1
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
2
|
Mi C, Sun C, Yuan Y, Li F, Wang Q, Zhu H, Hua S, Lin L. Effects of Low Nighttime Temperature on Fatty Acid Content in Developing Seeds from Brassica napus L. Based on RNA-Seq and Metabolome. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020325. [PMID: 36679038 PMCID: PMC9862530 DOI: 10.3390/plants12020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Brassica napus L. is a vital plant oil resource worldwide. The fatty acid biosynthesis and oil accumulation in its seeds are controlled by several genetic and environmental factors, including daytime and nighttime temperatures. We analyzed changes in oleic and erucic acid content in two double haploid (DH) lines, DH0729, a weakly temperature-sensitive line, and DH0815, a strongly temperature-sensitive line, derived from B. napus plants grown at different altitudes (1600, 1800, 2000, 2200, and 2400 m a.s.l., 28.85° N, 112.35° E) and nighttime temperatures (20/18, 20/16, 20/13 and 20/10 °C, daytime/nighttime temperature). Based on medium- and long-chain fatty acid metabolites, the total oleic acid content 35 and 43 days after flowering was significantly lower in low nighttime temperature (LNT, 20/13 °C) plants than in high nighttime temperature (HNT, 20/18 °C) plants (HNT: 58-62%; LNT: 49-54%; an average decrease of 9%), and the total erucic acid content was significantly lower in HNT than in LNT plants (HNT: 1-2%; LNT: 8-13%; an average increase of 10%). An RNA-seq analysis showed that the expression levels of SAD (LOC106366808), ECR (LOC106396280), KCS (LOC106419344), KAR (LOC106367337), HB1(LOC106430193), and DOF5 (LOC111211868) in STSL seeds increased under LNT conditions. In STSL seeds, a base mutation in the cis-acting element involved in low-temperature responsiveness (LTR), the HB1 and KCS promoter caused loss of sensitivity to low temperatures, whereas that of the KCS promoter caused increased sensitivity to low temperatures.
Collapse
Affiliation(s)
- Chao Mi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuting Yuan
- Agricultural Research Institute, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China
| | - Fei Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Qian Wang
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Haiping Zhu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 17, Hangzhou 310021, China
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Temporal and Spatial Variation of PM2.5 in Xining, Northeast of the Qinghai–Xizang (Tibet) Plateau. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PM2.5 was sampled from January 2017 to May 2018 at an urban, suburban, industrial, and rural sites in Xining. The annual mean of PM2.5 was highest at the urban site and lowest at the rural site, with an average of 51.5 ± 48.9 and 26.4 ± 17.8 μg·m−3, respectively. The average PM2.5 concentration of the industrial and suburban sites was 42.8 ± 27.4 and 37.2 ± 23.7 μg·m−3, respectively. All sites except for the rural had concentrations above the ambient air quality standards of China (GB3095-2012). The highest concentration of PM2.5 at all sites was observed in winter, followed by spring, autumn, and summer. The concentration of major constituents showed statistically significant seasonal and spatial variation. The highest concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and water-soluble inorganic ions (WSIIs) were found at the urban site in winter. The average concentration of F− was higher than that in many studies, especially at the industrial site where the annual average concentration of F− was 1.5 ± 1.7 μg·m−3. The range of sulfur oxidation ratio (SOR) was 0.1–0.18 and nitrogen oxidation ratio (NOR) was 0.02–0.1 in Xining. The higher SO42−/NO3− indicates that coal combustion has greater impact than vehicle emissions. The results of the potential source contribution function (PSCF) suggest that air mass from middle- and large-scale transport from the western areas of Xining have contributed to the higher level of PM2.5. On the basis of the positive matrix factorization (PMF) model, it was found that aerosols from salt lakes and dust were the main sources of PM2.5 in Xining, accounting for 26.3% of aerosol total mass. During the sandstorms, the concentration of PM2.5 increased sharply, and the concentrations of Na+, Ca2+ and Mg2+ were 1.13–2.70, 1.68–4.41, and 1.15–5.12 times higher, respectively, than annual average concentration, implying that aerosols were mainly from dust and the largest saltwater lake, Qinghai Lake, and many other salt lakes in the province of Qinghai. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was utilized to study the surface components of PM2.5 and F− was found to be increasingly distributed from the surface to inside the particles. We determined that the extremely high PM2.5 concentration appears to be due to an episode of heavy pollution resulting from the combination of sandstorms and the burning of fireworks.
Collapse
|
4
|
Diurnal biomarkers reveal key photosynthetic genes associated with increased oil palm yield. PLoS One 2019; 14:e0213591. [PMID: 30856213 PMCID: PMC6411157 DOI: 10.1371/journal.pone.0213591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/25/2019] [Indexed: 01/07/2023] Open
Abstract
To investigate limiters of photosynthate assimilation in the carbon-source limited crop, oil palm (Elaeis guineensis Jacq.), we measured differential metabolite, gene expression and the gas exchange in leaves in an open field for palms with distinct mesocarp oil content. We observed higher concentrations of glucose 1-phosphate, glucose 6-phosphate, sucrose 6-phosphate, and sucrose in high-oil content palms with the greatest difference being at 11:00 (p-value ≤0.05) immediately after the period of low morning light intensity. Three important photosynthetic genes were identified using differentially expressed gene analysis (DEGs) and were found to be significantly enriched through Gene Ontology (GO) and pathway enrichment: chlorophyll a-b binding protein (CAB-13), photosystem I (PSI), and Ferredoxin-NADP reductase (FNR), particularly for sampling points at non-peak light (11:00 and 19:00), ranging from 3.3-fold (PSI) and 5.6-fold (FNR) to 10.3-fold (CAB-13). Subsequent gas exchange measurements further supported increased carbon assimilation through higher level of internal CO2 concentration (Ci), stomatal conductance (gs) and transpiration rate (E) in high-oil content palms. The selection for higher expression of key photosynthesis genes together with CO2 assimilation under low light is likely to be important for crop improvement, in particular at full maturity and under high density planting regimes where light competition exists between palms.
Collapse
|
5
|
Wang L, Ruan C, Liu L, Du W, Bao A. Comparative RNA-Seq Analysis of High- and Low-Oil Yellow Horn During Embryonic Development. Int J Mol Sci 2018; 19:ijms19103071. [PMID: 30297676 PMCID: PMC6212864 DOI: 10.3390/ijms19103071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the oil contents of high- and low-oil yellow horn embryo tissues at four developmental stages and investigated the global gene expression profiles through RNA-seq. The results found that at 40, 54, 68, and 81 days after anthesis, a total of 762, 664, 599, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil lines. Gene ontology (GO) enrichment analysis revealed some critical GO terms related to oil accumulation, including acyl-[acyl-carrier-protein] desaturase activity, pyruvate kinase activity, acetyl-CoA carboxylase activity, and seed oil body biogenesis. The identified differentially expressed genes also included several transcription factors, such as, AP2-EREBP family members, B3 domain proteins and C2C2-Dof proteins. Several genes involved in fatty acid (FA) biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were also up-regulated in the high-oil line at different developmental stages. Our findings indicate that the higher oil accumulation in high-oil yellow horn could be mostly driven by increased FA biosynthesis and carbon supply, i.e. a source effect.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Lingyue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Aomin Bao
- Institute of economic forest, Tongliao Academy of Forestry Science and Technology, Tongliao 028000, China.
| |
Collapse
|
6
|
|
7
|
Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 2017; 18:470. [PMID: 28637447 DOI: 10.1186/s12864-017-3855-3857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/09/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. RESULTS A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. CONCLUSIONS Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.
Collapse
Affiliation(s)
- Yick Ching Wong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huey Fang Teh
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Institute of Research Management & Monitoring (IPPP), Research Management & Innovation Comlex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qi Bin Kwong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ka Loo Koo
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chuang Kee Ong
- European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sean Mayes
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, off Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - David R Appleton
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 2017. [PMID: 28637447 PMCID: PMC5480177 DOI: 10.1186/s12864-017-3855-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. Results A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Conclusions Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3855-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yick Ching Wong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huey Fang Teh
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Institute of Research Management & Monitoring (IPPP), Research Management & Innovation Comlex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qi Bin Kwong
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ka Loo Koo
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chuang Kee Ong
- European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sean Mayes
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, off Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - David R Appleton
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Gan L, Zhang CY, Wang XD, Wang H, Long Y, Yin YT, Li DR, Tian JH, Li ZY, Lin ZW, Yu LJ, Li MT. Proteomic and Comparative Genomic Analysis of Two Brassica napus Lines Differing in Oil Content. J Proteome Res 2013; 12:4965-78. [DOI: 10.1021/pr4005635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lu Gan
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-yu Zhang
- National
Key Laboratory of Crop Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, China
| | - Xiao-dong Wang
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Dali 715105, China
| | - Yan Long
- National
Key Laboratory of Crop Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, China
| | - Yong-tai Yin
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dian-Rong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Dali 715105, China
| | - Jian-Hua Tian
- Hybrid Rapeseed Research Center of Shaanxi Province, Dali 715105, China
| | - Zai-yun Li
- National
Key Laboratory of Crop Improvement, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, China
| | - Zhi-wei Lin
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long-Jiang Yu
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mao-Teng Li
- Institute
of Resource Biology and Biotechnology, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Guan M, Li X, Guan C. Microarray analysis of differentially expressed genes between Brassica napus strains with high- and low-oleic acid contents. PLANT CELL REPORTS 2012; 31:929-43. [PMID: 22203212 DOI: 10.1007/s00299-011-1213-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/02/2011] [Accepted: 12/12/2011] [Indexed: 05/03/2023]
Abstract
An increase in oleic acid (C18:1) content is a desirable trait. Despite the critical roles of the two desaturases, FAD2 and FAD3, in the control of fatty acid desaturation, a dispute remains over whether inactivation of their genes alone is sufficient enough to generate the high-oleic trait. To address this question, we employed microarray technology to investigate the difference in gene expression profile between two different Brassica napus strains with high-C18:1 (71.71%) and low-C18:1 (55.6%) contents, respectively. Our study revealed 562 differentially expressed genes, of which 194 genes were up-regulated and 368 down-regulated. Based on the Gene Ontology classification, these genes were classified into 23 functional categories. Three of the up-regulated genes represent B. napus homologs of Arabidopsis genes encoding a cytosolic isoform of pyruvate kinase (AT3G55810), Δ9 acyl-lipid desaturase (AT1G06080, ADS1) and fatty acyl-ACP thioesterase B (AT1G08510), respectively. Conversely, the homologs of two Arabidopsis sequences encoding Δ9 acyl-lipid desaturase (AT2G31360, ADS2) and FAD3 desaturase (AT2G29980) were down-regulated in the high-oleic acid strain. Furthermore, 60 differentially expressed genes were classified as associated with relevant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, our results suggest that expressing the high-oleic acid trait may require a coordinated regulation of diverse regulatory and metabolic gene networks in addition to inactivation of the FAD2 and FAD3 genes in the oilseed. A set of the differentially expressed genes identified in this study will facilitate our efforts to tap the germplasms with the potential to express the high-oleic acid trait.
Collapse
Affiliation(s)
- Mei Guan
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center, Hunan Agricultural University, Changsha 410128, China
| | | | | |
Collapse
|
11
|
Zhao YT, Wang M, Fu SX, Yang WC, Qi CK, Wang XJ. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. PLANT PHYSIOLOGY 2012; 158:813-23. [PMID: 22138974 PMCID: PMC3271769 DOI: 10.1104/pp.111.187666] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/26/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.
Collapse
|
12
|
Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. PLANT PHYSIOLOGY 2011; 156:1577-88. [PMID: 21562329 PMCID: PMC3135965 DOI: 10.1104/pp.111.175000] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.
Collapse
|
13
|
Abid G, Muhovski Y, Jacquemin JM, Mingeot D, Sassi K, Toussaint A, Baudoin JP. Characterization and expression profile analysis of a sucrose synthase gene from common bean (Phaseolus vulgaris L.) during seed development. Mol Biol Rep 2011; 39:1133-43. [PMID: 21573790 DOI: 10.1007/s11033-011-0842-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/05/2011] [Indexed: 11/28/2022]
Abstract
A full-length cDNA encoding common bean (Phaseolus vulgaris L.) sucrose synthase (designated as Pv_BAT93 Sus), which catalyses the synthesis and cleavage of sucrose, was isolated from seeds at 15 days after pollination (DAP) by rapid amplification of cDNA ends (RACE). The full-length cDNA of Pv_BAT93 Sus had a 2,418 bp open reading frame (ORF) encoding a protein of 806 amino acid residues. Sequence comparison analysis showed that Pv_BAT93 Sus was very similar to several members of the sucrose synthase family of other plant species. Tissue expression pattern analysis showed that Pv_BAT93 Sus was expressed in leaves, flowers, stems, roots, cotyledons, and particularly during seed development. Expression studies using in situ hybridization revealed altered spatial and temporal patterns of Sus expression in the EMS mutant relative to wild-type and confirmed Sus expression in common bean developing seeds. The expression and accumulation of Sus mRNA was clearly shown in several tissues, such as the suspensor and embryo, but also in the transfer cells and endothelium. The results highlight the diverse roles that Sus might play during seed development in common bean.
Collapse
Affiliation(s)
- Ghassen Abid
- University of Liège-Gembloux Agro-Bio Tech., Unit of Tropical Crop Husbandry and Horticulture, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Genomic resources in horticultural crops: Status, utility and challenges. Biotechnol Adv 2011; 29:199-209. [DOI: 10.1016/j.biotechadv.2010.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 09/04/2010] [Accepted: 09/26/2010] [Indexed: 01/02/2023]
|
15
|
Li Y, Nie C, Cao J. Isolation and characterization of a novel BcMF14 gene from Brassica campestris ssp. chinensis. Mol Biol Rep 2010; 38:1821-9. [PMID: 20857218 DOI: 10.1007/s11033-010-0298-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
Abstract
A putative RALF (rapid alkalinization factor)-like gene (GenBank accession number EF523517), named BcMF14, was isolated from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis) by rapid amplification of cDNA ends (RACE) based on a cDNA-AFLP differential fragment exclusively expressed in fertile line. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) discovered that BcMF14 was prominently expressed in stage four and five flower buds of fertile line, no expression in vegetative structures or in sterility line. Detailed RT-PCR illuminated its strong expression in stamens. Successful suppression of BcMF14 gene expression greatly reduced the normal pollen grains. The frequency of abnormal pollen grains was 48.95% in the mutant with many shriveled pollen grains with irregular shape and some larger ones with deep hollows along the germination ditch. Pollen germination was stopped because of the severely twisted pollen tubes. These results demonstrate a potential role of the BcMF14 gene in the development of male gametogenesis in Chinese cabbage.
Collapse
Affiliation(s)
- Yanyan Li
- School of Life Sciences, Fuyang Teachers College, Fuyang 230032, China.
| | | | | |
Collapse
|
16
|
Troncoso-Ponce MA, Rivoal J, Cejudo FJ, Dorion S, Garcés R, Martínez-Force E. Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. PLANTA 2010; 232:845-859. [PMID: 20628759 DOI: 10.1007/s00425-010-1219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate. This glycolytic intermediate, which can be imported to the plastid and enter in the OPPP, is the substrate and product of cytosolic phosphoglucose isomerase (cPGI, EC 5.3.1.9). In this report, we describe the cloning of a full-length cDNA encoding cPGI from developing sunflower seeds. The sequence was predicted to code for a protein of 566 residues characterised by the presence of two sugar isomerase domains. This cDNA was heterologously expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified using immobilised metal ion affinity chromatography and biochemically characterised. The enzyme had a specific activity of 1,436 micromol min(-1) mg(-1) and 1,011 micromol min(-1) mg(-1) protein when the reaction was initiated with glucose-6-phosphate and fructose-6-phosphate, respectively. Activity was not affected by erythrose-4-phosphate, but was inhibited by 6-P gluconate and glyceraldehyde-3-phosphate. A polyclonal immune serum was raised against the purified enzyme, allowing the study of protein levels during the period of active lipid synthesis in seeds. These results were compared with PGI activity profiles and mRNA expression levels obtained from Q-PCR studies. Our results point to the existence of a possible post-translational regulatory mechanism during seed development. Immunolocalisation of the protein in seed tissues further indicated that cPGI is highly expressed in the procambial ring.
Collapse
|
17
|
Huang JY, Jie ZJ, Wang LJ, Yan XH, Wei WH. Analysis of the differential expression of the genes related to Brassica napus seed development. Mol Biol Rep 2010; 38:1055-61. [PMID: 20571911 DOI: 10.1007/s11033-010-0202-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 06/11/2010] [Indexed: 01/06/2023]
Abstract
To screen the genes related to Brassica napus seed development at pattern formation and maturation stages, the suppression subtractive cDNA libraries of B. napus cultivar Zhongshuang 6 were constructed with its embryos at 10 days after flowering (10 DAF) and 30 days after flowering (30 DAF) through suppression subtractive hybridization (SSH) technology. The positive clones were screened by PCR and dot blot hybridization, and then sequenced. High quality expressed sequence tags (ESTs) were used for COG functional classification with COGNITOR software, as well as analysis and annotation with BLAST software. Tissue-specific detection of five genes screened was performed by RT-PCR in root, stem, leaf, flower, bud, pod, and embryo tissues. The insert size ranged from 100 to 900 bp, with an average size of about 500 bp. According to COG functional classification database, the differentially expressed genes mainly involved in lipid and amino acid metabolism, signal transduction, post-transcriptional modification, and etc. The results from RT-PCR detection of the five differentially expressed genes indicated that genes 2-96 and 2-352 presented embryo-specific expression, gene 1-385 expressed in parts of tissues, and genes 1-71 and 1-682 expressed in all tissues. Two genes were found to be involved in seed development, lipid and protein metabolisms, two genes may be involved in signal transduction, one gene could not match with the homologous sequences known to date and was likely a new gene. These results are helpful for future gene cloning and their functional analysis.
Collapse
Affiliation(s)
- Jin-Yong Huang
- Department of Bioengineering, Zhengzhou University, 450001, Zhengzhou, China
| | | | | | | | | |
Collapse
|
18
|
A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep 2010; 38:191-7. [PMID: 20358292 DOI: 10.1007/s11033-010-0094-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/15/2010] [Indexed: 01/22/2023]
Abstract
A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.
Collapse
|