mutation of FuPAL1 exhibited FuPAL1 took part in the ammonization process by forming MIO-like group, and Phe141, Ser208, Ileu218 and Glu490 played key roles in substrate binding and (or) catalysis. HPLC analysis showed that lignin and salicylic acid levels increased but total flavonoid levels decreased in FuPAL1 transgenic Arabidopsis compared to wild-type plants. Moreover, FuPAL1 transgenic Arabidopsis significantly enhanced its drought tolerance, which suggested that FuPAL1 mediated tolerance to drought by inducing the biosynthesis and accumulation of salicylic acid and lignin. Taken together, our results confirmed that the FuPAL1 played an important role in drought tolerance, and FuPAL1 might be a valuable target for genetic improvement of drought resistance in future.
Collapse
Affiliation(s)
- Yu Qin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiue Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dexin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongyang Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Weijia Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
9
|
Yang L, Li WC, Fu FL, Qu J, Sun F, Yu H, Zhang J. Characterization of phenylalanine ammonia-lyase genes facilitating flavonoid biosynthesis from two species of medicinal plant Anoectochilus. PeerJ 2022; 10:e13614. [PMID: 35818361 PMCID: PMC9270878 DOI: 10.7717/peerj.13614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/30/2022] [Indexed: 01/17/2023] Open
Abstract
Background Anoectochilus roxburghii and Anoectochilus formosanus, belong to the Anoectochilus genus, have been used for Chinese herbal drugs as well as health food. Phenylalanine ammonia-lyase (PAL), the key enzyme in primary metabolism and phenylpropanoid metabolism, produces secondary metabolites (flavonoids) in plants, which are beneficial for the biosynthesis of phenylpropanoid metabolites. Methods The PAL genes were cloned from A. formosanus and A. roxburghii according to our previous transcriptomic analysis. The PALs were introduced into pCAMBIA2300-35S-PAL-eGFP to generate 35S-PAL-eGFP. The constructs were further used for subcellular localization and transgenic Arabidopsis. The expression of AfPAL and ArPAL under precursor substance (L-Phe), NaCl, UV, and red-light were analyzed by real-time quantitative PCR (RT-qPCR). Results AfPAL and ArPAL , encoding 2,148 base pairs, were cloned from A. formosanus and A. roxburghii. The subcellular localization showed that the ArPAL and AfPAL were both localized in the nucleus with GPF. Quantitative RT-PCR analysis indicated that the ArPAL and AfPAL genes function in the phenylalanine pathway as well as response to induced conditions. Overexpression of the AfPAL and ArPAL could increase flavonoids and anthocyanin content in the transgenic Arabidopsis. Discussion The results suggest that AfPAL and ArPAL play a crucial role in the flavonoid biosynthesis in Anoectochilus. Also, our study provides new insights into the enrichment of secondary metabolites of traditional Chinese medicines A. formosanus and A. roxburghii, which can improve their medicinal active ingredients and be used for drug discovery in plants.
Collapse
Affiliation(s)
- Lin Yang
- Sanming University, Medical Plant Exploitation and Utilization Engineering Research Center Fujian Province University, Sanming, China
| | - Wan-Chen Li
- Sichuan Agricultural University, Maize Research Institute, Chengdu, China
| | - Feng-ling Fu
- Sichuan Agricultural University, Maize Research Institute, Chengdu, China
| | - Jingtao Qu
- Sichuan Agricultural University, Maize Research Institute, Chengdu, China
| | - Fuai Sun
- Sichuan Agricultural University, Maize Research Institute, Chengdu, China
| | - Haoqiang Yu
- Sichuan Agricultural University, Maize Research Institute, Chengdu, China
| | - Juncheng Zhang
- Sanming University, Medical Plant Exploitation and Utilization Engineering Research Center Fujian Province University, Sanming, China
| |
Collapse
|
10
|
LI X, LI J, ISLAM F, NAJEEB U, PAN J, HOU Z, SHOU J, QIN Y, XU L. 5-Aminolevulinic acid could enhance the salinity tolerance by alleviating oxidative damages in Salvia miltiorrhiza. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xin LI
- Zhejiang Sci-Tech University, China
| | | | | | | | | | | | - Jianyao SHOU
- Zhuji Municipal Agro-Tech Extension Center, China
| | - Yebo QIN
- Zhejiang Agricultural Technology Extension Center, China
| | - Ling XU
- Zhejiang Sci-Tech University, China
| |
Collapse
|
11
|
Han X, Zhang Y, Zhang Z, Xiao H, Wu L, Wu L. Antiviral agent fTDP stimulates the SA signaling pathway and enhances tobacco defense against tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:105002. [PMID: 34955185 DOI: 10.1016/j.pestbp.2021.105002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
TEER-decreasing protein (TDP) from Flammulina velutipes was antiviral resource against tobacco mosaic virus (TMV). However, the resistance mechanisms have not been clarified. In this study, the fTDP (fusion teer-decreasing protein), obtained by prokaryotic fusion expression system, exhibited obvious protective efficacy against TMV and significantly suppressed the reproduction of TMV in tobacco. Transcriptomics and proteomics analysis showed that fTDP may interact with a receptor, activate the mitogen-activated protein kinase (MAPK) pathway and NB-ARC and increase the content of reactive oxygen species (ROS) and salicylic acid (SA), which promoted the hypersensitive response (HR) and system acquired resistance (SAR). SAR caused increased expression of catalase (CAT), pathogenesis-related protein 1 (PR1), phenylalanine ammonia lyase (PAL) and other proteins involved in pathogen defense, such as chalcone-dihydroflavone isomerase (CHI) and cytochrome P450. In conclusion, SAR was induced by fTDP to protect tobacco from TMV infection and alleviate the symptoms caused by the virus. The study provided a theoretical basis for the application of the TDP protein, which may represent a potential biopesticide.
Collapse
Affiliation(s)
- Xiaoxiao Han
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yahong Zhang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiyun Zhang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hua Xiao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liping Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
12
|
Wang X, Chao N, Zhang A, Kang J, Jiang X, Gai Y. Systematic Analysis and Biochemical Characterization of the Caffeoyl Shikimate Esterase Gene Family in Poplar. Int J Mol Sci 2021; 22:ijms222413366. [PMID: 34948162 PMCID: PMC8704367 DOI: 10.3390/ijms222413366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Aijing Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Jiaqi Kang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6233-8063
| |
Collapse
|
13
|
Yu H, Li D, Yang D, Xue Z, Li J, Xing B, Yan K, Han R, Liang Z. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia-lyase in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4915-4929. [PMID: 33961691 DOI: 10.1093/jxb/erab172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Phenolic acids are the major secondary metabolites and significant bioactive constituents of the medicinal plant Salvia miltiorrhiza. Many enzyme-encoding genes and transcription factors involved in the biosynthesis of phenolic acids have been identified, but the underlying post-translational regulatory mechanisms are poorly understood. Here, we demonstrate that the S. miltiorrhiza Kelch repeat F-box protein SmKFB5 physically interacts with three phenylalanine ammonia-lyase (PAL) isozymes and mediates their proteolytic turnover via the ubiquitin-26S proteasome pathway. Disturbing the expression of SmKFB5 reciprocally affected the abundance of SmPAL protein and the accumulation of phenolic acids, suggesting that SmKFB5 is a post-translational regulator responsible for the turnover of PAL and negatively controlling phenolic acids. Furthermore, we discovered that treatment of the hairy root of S. miltiorrhiza with methyl jasmonate suppressed the expression of SmKFB5 while inducing the transcription of SmPAL1 and SmPAL3. These data suggested that methyl jasmonate consolidated both transcriptional and post-translational regulation mechanisms to enhance phenolic acid biosynthesis. Taken together, our results provide insights into the molecular mechanisms by which SmKFB5 mediates the regulation of phenolic acid biosynthesis by jasmonic acid, and suggest valuable targets for plant breeders in tailoring new cultivars.
Collapse
Affiliation(s)
- Haizheng Yu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongfeng Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich, UK
| | - Bingcong Xing
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, China
| | - Ruilian Han
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Seasonal Variations of Rosmarinic Acid and Its Glucoside and Expression of Genes Related to Their Biosynthesis in Two Medicinal and Aromatic Species of Salvia subg. Perovskia. BIOLOGY 2021; 10:biology10060458. [PMID: 34067387 PMCID: PMC8224735 DOI: 10.3390/biology10060458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Here, we studied two closely related medicinal and aromatic plants from Asia, called Russian sage or from their previously used Latin name–Perovskia. These plants contain various specialized metabolites called phenylpropanoids that contribute to their medicinal uses. In our experiments, several different specialized phytochemicals were traced down in the roots and leaves with the major metabolite called rosmarinic acid, known for health beneficial properties. In order to check if the composition of these plants is regulated by specific genes encoding proteins that assemble these phytochemicals, we analyzed their expression during the growth season (spring, summer and fall). Despite being the closest kin, the two species of Russian sage displayed different seasonal changes in the composition of bioactive metabolites and the activity of genes responsible for their production. The genes’ activity was correlated with rosmarinic acid content in the roots but not in the green parts of the plants. Two genes pointed out were linked to the regulation of rosmarinic acid biosynthesis, called RAS (for Rosmarinic Acid-Synthase) and a newly reported version of an oxidizing enzyme called Cyp98A14. These discoveries broaden our understanding of relationships between the genes’ activity and production of bioactive constituents in herbs such as the two studied species of Russian sages. Abstract Salvia abrotanoides Kar. and Salvia yangii B.T. Drew are medicinal and aromatic plants belonging to the subgenus Perovskia and used as herbal medicines in Asia. Derivatives of caffeic acid, mainly rosmarinic acid (RA), are the major phenolic compounds identified in these plants. Understanding the factors and molecular mechanisms regulating the accumulation of pharmacologically and ecologically relevant phenolic metabolites is essential for future biotechnological and medical applications. Up to date, no studies of phenylpropanoid biosynthetic pathway at the transcriptional level has been performed in the Perovskia subgenus. Using a combined qRT-PCR transcriptional activity analysis with LC-MS based metabolic profiling of roots and leaves at the beginning, in the middle and at the end of vegetation season, we have identified the following gene candidates with properties correlating to phenolic acid biosynthesis in S. abrotanoides and S. yangii: PAL, C4H, 4CL, TAT, HPPR, RAS1, RAS2 and Cyp98A14. A comparison of phenolic acid profiles with gene transcript levels revealed the transcriptional regulation of RA biosynthesis in the roots but not the leaves of the studied species. Additionally, RAS1 and Cyp98A14 were identified as rate-limiting steps regulating phenylpropanoid biosynthesis on a transcription level. In the future, this will facilitate the gene-based metabolic enhancement of phenolic compounds production in these promising medicinal herbs.
Collapse
|
15
|
Liu Y, Ma W, Zhou W, Li L, Wang D, Li B, Wang S, Pan Y, Yan Y, Wang Z. The cytosolic protein GRP1 facilitates abscisic acid- and darkness-induced stomatal closure in Salvia miltiorrhiza. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153112. [PMID: 31926459 DOI: 10.1016/j.jplph.2019.153112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
By screening an expressed sequence tag (EST) library of Salvia miltiorrhiza, we detected an acidic protein, SmGRP1, with no significant similarities to the other sequences in public databases. SmGRP1 encodes a peptide of 151 amino acids, 33.77 % of which are glutamic acid residues, and the peptide was positive according to "stains-all" staining. Expression analysis revealed that SmGRP1 was expressed in all examined tissues of S. miltiorrhiza but was most highly expressed in the leaves and stems. Without a signal peptide, SmGRP1 localized to the cytoplasm in protoplasts in subcellular localization experiments. SmGRP1 expression was prominently enhanced by ABA and darkness treatments; the protein could also be induced by high temperature, NaCl, and dehydration treatments, while low temperature suppressed its expression. Furthermore, although there were no obvious phenotypic differences in SmGRP1 overexpression and SmGRP1 knockdown mutants compared with control plants under normal culture conditions, the stomata of the knockdown lines remained open when treated with ABA, darkness, NO, and H2O2. In addition, the water loss rate of the knockdown mutants was faster than that of the control lines and overexpression mutants when exposed to air. These observations indicate that SmGRP1 is a novel acidic protein with potential calcium-binding capability and is involved in stomatal movement and stress resistance.
Collapse
Affiliation(s)
- Yuanchu Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Ma
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Lin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Donghao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Bin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yiqin Pan
- Gaofeng School, Shenzhen, Guangdong, 518109, China.
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
16
|
Zhang X, Li C, Wang L, Fei Y, Qin W. Analysis of Centranthera grandiflora Benth Transcriptome Explores Genes of Catalpol, Acteoside and Azafrin Biosynthesis. Int J Mol Sci 2019; 20:ijms20236034. [PMID: 31795510 PMCID: PMC6928798 DOI: 10.3390/ijms20236034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of health loss in the world. Prevention and treatment of this disease by traditional Chinese medicine is a promising method. Centranthera grandiflora Benth is a high-value medicinal herb in the prevention and treatment of CVDs; its main medicinal components include iridoid glycosides, phenylethanoid glycosides, and azafrin in roots. However, biosynthetic pathways of these components and their regulatory mechanisms are unknown. Furthermore, there are no genomic resources of this herb. In this article, we provide sequence and transcript abundance data for the root, stem, and leaf transcriptome of C. grandiflora Benth obtained by the Illumina Hiseq2000. More than 438 million clean reads were obtained from root, stem, and leaf libraries, which produced 153,198 unigenes. Based on databases annotation, a total of 557, 213, and 161 unigenes were annotated to catalpol, acteoside, and azafrin biosynthetic pathways, respectively. Differentially expressed gene analysis identified 14,875 unigenes differentially enriched between leaf and root with 8,054 upregulated genes and 6,821 downregulated genes. Candidate MYB transcription factors involved in catalpol, acteoside, and azafrin biosynthesis were also predicated. This work is the first transcriptome analysis in C. grandiflora Benth which will aid the deciphering of biosynthesis pathways and regulatory mechanisms of active components.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Caixia Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Lianchun Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
| | - Yahong Fei
- Yuxi Flyingbear Agricultural Development Company Limited, Yuxi 653100, China;
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-343-8467
| |
Collapse
|
17
|
Cloning, Characterization and Expression of the Phenylalanine Ammonia-Lyase Gene (PaPAL) from Spruce Picea asperata. FORESTS 2019. [DOI: 10.3390/f10080613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is the crucial enzyme of the phenylpropanoid pathway, which plays an important role in plant disease resistance. To understand the function of PAL in Picea asperata, in this study, the full-length cDNA sequence of the PAL gene from this species was isolated and named PaPAL. The gene contains a 2160-bp open reading frame (ORF) encoding 720 amino acids with a calculated molecular weight of 78.7 kDa and a theoretical isoelectric point of 5.88. The deduced PaPAL protein possesses the specific signature motif (GTITASGDLVPLSYIA) of phenylalanine ammonia-lyases. Multiple alignment analysis revealed that PaPAL has high identity with other plant PALs. The tertiary structure of PaPAL was predicted using PcPAL from Petroselinum crispum as a template, and the results suggested that PaPAL may have a similar function to that of PcPAL. Furthermore, phylogenetic analysis indicated that PaPAL has a close relationship with other PALs from the Pinaceae species. The optimal expression condition of recombinant PaPAL in Escherichia coli BL21 (DE3) was 0.2 mM IPTG (isopropyl β-D-thiogalactoside) at 16 °C for 4 h, and the molecular weight of recombinant PaPAL was found to be approximately 82 kDa. Recombinant PaPAL was purified and exhibited high PAL activity at optimal conditions of pH 8.6 and 60 °C. Quantitative real-time PCR (qRT-PCR) showed the PaPAL gene to be expressed in all tissues of P. asperata tested, with the highest expression level in the needles. The PaPAL gene was induced by the pathogen (Lophodermium piceae), which caused needle cast disease, indicating that it might be involved in defense against needle cast disease. These results provide a basis for understanding the molecular mechanisms of the PAL gene in the process of P. asperata disease resistance.
Collapse
|
18
|
Guo Y, Zhu C, Zhao S, Zhang S, Wang W, Fu H, Li X, Zhou C, Chen L, Lin Y, Lai Z. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'. BMC Genomics 2019; 20:265. [PMID: 30943892 PMCID: PMC6446291 DOI: 10.1186/s12864-019-5643-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/25/2019] [Indexed: 01/16/2023] Open
Abstract
Background The two original plants of the oolong tea cultivar (‘Tieguanyin’) are “Wei shuo” ‘Tieguanyin’—TGY (Wei) and “Wang shuo” ‘Tieguanyin’—TGY (Wang). Another cultivar, ‘Benshan’ (BS), is similar to TGY in its aroma, taste, and genetic make-up, but it lacks the “Yin Rhyme” flavor. We aimed to identify differences in biochemical characteristics and gene expression among these tea plants. Results The results of spectrophotometric, high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) analyses revealed that TGY (Wei) and TGY (Wang) had deeper purple-colored leaves and higher contents of anthocyanin, catechins, caffeine, and limonene compared with BS. Analyses of transcriptome data revealed 12,420 differentially expressed genes (DEGs) among the cultivars. According to a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the flavonoid, caffeine, and limonene metabolic pathways were highly enriched. The transcript levels of the genes involved in these three metabolic pathways were not significantly different between TGY (Wei) and TGY (Wang), except for two unigenes encoding IMPDH and SAMS, which are involved in caffeine metabolism. The comparison of TGY vs. BS revealed eight up-regulated genes (PAL, C4H, CHS, F3’H, F3H, DFR, ANS, and ANR) and two down-regulated genes (FLS and CCR) in flavonoid metabolism, four up-regulated genes (AMPD, IMPDH, SAMS, and 5′-Nase) and one down-regulated XDH gene in caffeine metabolism; and two down-regulated genes (ALDH and HIBADH) in limonene degradation. In addition, the expression levels of the transcription factor (TF) PAP1 were significantly higher in TGY than in BS. Therefore, high accumulation of flavonoids, caffeine, and limonene metabolites and the expression patterns of their related genes in TGY might be beneficial for the formation of the “Yin Rhyme” flavor. Conclusions Transcriptomic, HPLC, and GC-MS analyses of TGY (Wei), TGY (Wang), and BS indicated that the expression levels of genes related to secondary metabolism and high contents of catechins, anthocyanin, caffeine, and limonene may contribute to the formation of the “Yin Rhyme” flavor in TGY. These findings provide new insights into the relationship between the accumulation of secondary metabolites and sensory quality, and the molecular mechanisms underlying the formation of the unique flavor “Yin Rhyme” in TGY. Electronic supplementary material The online version of this article (10.1186/s12864-019-5643-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjian Wang
- Anxi Tea Research Institute, Anxi, 362400, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:243-254. [PMID: 30299490 DOI: 10.1093/jxb/ery349] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/29/2018] [Indexed: 05/20/2023]
Abstract
Phenolic acids are important secondary metabolites produced in the Chinese medicinal plant Salvia miltiorrhiza, but little is known about the transcription factors involved in the regulation of tanshinone and phenolic acid biosynthesis. Here, a novel AP2/ERF transcription factor SmERF115 was isolated and functionally characterized. SmERF115 was most responsive to methyl jasmonate (MeJA) treatment and was localized in the nucleus. The phenolic acid production was increased in SmERF115-overexpressing hairy roots, but with a decrease in tanshinone content. In contrast, silencing of SmERF115 reduced the phenolic acid level, but increased tanshinone content. The expression of the key biosynthetic gene SmRAS1 was up-regulated in SmERF115 overexpression lines but was down-regulated in SmERF115-RNAi lines. Yeast one-hybrid (Y1H) assay and EMSA showed that SmERF115 directly binds to the promoter of SmRAS1, while dual-luciferase assays showed that SmERF115 could activate expression of SmRAS1 in vivo. Furthermore, global transcriptomic analysis by RNA sequencing revealed that expression of other genes such as PAL3, 4CL5, TAT3, and RAS4 was also increased in the overexpression line, implying that they were potentially involved in the SmERF115-mediated pathway. Our data show that SmERF115 is a positive regulator of phenolic acid biosynthesis, and may be a potential target for further metabolic engineering of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Meihong Sun
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qiang Huang
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Tingpan Yuan
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Qiang Wang
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
20
|
Nag S, Kumaria S. In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea Griff. ex Lindl. PHYTOCHEMISTRY 2018; 156:176-183. [PMID: 30312933 DOI: 10.1016/j.phytochem.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is the first enzyme of phenylpropanoid pathway. In the present study, a full-length PAL transcript from Vanda coerulea Griff. ex Lindl. (Family: Orchidaceae) was isolated and characterized. It was found that complete PAL transcript of V. coerulea (VcPAL; Gene Bank no. MG745168) contained 2175 bp with the open reading frame (ORF) of 2112 bp, encoding 703 amino acid residues. The multiple sequence alignment showed that VcPAL protein had 81% identity with that of the orchid, Bromheadia finlaysoniana. Phylogenetic analysis also disclosed that VcPAL shared the same evolutionary relationship with PAL proteins of other orchid species and to be closely related to that of other angiosperm species as well. The three-dimensional structure of VcPAL was found to be homo-tetrameric in nature consisting of four identical subunits with a molecular mass of 75 kDa per subunit. In silico characterization revealed the deduced protein to be a stable protein, comprising three major functional domains as reported in PAL proteins of other species. The transcription profiling of VcPAL exhibited the highest expression level to be present in the in vitro - raised leaf and root samples as compared to that of the ex vitro plant. The differential expression of VcPAL transcript was observed to be up-regulated by different types of abiotic stresses like wounding, cold, UV-B, salinity, and down-regulated by dark treatment. The study also exhibited that the VcPAL enzyme activity was directly proportional to the gene expression after the tissues were subjected to salinity and wounding stresses wherein a 1.7- fold increase in the enzyme activity was recorded in the leaf tissues exposed to salinity stress. A positive correlation could be found between the enzyme activity and the accumulation of phenylpropanoids such as total phenolic and flavonoid contents with R2 = 0.85 and 0.842 respectively.
Collapse
Affiliation(s)
- Swagata Nag
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Suman Kumaria
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
21
|
Khakdan F, Alizadeh H, Ranjbar M. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:464-472. [PMID: 30077922 DOI: 10.1016/j.plaphy.2018.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 05/10/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is a control point for branched phenylpropanoid and terpenoid pathways. It represents the first regulatory step to provide a metabolic flux to produce of the precursors needed for biosynthesizing main volatile phenylpropanoid compounds (methyleugenol and methylchavicol) in basil. It is crucial during the stage of the environmental and development stimulants. To obtain better knowledge of the biosynthesis of these phenylpropene compounds, characterization and cloning of Ocimum basilicum PAL (ObPAL) cDNA and its heterologous expression and enzyme activity were assessed. The almost full-length ObPAL was 2064 bp in size encoding a 687-amino-acid polypeptide with molecular weight of 74.642 kDa and theoretical pI of 8.62. Phylogenetic analysis revealed a significant evolutionary relatedness of ObPAL with the PAL sequence reported in different species of Lamiaceae. To further confirm its function, ObPAL was cloned into pET28a (+) vector and expressed in E. coli. The recombinant protein exhibited high PAL activity and could catalyze the L-Phe conversion to trans-cinnamic acid. Expression analysis of PAL gene showed that ObPAL manifested various transcription ratios exposed to drought stress. Overall, our results demonstrated the ObPAL regulation gene is possibly a mechanism dependent on cultivar and drought stress.
Collapse
Affiliation(s)
- Fatemeh Khakdan
- Biotechnology Department, College of Agriculture, Jahrom University, Jahrom, Iran
| | - Houshang Alizadeh
- Division of Molecular Plant Genetics, Department of Agronomy & Plant Breeding, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
22
|
Shi M, Huang F, Deng C, Wang Y, Kai G. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci Nutr 2018; 59:953-964. [PMID: 29746788 DOI: 10.1080/10408398.2018.1474170] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.
Collapse
Affiliation(s)
- Min Shi
- a Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , People's Republic of China
| | - Fenfen Huang
- b Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai , People's Republic of China
| | - Changping Deng
- b Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai , People's Republic of China
| | - Yao Wang
- b Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai , People's Republic of China
| | - Guoyin Kai
- a Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , People's Republic of China.,b Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai , People's Republic of China
| |
Collapse
|
23
|
Transcriptional activity and subcellular location of SmWRKY42-like and its response to gibberellin and ethylene treatments in Salvia miltiorrhiza hairy roots. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Lin W, Liu A, Weng C, Li H, Sun S, Song A, Zhu H. Cloning and characterization of a novel phenylalanine ammonia-lyase gene from Inonotus baumii. Enzyme Microb Technol 2017; 112:52-58. [PMID: 29499780 DOI: 10.1016/j.enzmictec.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
Phenylalanine ammonia-lyase (PAL) gene plays an important role in the synthesis of flavones, lignin, and other bioactive compounds in living organisms. Inonotus baumii, the only known flavone-producing filamentous fungus, is of great importance in the investigation of flavone metabolic pathways. To study the function of PAL enzyme in I. baumii flavone synthesis, a full-length cDNA of pal gene was cloned from I. baumii using DOP-PCR and RACE-PCR. The 2502-bp PAL coding region encodes an 833 amino acid protein with an approximate MW of 88.2kDa. Three introns and four exons are present in the DNA sequence of IbPAL. Amino acid sequence alignment showed that IbPAL shares 76% similarity with PALs of Inonotus fungi. The three-dimensional structure of IbPAL showed that it is composed of an MIO domain, a core domain and an inserted shielding domain. On this basis, the IbPAL was expressed and purified using the prokaryotic expression vector pSMART-V with a 6xHis-tag in Escherichia coli, and its enzymatic activity was subsequently detected. Our results will aid in understanding the enzymatic properties of PAL and further confirm the mechanism of flavone synthesis in I. baumii.
Collapse
Affiliation(s)
- Weiping Lin
- College of Biological Sciences and Technology, Weifang Medical University, Weifang 261053, People's Republic of China; Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Ao Liu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Caihong Weng
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Hui Li
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Shiwei Sun
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Aihuan Song
- Marine Biology Institute of Shandong Province, 7 Youyun Road, Qingdao 266104, People's Republic of China
| | - Hu Zhu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China; College of Chemistry and Materials, Fujian Normal University, 8 Shangsan Road, Cangshan District, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
25
|
Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 2017; 7:10554. [PMID: 28874707 PMCID: PMC5585387 DOI: 10.1038/s41598-017-10215-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comprehensive transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE. Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S. miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Qiang Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao Wu
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zewen Zhou
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Min Shi
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenfen Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shen Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Yao Wang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoyin Kai
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
26
|
Zhang J, Zhou L, Zheng X, Zhang J, Yang L, Tan R, Zhao S. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2017; 36:1297-1309. [PMID: 28508121 DOI: 10.1007/s00299-017-2154-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/27/2017] [Indexed: 05/03/2023]
Abstract
A Salvia miltiorrhiza R2R3-MYB gene, SmMYB9b , has been cloned and characterized. Overexpression of SmMYB9b resulted in a significant improvement of tanshinones, the lipophilic active ingredients in danshen hairy roots. Plant R2R3-MYB transcription factors play important roles in various physiological and biochemical processes. Danshen (Salvia miltiorrhiza bunge) is a valuable medicinal herb with tanshinones and salvianolic acids as the principal bioactive ingredients. A number of putative R2R3-MYB transcription factors have been identified in the plant, but their function remains to be studied. Here, we report the cloning of SmMYB9b, an S20 R2R3-MYB member and its regulatory properties. SmMYB9b contains an open reading frame of 792 bp in length and encodes a 264-amino acid protein. Its transcripts were most abundant in blooming flowers (except for calyces) and increased with flower development. Exogenous abscisic acid strongly activated its transcription. Gibberellins and methyl jasmonate also showed a time-dependent activation effect on its transcription, but to a weaker degree. Overexpression of SmMYB9b in danshen hairy roots enhanced tanshinone concentration to 2.16 ± 0.39 mg/g DW, a 2.2-fold improvement over the control. In addition to increased tanshinone concentration, the hairy root growth and lateral hairy root formation were also suppressed. KEGG pathway enrichment analysis with de novo RNAseq data indicated that stress-response-related metabolic pathways, such as the terpenoid and plant hormone signal transduction pathways, were significantly enriched, implying possible implication of SmMYB9b in such processes. Quantitative RT-PCR analysis showed that the transcription of terpenoid biosynthetic genes SmDXS2, SmDXR, SmGGPPS, and SmKSL1 was significantly up-regulated in danshen hairy roots over expressing SmMYB9b. These data suggest that overexpression of SmMYB9b results in enhanced tanshinone concentration through stimulation of the MEP pathway. The present findings shed new light on elucidating the roles of R2R3-MYB in the biosynthesis of diterpenoids in S. miltiorrhiza.
Collapse
Affiliation(s)
- Jingxian Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Lubin Zhou
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Li Yang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang High Tech, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
27
|
Comparative RNA-Sequence Transcriptome Analysis of Phenolic Acid Metabolism in Salvia miltiorrhiza, a Traditional Chinese Medicine Model Plant. Int J Genomics 2017; 2017:9364594. [PMID: 28194403 PMCID: PMC5282420 DOI: 10.1155/2017/9364594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/26/2016] [Accepted: 11/27/2016] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM). In this study, two S. miltiorrhiza genotypes (BH18 and ZH23) with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq). A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs) identified between BH18 and ZH23, 250 of which were upregulated in ZH23, with genes involved in the phenylpropanoid biosynthesis pathway being the most upregulated genes. Nine genes involved in the lignin biosynthesis pathway were upregulated in BH18 and thus result in higher lignin content in BH18. However, expression profiles of most genes involved in the core common upstream phenylpropanoid biosynthesis pathway were higher in ZH23 than that in BH18. These results indicated that genes involved in the core common upstream phenylpropanoid biosynthesis pathway might play an important role in downstream secondary metabolism and demonstrated that lignin biosynthesis was a putative partially competing pathway with phenolic acid biosynthesis. The results of this study expanded our understanding of the regulation of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
|
28
|
Battini F, Bernardi R, Turrini A, Agnolucci M, Giovannetti M. Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. MYCORRHIZA 2016; 26:699-707. [PMID: 27179537 DOI: 10.1007/s00572-016-0707-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/06/2016] [Indexed: 05/03/2023]
Abstract
In recent years, arbuscular mycorrhizal fungi (AMF) have been reported to enhance plant biosynthesis of secondary metabolites with health-promoting activities, such as polyphenols, carotenoids, vitamins, anthocyanins, flavonoids and lycopene. In addition, plant growth-promoting (PGP) bacteria were shown to modulate the concentration of nutraceutical compounds in different plant species. This study investigated for the first time whether genes encoding key enzymes of the biochemical pathways leading to the production of rosmarinic acid (RA), a bioactive compound showing antioxidant, antibacterial, antiviral and anti-inflammatory properties, were differentially expressed in Ocimum basilicum (sweet basil) inoculated with AMF or selected PGP bacteria, by using quantitative real-time reverse transcription PCR. O. basilicum plants were inoculated with either the AMF species Rhizophagus intraradices or a combination of two PGP bacteria isolated from its sporosphere, Sinorhizobium meliloti TSA41 and Streptomyces sp. W43N. Present data show that the selected PGP bacteria were able to trigger the overexpression of tyrosine amino-transferase (TAT), hydroxyphenylpyruvate reductase (HPPR) and p-coumaroyl shikimate 3'-hydroxylase isoform 1 (CS3'H iso1) genes, 5.7-fold, 2-fold and 2.4-fold, respectively, in O. basilicum leaves. By contrast, inoculation with R. intraradices triggered TAT upregulation and HPPR and CS3'H iso1 downregulation. Our data suggest that inoculation with the two selected strains of PGP bacteria utilised here could represent a suitable biotechnological tool to be implemented for the production of O. basilicum plants with increased levels of key enzymes for the biosynthesis of RA, a compound showing important functional properties as related to human health.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy.
| |
Collapse
|
29
|
Liu L, Yang D, Liang T, Zhang H, He Z, Liang Z. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2016; 35:1933-42. [PMID: 27271760 DOI: 10.1007/s00299-016-2007-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.
Collapse
Affiliation(s)
- Lin Liu
- College of Life Science of Northwest A&F University, Yangling, China
| | - DongFeng Yang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - TongYao Liang
- College of Life Science of Northwest A&F University, Yangling, China
| | - HaiHua Zhang
- College of Life Science of Northwest A&F University, Yangling, China
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - ZhiGui He
- College of Life Science of Northwest A&F University, Yangling, China
| | - ZongSuo Liang
- College of Life Science of Northwest A&F University, Yangling, China.
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
30
|
Xu Z, Luo H, Ji A, Zhang X, Song J, Chen S. Global Identification of the Full-Length Transcripts and Alternative Splicing Related to Phenolic Acid Biosynthetic Genes in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2016; 7:100. [PMID: 26904067 PMCID: PMC4742575 DOI: 10.3389/fpls.2016.00100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/19/2016] [Indexed: 05/21/2023]
Abstract
Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing) of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and four alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that six candidate cytochrome P450s and five candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.
Collapse
Affiliation(s)
- Zhichao Xu
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Hongmei Luo
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Aijia Ji
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Xin Zhang
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
- *Correspondence: Jingyuan Song, ; Shilin Chen,
| | - Shilin Chen
- Institute of Medicinal Plant Development – Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
- Institute of Chinese Materia Medica – Chinese Academy of Chinese Medical ScienceBeijing, China
- *Correspondence: Jingyuan Song, ; Shilin Chen,
| |
Collapse
|
31
|
Cloning and expression analysis of phenylalanine ammonia-lyase (PAL) gene family and cinnamate 4-hydroxylase (C4H) from Dryopteris fragrans. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) Codd). Molecules 2015; 20:16833-51. [PMID: 26389875 PMCID: PMC6332037 DOI: 10.3390/molecules200916833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
Phenylalanine ammonia-lyase (PAL) is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L.) Codd), a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1), suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins) biosynthesis in Coleus at the molecular level.
Collapse
|
33
|
Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX, Guo J, Huang LQ. The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Molecules 2015; 20:16235-54. [PMID: 26370949 PMCID: PMC6332233 DOI: 10.3390/molecules200916235] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022] Open
Abstract
Secondary metabolites from plants play key roles in human medicine and chemical industries. Due to limited accumulation of secondary metabolites in plants and their important roles, characterization of key enzymes involved in biosynthetic pathway will enable metabolic engineering or synthetic biology to improve or produce the compounds in plants or microorganisms, which provides an alternative for production of these valuable compounds. Salvia miltiorrhiza, containing tanshinones and phenolic acids as its active compounds, has been widely used for the treatment of cardiovascular and cerebrovascular diseases. The biosynthetic analysis of secondary metabolites in S. miltiorrhiza has made great progress due to the successful genetic transformation system, simplified hairy roots system, and high-throughput sequencing. The cloned genes in S. miltiorrhiza had provided references for functional characterization of the post-modification steps involved in biosynthesis of tanshinones and phenolic acids, and further utilization of these steps in metabolic engineering. The strategies used in these studies could provide solid foundation for elucidation of biosynthetic pathways of diterpenoids and phenolic acids in other species. The present review systematically summarizes recent advances in biosynthetic pathway analysis of tanshinones and phenolic acids as well as synthetic biology and metabolic engineering applications of the rate-limiting genes involved in the secondary metabolism in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Beijing Key Laboratory of Protection and Application of Chinese Medicinal Resources, Beijing Normal University, Beijing 100875, China.
| | - Jin-Fu Tang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ya-Li He
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yu-Chen Liu
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Pharmaceutical College, Guiyang College of Traditional Chinese Medicine, Guiyang 550002, China.
| | - Xiao-Jing Ma
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guang-Hong Cui
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui-Xin Lin
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qi-Xian Rong
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
34
|
Zhang Y, Fu X, Hao X, Zhang L, Wang L, Qian H, Zhao J. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua. Biotechnol Appl Biochem 2015; 63:514-24. [PMID: 26040426 DOI: 10.1002/bab.1403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/30/2015] [Indexed: 11/12/2022]
Abstract
Phenylalanine ammonia-lyase (PAL) is the key enzyme in the biosynthetic pathway of salicylic acid (SA). In this study, a full-length cDNA of PAL gene (named as AaPAL1) was cloned from Artemisia annua. The gene contains an open reading frame of 2,151 bps encoding 716 amino acids. Comparative and bioinformatics analysis revealed that the polypeptide protein of AaPAL1 was highly homologous to PALs from other plant species. Southern blot analysis revealed that it belonged to a gene family with three members. Quantitative RT-PCR analysis of various tissues of A. annua showed that AaPAL1 transcript levels were highest in the young leaves. A 1160-bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including W-box, TGACG-motif, and TC-rich repeats. Quantitative RT-PCR indicated that AaPAL1 was upregulated by salinity, drought, wounding, and SA stresses, which were corroborated positively with the identified cis-elements within the promoter region. AaPAL1 was successfully expressed in Escherichia. coli and the enzyme activity of the purified AaPAL1 was approximately 287.2 U/mg. These results substantiated the involvement of AaPAL1 in the phenylalanine pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xueqing Fu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaolong Hao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lida Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Luyao Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongmei Qian
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingya Zhao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Ejtahed RS, Radjabian T, Hoseini Tafreshi SA. Expression Analysis of Phenylalanine Ammonia Lyase Gene and Rosmarinic Acid Production in Salvia officinalis and Salvia virgata Shoots Under Salicylic Acid Elicitation. Appl Biochem Biotechnol 2015; 176:1846-58. [PMID: 26041056 DOI: 10.1007/s12010-015-1682-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
Abstract
Partial fragments of phenylalanine ammonia lyase (PAL) genes were cloned and characterized from Salvia officinalis (SoPAL) and Salvia virgata (SvPAL). Different concentrations (250 and 500 μM) of exogenous salicylic acid (SA) were used when correlation between PAL expression and rosmarinic acid (RA) accumulation was compared. The results showed that the deduced cDNA sequences of the partial genes had high similarities with those of known PAL gene from other plant species. Semi-quantitative reverse transcription PCR (RT-PCR) analysis revealed that exogenous application of SA led to up-regulating of the PAL expression. Further analysis showed that in S. virgata, at higher concentration of SA, higher accumulation of RA was achieved, while in S. officinalis, the higher RA accumulation was observed at lower concentration of SA. It was concluded that there was no positive correlation between the intensity of PAL transcription and the RA accumulation in the studied species. Therefore, despite of the increase in transcription rate of the PAL at the higher concentration of SA, the lower amounts of RA were accumulated in the case of S. officinalis. Consequently, the hypothesis that PAL is the rate-determining step in RA biosynthesis is not always valid and probably some other unknown factors participate in the synthesis of phenolics.
Collapse
Affiliation(s)
- Roghayeh Sadat Ejtahed
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, 33191-18651, Iran,
| | | | | |
Collapse
|
36
|
Zang Y, Jiang T, Cong Y, Zheng Z, Ouyang J. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine. Appl Biochem Biotechnol 2015; 176:924-37. [PMID: 25947617 DOI: 10.1007/s12010-015-1620-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.
Collapse
Affiliation(s)
- Ying Zang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Guo H, Zhu N, Deyholos MK, Liu J, Zhang X, Dong J. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Appl Biochem Biotechnol 2015; 175:2689-702. [PMID: 25561058 DOI: 10.1007/s12010-014-1459-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction.
Collapse
Affiliation(s)
- Hongbo Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Wang B, Sun W, Li Q, Li Y, Luo H, Song J, Sun C, Qian J, Zhu Y, Hayward A, Xu H, Chen S. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. PLANTA 2015; 241:711-25. [PMID: 25471478 DOI: 10.1007/s00425-014-2212-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/23/2014] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Twenty-nine genes related to phenolic acid biosynthesis were identified in the Salvia miltiorrhiza genome. Nineteen of these are described for the first time, with ten genes experimentally correlating to phenolic acid biosynthesis. Vast stores of secondary metabolites exist in plants, many of which possess biological activities related to human health. Phenolic acid derivatives are a class of valuable bioactive pharmaceuticals abundant in the widely used Chinese medicinal herb, Salvia miltiorrhiza. The biosynthetic pathway for phenolic acids differs in this species from that of other investigated plants. However, the molecular basis for this is unknown, with systematic analysis of the genes involved not yet performed. As the first step towards unraveling this complex biosynthetic pathway in S. miltiorrhiza, the current genome assembly was searched for putatively involved genes. Twenty-nine genes were revealed, 19 of which are described here for the first time. These include 15 genes predicted in the phenylpropanoid pathway; seven genes in the tyrosine-derived pathway; six genes encoding putative hydroxycinnamoyltransferases, and one CYP98A, namely CYP98A78. The promoter regions, gene structures and expression patterns of these genes were examined. Furthermore, conserved domains and phylogenetic relationships with homologous proteins in other species were revealed. Most of the key enzymes, including 4-coumarate: CoA ligase, 4-hydroxyphenylpyruvate reductase and hydroxycinnamoyltransferase, were found in multiple copies, each exhibiting different characteristics. Ten genes putatively involved in rosmarinic acid biosynthesis are also described. These findings provide a foundation for further analysis of this complex and diverse pathway, with potential to enhance the synthesis of water-soluble medicinal compounds in S. miltiorrhiza.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 2015. [DOI: 10.1039/c5ra08196c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase, a versatile enzyme with industrial and medical applications.
Collapse
Affiliation(s)
- Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products
- Beijing
- China
| |
Collapse
|
40
|
Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B, Li X, Li C, Liu J, Chen S. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. PHYSIOLOGIA PLANTARUM 2014; 152:241-55. [PMID: 24660670 DOI: 10.1111/ppl.12193] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/13/2014] [Indexed: 05/25/2023]
Abstract
Salvia miltiorrhiza is a Chinese herb with significant pharmacologic effects because of the bioactive compounds of tanshinones and phenolic acids. Methyl jasmonate (MeJA) has been used as an effective elicitor to enhance the production of these compounds. However, the molecular mechanism of MeJA-mediated tanshinone and salvianolic acid biosynthesis remains unclear. The transcriptional profiles of S. miltiorrhiza leaves at 12 h (T12) after MeJA elicitation and mock-treated leaves (T0) were generated using the Illumina deep RNA sequencing (RNA-seq) strategy to detect the changes in gene expression in response to MeJA. In total, 37 647 unique sequences were obtained from about 21 million reads, and 25 641 (71.53%) of these sequences were annotated based on the blast searches against the public databases. A total of 5287 unique sequences were expressed differentially between the samples of T0 and T12, which covered almost all the known genes involved in tanshinone and phenolic acid biosynthesis in S. miltiorrhiza. Many of the transcription factors (e.g. MYB, bHLH and WRKY) and genes involved in plant hormone biosynthesis and signal transduction were expressed differentially in response to the MeJA induction. Importantly, three and four candidate cytochrome P450s (P450s) that could be involved in the tanshinone and phenolic acid biosynthesis, respectively, were selected from the RNA-seq data based on co-expressed pattern analysis with SmCPS1/SmKSL1 and SmRAS, which are the key genes responsible for biosynthesis. This comprehensive investigation of MeJA-induced gene expression profiles can shed light on the molecular mechanisms of the MeJA-mediated bioactive compound biosynthesis and regulation in S. miltiorrhiza.
Collapse
Affiliation(s)
- Hongmei Luo
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bhat WW, Razdan S, Rana S, Dhar N, Wani TA, Qazi P, Vishwakarma R, Lattoo SK. A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors. Gene 2014; 547:245-56. [PMID: 24979341 DOI: 10.1016/j.gene.2014.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/16/2014] [Accepted: 06/23/2014] [Indexed: 01/23/2023]
Abstract
Picrorhiza kurrooa Royle ex Benth. is a highly reputed medicinal herb utilised in the preparation of a number of herbal drug formulations, principally due to the presence of novel monoterpene iridoid glycosides kenned as picrosides. Phenylalanine ammonia-lyase catalyses an important rate-limiting step in phenylpropanoid pathway and supplies precursors like cinnamic acid, vanillic acid, ferulic acid, etc., to a variety of secondary metabolites including picrosides. The imperilled status of P. kurrooa coupled with lack of information regarding biogenesis of picrosides necessitates deciphering the biosynthetic pathway for picrosides. In the present study, a PAL gene, designated PkPAL1 was isolated from P. kurrooa. The cDNA is 2312 bp in length, consisting of an ORF of 2142 bp encoding for a 713 amino acid protein having a predicted molecular weight of 77.66 kDa and an isoelectric point of pH 6.82. qRT-PCR analysis of various tissues of P. kurrooa showed that PkPAL1 transcript levels were highest in the leaves, consistent with picroside accumulation pattern. Using Genome walking, a 718 bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including TGA-element, TGACG-motif, CGTCA-motif, etc. qRT-PCR indicated up-regulation of PkPAL1 by methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations that corroborated positively with the identified cis-elements within the promoter region. Moreover, altitude was found to have a positive effect on the PkPAL1 transcript levels, driving the expression of PkPAL1 abundantly. Based on docking analysis, we identified eight residues as potentially essential for substrate binding in PkPAL1.
Collapse
Affiliation(s)
- Wajid Waheed Bhat
- Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180001, India
| | - Sumeer Razdan
- Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180001, India
| | - Satiander Rana
- Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180001, India
| | - Niha Dhar
- Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180001, India
| | - Tariq Ahmad Wani
- Genetic Resources and Agrotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Parvaiz Qazi
- Microbial Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ram Vishwakarma
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180001, India.
| |
Collapse
|
42
|
Wang ZB, Chen X, Wang W, Cheng KD, Kong JQ. Transcriptome-wide identification and characterization of Ornithogalum saundersiae phenylalanine ammonia lyase gene family. RSC Adv 2014. [DOI: 10.1039/c4ra03385j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcriptome-wide identification and characterization ofOrnithogalum saundersiaephenylalanine ammonia lyase gene family.
Collapse
Affiliation(s)
- Zhi-Biao Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Xi Chen
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Wei Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Ke-Di Cheng
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| |
Collapse
|
43
|
Yan J, Wang B, Jiang Y, Cheng L, Wu T. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. PLANT & CELL PHYSIOLOGY 2014; 55:74-86. [PMID: 24192294 DOI: 10.1093/pcp/pct159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Flavones, a major group of flavonoids in most plant tissues, play multiple roles in plant-environment interactions. In our study, the expression of the two soybean flavone synthase genes, GmFNSII-1 and GmFNSII-2, was significantly increased by methyl jasmonate (MeJA), glucose, mannitol and NaCl treatment, which were also found to increase flavone aglycone accumulation in Glycine max (L.) Merrill. In the GmFNSII-1 promoter, a specific CGTCA motif in the region (-979 bp to -806 bp) involved in the MeJA response was identified. Promoter deletion analysis of GmFNSII-2 revealed the presence of osmotic-responsive (-1,143 bp to -767 bp) and glucose-repressive sequence elements (-767 bp to -475 bp), which strongly supported the hypothesis that glucose induces soybean flavone production by acting as both an osmotic factor and a sugar signaling molecule simultaneously. Silencing of the GmFNSII gene clearly reduced the production of flavone aglycones (apigenin, luteolin and 7,4'-dihydroxyflavone) in hairy roots. The GmFNSII-RNAi (RNA interference) roots that had a reduced level of flavones accompanied by more malondialdehyde and H2O2 accumulation were more sensitive to salt stress compared with those of the control, and we concluded that flavones, as antioxidants, are associated with salt tolerance.
Collapse
Affiliation(s)
- Junhui Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, PR China 200240
| | | | | | | | | |
Collapse
|
44
|
Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol Lett 2013; 36:211-21. [DOI: 10.1007/s10529-013-1350-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
|
45
|
Ma W, Wu M, Wu Y, Ren Z, Zhong Y. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis. PLANT CELL REPORTS 2013; 32:1179-1190. [PMID: 23494390 DOI: 10.1007/s00299-013-1413-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/01/2023]
Abstract
The gene and cDNA sequence encoding PAL from Chinese medicinal plant Rhus chinensis were cloned and analyzed, furthermore the biochemical properties, kinetic parameters, differential expression and key sites were studied. Rhus chinensis is a well-known Chinese medicinal plant. Phenylalanine ammonia-lyase (PAL) is the first enzyme of phenylpropanoid pathway. Several recent studies suggested that PAL also play an important role in plant-aphid interaction. In this study, both the cDNA and the genomic sequence encoding PAL from Rhus chinensis (designated as RcPAL) were cloned and analyzed. The 3,833 bp gene contained a 1,342 bp intron and two extrons. The ORF was 2,124 bp and predicted to encode a 707-amino acid polypeptide. The results of real-time PCR showed that RcPAL expressed in all tested tissues and followed the order: stems > young leaves > petioles > roots > seeds > mature leaves. RcPAL was successfully expressed in E. coli with the pET-28a-RcPAL recombinant vector. The recombinant protein exhibited a high level of PAL activity. Biochemical properties and kinetic parameters of recombinant RcPAL were further studied. The results showed that the optimal temperature and pH for RcPAL activity were 45 °C and 9.0, and the K m and K cat values were 7.90 mM and 52.31 s(-1), respectively. The active sites and substrate selectivity site were also investigated with site-directed mutagenesis methods, suggesting that Phe(126) is responsible for the substrate selectivity. To our knowledge, this was the first full-length PAL gene cloned and characterized from the family Anacardiaceae so far.
Collapse
Affiliation(s)
- WenLi Ma
- School of Life Science, Shanxi University, 92, Wucheng Road, Taiyuan, China
| | | | | | | | | |
Collapse
|
46
|
Hou X, Shao F, Ma Y, Lu S. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 2013; 40:4301-10. [PMID: 23644983 DOI: 10.1007/s11033-013-2517-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/27/2013] [Indexed: 01/09/2023]
Abstract
Salvia miltiorrhiza Bunge is a well-known material of traditional Chinese medicine. Hydrophilic phenolic acids, such as rosmarinic acid and salvianolic acid B, are a group of pharmaceutically important compounds in S. miltiorrhiza. The biosynthesis of rosmarinic acid requires the coordination of the phenylpropanoid pathway and the tyrosine-derived pathway. Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenylpropanoid pathway. Systematic analysis of the SmPAL gene family has not been carried out. We report here the identification of three SmPALs through searching the recently obtained working draft of the S. miltiorrhiza genome and full-length cDNA cloning. Bioinformatic and phylogenetic analyses showed that SmPAL1 and SmPAL3 clustered in a sub-clade of dicot PALs, whereas SmPAL2 fell into the other one. Some important cis-elements were conserved in three SmPAL promoters, whereas the others were not. SmPAL1 and SmPAL3 were highly expressed in roots and leaves of S. miltiorrhiza, but SmPAL2 were predominately expressed in stems and flowers. It indicates that SmPAL1 and SmPAL3 function redundantly in rosmarinic acid biosynthesis. All SmPALs were induced in roots treated with PEG and MeJA, but the time and degree of responses were different, suggesting the complexity of SmPAL-associated metabolic network in S. miltiorrhiza. This is the first comprehensive study dedicated to SmPAL gene family characterization. The results provide a basis for elucidating the role of SmPAL genes in the biosynthesis of bioactive compounds.
Collapse
Affiliation(s)
- Xuemin Hou
- Institute of Biodiversity, College of Life Sciences, Shanxi Normal University, Linfen, 041004, China
| | | | | | | |
Collapse
|
47
|
Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl Biochem Biotechnol 2013; 170:1253-62. [PMID: 23673485 DOI: 10.1007/s12010-013-0265-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) root, generally called Danshen, is an important herb in Chinese medicine widely used for treatment of various diseases. Phenolic acids in S. miltiorrhiza, as important effective compounds, have become a new research focus in plant secondary metabolism in recent years. This review summarizes the recent advances in the regulation of water-soluble phenolic acid biosynthesis in S. miltiorrhiza via regulators at molecular level, such as the phenylalanine ammonia-lyase gene (PAL), cinnamic acid 4-hydroxylase gene (C4H), 4-coumarate-CoA ligase gene (4CL), tyrosine aminotransferase gene (TAT), 4-hydroxyphenylpyruvate reductase gene (HPPR), 4-hydroxyphenylpyruvated dioxygenase gene (HPPD), hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase-like gene (RAS-like), and v-myb avian myeloblastosis viral oncogene homolog 4 gene (MYB4), and production of anthocyanin pigmentation 1 gene (AtPAP1), and via regulators at cell level, such as methyl jasmonate, salicylic acid, abscisic acid, polyamines, metal ions, hydrogen peroxide (H₂O₂), ultraviolet-B radiation, and yeast elicitor.
Collapse
|
48
|
Heberling MM, Wu B, Bartsch S, Janssen DB. Priming ammonia lyases and aminomutases for industrial and therapeutic applications. Curr Opin Chem Biol 2013; 17:250-60. [PMID: 23557642 DOI: 10.1016/j.cbpa.2013.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 01/17/2023]
Abstract
Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the non-reliance on external cofactors and direct functionalization of an olefinic bond make ammonia lyases attractive biocatalysts for use in the synthesis of natural and non-natural amino acids, including β-amino acids. The approach of combining structure-guided enzyme engineering with efficient mutant library screening has extended the synthetic scope of these enzymes in recent years and has resolved important mechanistic issues for AMs and ALs, including those containing the MIO (4-methylideneimidazole-5-one) internal cofactor.
Collapse
Affiliation(s)
- Matthew M Heberling
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Seong ES, Yoo JH, Lee JG, Kim HY, Hwang IS, Heo K, Kim JK, Lim JD, Sacks EJ, Yu CY. Antisense-overexpression of the MsCOMT gene induces changes in lignin and total phenol contents in transgenic tobacco plants. Mol Biol Rep 2013; 40:1979-86. [PMID: 23160900 DOI: 10.1007/s11033-012-2255-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Initially, we isolated the caffeic acid O-methyltransferase (COMT) gene from Miscanthus sinensis (accession number HM062766.1). Next, we produced transgenic tobacco plants with down-regulated COMT gene expression to study its control of total phenol and lignin content and to perform morphological analysis. These transgenic plants were found to have reduced PAL and ascorbate peroxidases expression, which are related to the phenylpropanoid pathway and antioxidant activity. The MsCOMT-down-regulated plants had decreased total lignin in the leaves and stem compared with control plants. Reduced flavonol concentrations were confirmed in MsCOMT-down-regulated transgenic plants. We also observed a morphological difference, with reduced plant cell number in transgenic plants harboring antisense MsCOMT. The transgenic tobacco plants with down-regulated COMT gene expression demonstrate that COMT plays a crucial role related to controlling lignin and phenol content in plants. Also, COMT activity may be related to flavonoid production in the plant lignin pathway.
Collapse
Affiliation(s)
- Eun Soo Seong
- Bioherb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang RQ, Zhu HH, Zhao HQ, Yao Q. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2013. [PMID: 23122788 DOI: 10.1016/j.scienta.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arbuscular mycorrhizal fungi can increase the host resistance to pathogens via promoted phenolic synthesis, however, the signaling pathway responsible for it still remains unclear. In this study, in order to reveal the signaling molecules involved in this process, we inoculated Trifolium repense L. with an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and monitored the contents of phenolics and signaling molecules (hydrogen peroxide (H(2)O(2)), salicylic acid (SA), and nitric oxide (NO)) in roots, measured the activities of l-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS), and the expression of pal and chs genes. Results demonstrated that AMF colonization promoted the phenolic synthesis, in parallel with the increase in related enzyme activity and gene expression. Meanwhile, the accumulation of all three signaling molecules was also up-regulated by AMF. This study suggested that AMF increased the phenolic synthesis in roots probably via signaling pathways of H(2)O(2), SA and NO in a signaling cascade.
Collapse
Affiliation(s)
- Rui-Qin Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | | | | |
Collapse
|