1
|
Ortega-Prieto P, Parlati L, Benhamed F, Regnier M, Cavalcante I, Montabord M, Onifarasoaniaina R, Favier M, Pavlovic N, Magusto J, Cauzac M, Pagesy P, Gautheron J, Desdouets C, Guilmeau S, Issad T, Postic C. O-GlcNAc transferase acts as a critical nutritional node for the control of liver homeostasis. JHEP Rep 2024; 6:100878. [PMID: 38298740 PMCID: PMC10827605 DOI: 10.1016/j.jhepr.2023.100878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 02/02/2024] Open
Abstract
Background & Aims O-GlcNAcylation is a reversible post-translational modification controlled by the activity of two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). In the liver, O-GlcNAcylation has emerged as an important regulatory mechanism underlying normal liver physiology and metabolic disease. Methods To address whether OGT acts as a critical hepatic nutritional node, mice with a constitutive hepatocyte-specific deletion of OGT (OGTLKO) were generated and challenged with different carbohydrate- and lipid-containing diets. Results Analyses of 4-week-old OGTLKO mice revealed significant oxidative and endoplasmic reticulum stress, and DNA damage, together with inflammation and fibrosis, in the liver. Susceptibility to oxidative and endoplasmic reticulum stress-induced apoptosis was also elevated in OGTLKO hepatocytes. Although OGT expression was partially recovered in the liver of 8-week-old OGTLKO mice, hepatic injury and fibrosis were not rescued but rather worsened with time. Interestingly, weaning of OGTLKO mice on a ketogenic diet (low carbohydrate, high fat) fully prevented the hepatic alterations induced by OGT deletion, indicating that reduced carbohydrate intake protects an OGT-deficient liver. Conclusions These findings pinpoint OGT as a key mediator of hepatocyte homeostasis and survival upon carbohydrate intake and validate OGTLKO mice as a valuable model for assessing therapeutical approaches of advanced liver fibrosis. Impact and Implications Our study shows that hepatocyte-specific deletion of O-GlcNAc transferase (OGT) leads to severe liver injury, reinforcing the importance of O-GlcNAcylation and OGT for hepatocyte homeostasis and survival. Our study also validates the Ogt liver-deficient mouse as a valuable model for the study of advanced liver fibrosis. Importantly, as the severe hepatic fibrosis of Ogt liver-deficient mice could be fully prevented upon feeding on a ketogenic diet (i.e. very-low-carbohydrate, high-fat diet) this work underlines the potential interest of nutritional intervention as antifibrogenic strategies.
Collapse
Affiliation(s)
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marion Regnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Isadora Cavalcante
- Team Genomics and Signaling of Endocrine Tumors, Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | | | - Maryline Favier
- HistIM Platform, Institut Cochin, CNRS, INSERM, Université de Paris Cité, Paris, France
| | - Natasa Pavlovic
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Julie Magusto
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Michèle Cauzac
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Chantal Desdouets
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
2
|
Xie D, Zhang Y, Guo Y, Xue X, Zhao S, Geng C, Li Y, Yang R, Gan Y, Li H, Ren Z, Jiang P. The impact of high-glucose or high-fat diets on the metabolomic profiling of mice. Front Nutr 2023; 10:1171806. [PMID: 37492592 PMCID: PMC10363684 DOI: 10.3389/fnut.2023.1171806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Objective Diets high in glucose or fat contribute to an increased prevalence of the diseases. Therefore, the objective of the current research was to observe and evaluate the impact of dietary components on different metabolomic profiles in primary tissues of mice. Methods For 8 weeks, diet with high-glucose or-fat was given to C57BL/6 J mice. The levels of metabolites in the primary tissues of mice were studied using gas chromatography-mass spectrometry (GC-MS) and analyzed using multivariate statistics. Results By comparing the metabolic profiles between the two diet groups and control group in mice main tissues, our study revealed 32 metabolites in the high-glucose diet (HGD) group and 28 metabolites in the high-fat diet (HFD) group. The most significantly altered metabolites were amino acids (AAs; L-alanine, L-valine, glycine, L-aspartic acid, L-isoleucine, L-leucine, L-threonine, L-glutamic acid, phenylalanine, tyrosine, serine, proline, and lysine), fatty acids (FAs; propanoic acid, 9,12-octadecadienoic acid, pentadecanoic acid, hexanoic acid, and myristic acid), and organic compounds (succinic acid, malic acid, citric acid, L-(+)-lactic acid, myo-inositol, and urea). These metabolites are implicated in many metabolic pathways related to energy, AAs, and lipids metabolism. Conclusion We systematically analyzed the metabolic changes underlying high-glucose or high-fat diet. The two divergent diets induced patent changes in AA and lipid metabolism in the main tissues, and helped identify metabolic pathways in a mouse model.
Collapse
Affiliation(s)
- Dadi Xie
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yanbo Zhang
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yujin Guo
- Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Xianzhong Xue
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Shiyuan Zhao
- Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Chunmei Geng
- Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Yuanyuan Li
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Rui Yang
- Department of Paediatrics, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yizhang Gan
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Hanbing Li
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Zhongfa Ren
- Department of Endocrinology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Pei Jiang
- Jining First People’s Hospital, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Kabeer SW, Pant R, Sharma S, Tikoo K. Laccaic acid restores epigenetic alterations responsible for high fat diet induced insulin resistance in C57BL/6J mice. Chem Biol Interact 2023; 374:110401. [PMID: 36828244 DOI: 10.1016/j.cbi.2023.110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Laccaic acid, the major constituent of the food colouring agent-lac dye, possesses antioxidant and anti-inflammatory properties. Here we have evaluated the effects of laccaic acid on the high-fat diet induced insulin resistance in C57BL/6J mice. Insulin resistance was developed in mice by feeding high-fat diet for 12 weeks. 6 week treatment with laccaic acid showed significant improvement in the morphometric, biochemical parameters and liver function. Western blotting experiments showed, laccaic acid increased phosphorylation of IRS1/2/AKT/GSK3β which is suppressed under insulin-resistant conditions in liver. Furthermore, it also attenuated the inflammatory ERK/NFκB signalling, thereby reducing the expression of inflammatory cytokines- TNFα, IL-1β and IL-6. Concomitantly, laccaic acid increased AMPK/AKT-mediated phosphorylation of FOXO1, preventing its nuclear translocation and transcriptional activation of gluconeogenic genes (G6PC and PCK1). Interestingly, treatment with laccaic acid also prevented high-fat diet induced alterations of histone methylation (H3K27me3 and H3K36me2) at global level. Our chromatin-immunoprecipitation data shows high-fat diet induced loss of inactivation mark H3K27me3 at FOXO1 promoter was regained upon laccaic acid treatment. Additionally, the expression of the H3K27 methylating enzyme EZH2 was also upregulated by laccaic acid. Together it all results in the downregulation of FOXO1 gene expression. To the best of our knowledge, we provide first evidence that laccaic acid either directly or indirectly modulates the epigenetic landscape of genes responsible for high-fat diet induced insulin resistance.
Collapse
Affiliation(s)
- Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Rajat Pant
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Liu H, Luo W, Liu J, Kang X, Yan J, Zhang T, Yang L, Shen L, Liu D. The glucotoxicity protecting effect of honokiol in human hepatocytes via directly activating AMPK. Front Nutr 2022; 9:1043009. [DOI: 10.3389/fnut.2022.1043009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
IntroductionSustained hyperglycemia causes glucotoxicity, which has been regarded as a contributor to hepatocyte damage in type 2 diabetes (T2D) and its metabolic comorbidities. Honokiol is a natural biphenolic component derived from the dietary supplement Magnolia officinalis extract. This study aimed to investigate the effects of honokiol on glucose metabolism disorders and oxidative stress in hepatocytes and the underlying mechanisms.MethodsHepG2 cells were treated with glucosamines (18 mM) to induce glucotoxicity as a diabetic complication model in vitro.Results and discussionHonokiol significantly increased glucose consumption, elevated 2-NBDG uptake, and promoted GLUT2 translocation to the plasma membrane in glucosamine-treated HepG2 cells, indicating that honokiol ameliorates glucose metabolism disorders. Furthermore, glucosamine-induced ROS accumulation and loss of mitochondrial membrane potential were markedly reduced by honokiol, suggesting that honokiol alleviated glucotoxicity-induced oxidative stress. These effects were largely abolished by compound C, an AMPK inhibitor, suggesting an AMPK activation-dependent manner of honokiol function in promoting glucose metabolism and mitigating oxidative stress. Molecular docking results revealed that honokiol could interact with the amino acid residues (His151, Arg152, Lys243, Arg70, Lys170, and His298) in the active site of AMPK. These findings provide new insights into the antidiabetic effect of honokiol, which may be a promising agent for the prevention and treatment of T2D and associated metabolic comorbidities.
Collapse
|
5
|
Chen X, Zhao H, Meng F, Zhou L, Pang X, Lu Z, Lu Y. Ameliorated effects of a lipopeptide surfactin on insulin resistance in vitro and in vivo. Food Sci Nutr 2022; 10:2455-2469. [PMID: 35844917 PMCID: PMC9281957 DOI: 10.1002/fsn3.2852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 01/21/2023] Open
Abstract
Surfactin, produced by Bacillus amyloliquefaciens fmb50, was used to treat insulin-resistant (IR) hepatocyte. It was found that surfactin increased glucose consumption in insulin-resistant HepG2 (IR-HepG2) cells and ameliorated IR by increasing glucose transporter 4 (GLUT4) protein expression and AMP-activated protein kinase (AMPK) mRNA expression, promoting GLUT4 translocation and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) in IR-HepG2 cells. Meanwhile, surfactin downregulated protein expression of phosphoenolpyruvate carboxy kinase (PEPCK) and glucose-6-phosphatase (G6Pase), further inhibiting hepatic gluconeogenesis. In addition, surfactin played important roles in eliminating reactive oxygen species (ROS), improving mitochondrial dysfunction, and inhibiting proinflammatory mediators. We observed that surfactin promoted glucose consumption, meanwhile increased translocation and protein expression of GLUT4 in Caco-2 cells. These results confirmed the conclusion in hepatic cells. Furthermore, surfactin supplement decreased body weight, food intake, and fasting blood glucose of type 2 diabetes mellitus (T2DM) mice induced by streptozotocin (STZ)/high-fat diet (HFD). Our data indicated that surfactin ameliorated insulin resistance and lowered blood glucose in intro and in vivo.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Hongyuan Zhao
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Fanqiang Meng
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Libang Zhou
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xinyi Pang
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingJiangsu ProvinceChina
| | - Zhaoxin Lu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Yingjian Lu
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingJiangsu ProvinceChina
| |
Collapse
|
6
|
Mengesha T, Sekaran NG, Mehare T. Hepatoprotective effect of silymarin on fructose induced nonalcoholic fatty liver disease in male albino wistar rats. BMC Complement Med Ther 2021; 21:104. [PMID: 33785007 PMCID: PMC8011178 DOI: 10.1186/s12906-021-03275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the Western world, and it's likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. However, optimal treatment for NAFLD has not been established yet. Therefore, this study investigated the hepatoprotective effect of silymarin on fructose-induced nonalcoholic fatty liver disease in rats. METHODS Thirty male Wistar rats were randomly divided into five groups; normal control group that consumed tap water, silymarin control group that consumed tap water and silymarin (400 mg/kg/day), fructose control group that consumed 20% fructose solution, treatment group that consumed 20% fructose solution and silymarin (200 mg/kg/day), and another treatment group that consumed 20% fructose solution and silymarin (400 mg/kg/day). Hepatic triglyceride, serum lipid profile, lipid peroxidation, antioxidant level, morphological features, and histopathological changes were investigated. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey multiple comparison test. Statistical significance was determined at p < 0.05. RESULTS This study showed that the fructose control group had a significantly high value in the stage of steatosis grade, hepatic triglyceride, serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde concentration as compared to the normal control. However, significantly low values of reduced glutathione and plasma total antioxidant capacity were found. The altered parameters due to fructose drastic effect were ameliorated by silymarin treatment. CONCLUSIONS The fructose control group developed dyslipidemia, oxidative stress, and mild steatosis that are the characteristics features of NAFLD. However, silymarin-treated groups showed amelioration in oxidative stress, dyslipidemia, and steatosis.
Collapse
Affiliation(s)
- Tewodros Mengesha
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| | - N. Gnana Sekaran
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegaye Mehare
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| |
Collapse
|
7
|
S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants (Basel) 2020; 9:antiox9090870. [PMID: 32942712 PMCID: PMC7555592 DOI: 10.3390/antiox9090870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.
Collapse
|
8
|
Xia T, Duan W, Zhang Z, Fang B, Zhang B, Xu B, de la Cruz CBV, El-Seedi H, Simal-Gandara J, Wang S, Wang M, Xiao J. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chem 2020; 335:127513. [PMID: 32745838 DOI: 10.1016/j.foodchem.2020.127513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Zhenjiang aromatic vinegar is a famous traditional fermented cooking ingredient in China, with multiple nutritional and medicinal applications. Zhenjiang aromatic vinegar extract (100-400 μg/mL) is rich in polyphenols increased the glucose uptake and glucose consumption in high glucose-induced insulin resistant HepG2 (IR-HepG2) cells. Zhenjiang aromatic vinegar extract enhanced glycogen synthesis and attenuated gluconeogenesis by regulating key enzymes in IR-HepG2 cells. In addition, Zhenjiang aromatic vinegar extract ameliorated high glucose-induced IR by inhibiting phosphorylated insulin receptor substrate-1 (IRS-1) expression and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Moreover, Zhenjiang aromatic vinegar extract reduced reactive oxygen species generation and phosphorylated c-Jun NH2 terminal kinase (JNK) expression in IR-HepG2 cells. The attenuation of the high glucose is owned to the PI3K/Akt pathway activation, glycogen synthesis induction and gluconeogenesis suppression in IR-HepG2 cells.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhujun Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bicheng Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Celia Bertha Vargas de la Cruz
- Faculty of Pharmacy and Biochemistry, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), National University of San Marcos, Lima, Peru.
| | - Hesham El-Seedi
- Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75 123 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Wang Y, Chen L, Pandak WM, Heuman D, Hylemon PB, Ren S. High Glucose Induces Lipid Accumulation via 25-Hydroxycholesterol DNA-CpG Methylation. iScience 2020; 23:101102. [PMID: 32408171 PMCID: PMC7225732 DOI: 10.1016/j.isci.2020.101102] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
This work investigates the relationship between high-glucose (HG) culture, CpG methylation of genes involved in cell signaling pathways, and the regulation of carbohydrate and lipid metabolism in hepatocytes. The results indicate that HG leads to an increase in nuclear 25-hydroxycholesterol (25HC), which specifically activates DNA methyltransferase-1 (DNMT1), and regulates gene expression involved in intracellular lipid metabolism. The results show significant increases in 5mCpG levels in at least 2,225 genes involved in 57 signaling pathways. The hypermethylated genes directly involved in carbohydrate and lipid metabolism are of PI3K, cAMP, insulin, insulin secretion, diabetic, and NAFLD signaling pathways. The studies indicate a close relationship between the increase in nuclear 25HC levels and activation of DNMT1, which may regulate lipid metabolism via DNA CpG methylation. Our results indicate an epigenetic regulation of hepatic cell metabolism that has relevance to some common diseases such as non-alcoholic fatty liver disease and metabolic syndrome.
Collapse
Affiliation(s)
- Yaping Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China,Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Douglas Heuman
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Phillip B. Hylemon
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| |
Collapse
|
10
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
11
|
McIntosh AL, Atshaves BP, Martin GG, Landrock D, Milligan S, Landrock KK, Huang H, Storey SM, Mackie J, Schroeder F, Kier AB. Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:985-1004. [PMID: 30910689 PMCID: PMC6482111 DOI: 10.1016/j.bbalip.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is the major fatty acid binding/"chaperone" protein in hepatic cytosol. Although fatty acids can be derived from the breakdown of dietary fat and glucose, relatively little is known regarding the impact of L-FABP on phenotype in the context of high dietary glucose. Potential impact was examined in wild-type (WT) and Lfabp gene ablated (LKO) female mice fed either a control or pair-fed high glucose diet (HGD). WT mice fed HGD alone exhibited decreased whole body weight gain and weight gain/kcal food consumed-both as reduced lean tissue mass (LTM) and fat tissue mass (FTM). Conversely, LKO alone increased weight gain, lean tissue mass, and fat tissue mass while decreasing serum β-hydroxybutyrate (indicative of hepatic fatty acid oxidation)-regardless of diet. Both LKO alone and HGD alone significantly altered the serum lipoprotein profile and increased triacylglycerol (TG), but in HGD mice the LKO did not further exacerbate serum TG content. HGD had little effect on hepatic lipid composition in WT mice, but prevented the LKO-induced selective increase in hepatic phospholipid, free-cholesterol and cholesteryl-ester. Taken together, these findings suggest that high glucose diet diminished the effects of LKO on the whole body and lipid phenotype of these mice.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Barbara P Atshaves
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America.
| |
Collapse
|
12
|
Rajendran J, Tomašić N, Kotarsky H, Hansson E, Velagapudi V, Kallijärvi J, Fellman V. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency. Int J Mol Sci 2016; 17:E1824. [PMID: 27809283 PMCID: PMC5133825 DOI: 10.3390/ijms17111824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders.
Collapse
Affiliation(s)
- Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
- Institute of Clinical Medicine, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Nikica Tomašić
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
- Department of Neonatology, Karolinska University Hospital, 17176 Solna, Sweden.
| | - Heike Kotarsky
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
| | - Eva Hansson
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
| | - Vidya Velagapudi
- Finnish Institute of Molecular Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
- Institute of Clinical medicine, Children's Hospital, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland.
| |
Collapse
|
13
|
Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016; 65:1049-61. [PMID: 26997538 PMCID: PMC4931958 DOI: 10.1016/j.metabol.2016.02.014] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
The exposure of hepatocytes to high concentrations of lipids and carbohydrates and the ensuing hepatocellular injury are termed lipotoxicity and glucotoxicity, respectively. A common denominator is metabolic derangement, especially in regards to intracellular energy homeostasis, which is brought on by glucose intolerance and insulin resistance in tissues. In this review, we highlight the lipids and carbohydrates that provoke hepatocyte injury and the mechanisms involved in lipotoxicity and glucotoxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment. Through upregulation of proteins involved in various pathways including PKR-like ER kinase (PERK), CCAAT/enhancer-binding homologous protein (CHOP), c-Jun NH2-terminal kinase-1 (JNK), Bcl-2 interacting mediator (BIM), p53 upregulated modulator of apoptosis (PUMA), and eventually caspases, hepatocytes in lipotoxic states ultimately undergo apoptosis. The protective role of certain lipids and possible targets for pharmacological therapy are explored. Finally, we discuss the role of high fructose and glucose diets in contributing to organelle impairment and poor glucose transport mechanisms, which perpetuate hyperglycemia and hyperlipidemia by shunting of excess carbohydrates into lipogenesis.
Collapse
Affiliation(s)
- Manoela Mota
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Bubu A Banini
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sophie C Cazanave
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
14
|
Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, Nerudova D, Kizek R, Adam V. Microarray analysis of metallothioneins in human diseases—A review. J Pharm Biomed Anal 2016; 117:464-73. [DOI: 10.1016/j.jpba.2015.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023]
|
15
|
Zhang Y, Dong H, Wang M, Zhang J. Quercetin Isolated from Toona sinensis Leaves Attenuates Hyperglycemia and Protects Hepatocytes in High-Carbohydrate/High-Fat Diet and Alloxan Induced Experimental Diabetic Mice. J Diabetes Res 2016; 2016:8492780. [PMID: 27975068 PMCID: PMC5126429 DOI: 10.1155/2016/8492780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
The development of diabetes mellitus is related to oxidant stress induced by a high carbohydrate/high-fat diet (HFD). Quercetin, as a major bioactive component in Toona sinensis leaves (QTL), is a natural antioxidant. However, the exact mechanism by which QTL ameliorate diabetes mellitus is still unknown. In this study, we investigated the hypoglycemic effects and hepatocytes protection of QTL on HFD and alloxan induced diabetic mice. Intragastric administration of QTL significantly reduced body weight gain, serum glucose, insulin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase, and aspartate aminotransferase serum levels compared to those of diabetic mice. Furthermore, it significantly attenuated oxidative stress, as determined by lipid peroxidation, nitric oxide content, and inducible nitric oxide synthase activity and as a result attenuated liver injury. QTL also significantly suppressed the diabetes-induced activation of the p65/NF-κB and ERK1/2/MAPK pathways, as well as caspase-9 and caspase-3 levels in liver tissues of diabetic mice. Finally, micrograph analysis of liver samples showed decreased cellular organelle injury in hepatocytes of QTL treated mice. Taken together, QTL can be viewed as a promising dietary agent that can be used to reduce the risk of diabetes mellitus and its secondary complications by ameliorating oxidative stress in the liver.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- *Jingfang Zhang:
| |
Collapse
|
16
|
Imam MU, Ishaka A, Ooi DJ, Zamri NDM, Sarega N, Ismail M, Esa NM. Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Xu J, Lei S, Liu Y, Gao X, Irwin MG, Xia ZY, Hei Z, Gan X, Wang T, Xia Z. Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013; 2013:716219. [PMID: 23853776 PMCID: PMC3703332 DOI: 10.1155/2013/716219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/01/2013] [Indexed: 02/07/2023] Open
Abstract
Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection.
Collapse
Affiliation(s)
- Jinjin Xu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Shaoqing Lei
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Liu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Xia Gao
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Michael G. Irwin
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Zhong-yuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziqing Hei
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoliang Gan
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Wang
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
- *Tingting Wang: and
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
- *Zhengyuan Xia:
| |
Collapse
|
19
|
Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:430176. [PMID: 22675340 PMCID: PMC3362834 DOI: 10.1155/2012/430176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
Mitochondrial dysfunction is considered to be a pivotal component of insulin resistance and associated metabolic diseases. Psammomys obesus is a relevant model of nutritional diabetes since these adult animals exhibit a state of insulin resistance when fed a standard laboratory chow, hypercaloric for them as compared to their natural food. In this context, alterations in bioenergetics were studied. Using liver mitochondria isolated from these rats fed such a diet for 18 weeks, oxygen consumption rates, activities of respiratory complexes, and content in cytochromes were examined. Levels of malondialdehyde (MDA) and gluthatione (GSH) were measured in tissue homogenates. Diabetic Psammomys showed a serious liver deterioration (hepatic mass accretion, lipids accumulation), accompanied by an enhanced oxidative stress (MDA increased, GSH depleted). On the other hand, both ADP-dependent and uncoupled respirations greatly diminished below control values, and the respiratory flux to cytochrome oxydase was mildly lowered. Furthermore, an inhibition of complexes I and III together with an activation of complex II were found. With emergence of oxidative stress, possibly related to a defect in oxidative phosphorylation, some molecular adjustments could contribute to alleviate, at least in part, the deleterious outcomes of insulin resistance in this gerbil species.
Collapse
|
20
|
Li Q, Tomcik K, Zhang S, Puchowicz MA, Zhang GF. Dietary regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver. Free Radic Biol Med 2012; 52:1043-53. [PMID: 22245097 PMCID: PMC3289253 DOI: 10.1016/j.freeradbiomed.2011.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/17/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022]
Abstract
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Kristyen Tomcik
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Shenghui Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | | | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
- Corresponding author: Guo-Fang Zhang, Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., W-G48, Cleveland, OH, 44106-4954, Tel.: 216 368 6533, Fax: 216 368 6560,
| |
Collapse
|
21
|
Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Yonsei Med J 2012; 53:294-303. [PMID: 22318816 PMCID: PMC3282981 DOI: 10.3349/ymj.2012.53.2.294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Hyperglycemia increases reactive oxygen species (ROS) and the resulting oxidative stress plays a key role in the pathogenesis of diabetic complications. Nicotinamide dinucleotide phosphate (NADPH) oxidase is one of the major sources of ROS production in diabetes. We, therefore, examined the possibility that NADPH oxidase activation is increased in various tissues, and that the antioxidant N-acetylcysteine (NAC) may have tissue specific effects on NADPH oxidase and tissue antioxidant status in diabetes. MATERIALS AND METHODS Control (C) and streptozotocin-induced diabetic (D) rats were treated either with NAC (1.5 g/kg/day) orally or placebo for 4 weeks. The plasma, heart, lung, liver, kidney were harvested immediately and stored for biochemical or immunoblot analysis. RESULTS levels of free 15-F(2t)-isoprostane were increased in plasma, heart, lung, liver and kidney tissues in diabetic rats, accompanied with significantly increased membrane translocation of the NADPH oxidase subunit p67phox in all tissues and increased expression of the membrane-bound subunit p22phox in heart, lung and kidney. The tissue antioxidant activity in lung, liver and kidney was decreased in diabetic rats, while it was increased in heart tissue. NAC reduced the expression of p22phox and p67phox, suppressed p67phox membrane translocation, and reduced free 15-F(2t)-isoprostane levels in all tissues. NAC increased antioxidant activity in liver and lung, but did not significantly affect antioxidant activity in heart and kidney. CONCLUSION The current study shows that NAC inhibits NADPH oxidase activation in diabetes and attenuates tissue oxidative damage in all organs, even though its effects on antioxidant activity are tissue specific.
Collapse
Affiliation(s)
- Shaoqing Lei
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yanan Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Nutrients 2011; 3:987-1002. [PMID: 22254090 PMCID: PMC3257721 DOI: 10.3390/nu3110987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/24/2011] [Accepted: 11/04/2011] [Indexed: 02/08/2023] Open
Abstract
Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as: control (ad libitum water), fructose (ad libitum 30% fructose-sweetened liquid), glucose (ad libitum 30% glucose-sweetened water) and pair-fed (ad libitum water and sulfur amino acid intake same as the fructose group). Hepatic and plasma thiol-disulfide antioxidant status were analyzed after five weeks. Fructose- and glucose-fed mice developed fatty liver. The mitochondrial antioxidant protein, thioredoxin-2, displayed decreased abundance in the liver of fructose and glucose-fed mice compared to controls. Glutathione/glutathione disulfide redox potential (E(h)GSSG) and abundance of the cytoplasmic antioxidant protein, peroxiredoxin-2, were similar among groups. We conclude that both fructose and glucose-sweetened liquid consumption results in fatty liver and upregulated thioredoxin-2 expression, consistent with mitochondrial oxidative stress; however, inadequate sulfur amino acid intake was not the cause of this oxidative stress.
Collapse
|
23
|
Lu Y, Zhang G, Shen C, Uygun K, Yarmush ML, Meng Q. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnol Bioeng 2011; 109:595-604. [PMID: 22006574 DOI: 10.1002/bit.23349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022]
Abstract
Hepatic glucose metabolism is a key player in diseases such as obesity and diabetes as well as in antihyperglycemic drugs screening. Hepatocytes culture in two-dimensional configurations is limited in vitro model for hepatocytes to function properly, while truly practical platforms to perform three-dimensional (3D) culture are unavailable. In this work, we present a practical organoid culture method of hepatocytes for elucidation of glucose metabolism under nominal and stress conditions. Employing this new method of culturing cells within a hollow fiber reactor, hepatocytes were observed to self-assemble into 3D spherical organoids with preservation of tight junctions and display increased liver-specific functions. Compared to both monolayer culture and sandwich culture, the hepatocyte organoids displayed higher intracellular glycogen content, glucose consumption, and gluconeogenesis and approached the in vivo values, as also confirmed by gene expression of key enzymes. Moreover, hepatocyte organoids demonstrated more realistic sensitivity to hormonal challenges with insulin, glucagon, and dexamethasone. Finally, the exposure to high glucose demonstrated toxicities including alteration of mitochondrial membrane potential, lipid accumulation, and reactive oxygen species formation, similar to the in vivo responses, which was not captured by monolayer cultures. Collectively, hepatocyte organoids mimicked the in vivo functions better than hepatocyte monolayer and sandwich cultures, suggesting suitability for applications such as antihyperglycemic drugs screening.
Collapse
Affiliation(s)
- Yanhua Lu
- Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | | | | | | | | | | |
Collapse
|
24
|
Cury NM, Russo A, Galbiatti ALS, Ruiz MT, Raposo LS, Maniglia JV, Pavarino EC, Goloni-Bertollo EM. Polymorphisms of the CYP1A1 and CYP2E1 genes in head and neck squamous cell carcinoma risk. Mol Biol Rep 2011; 39:1055-63. [PMID: 21590276 DOI: 10.1007/s11033-011-0831-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/04/2011] [Indexed: 02/07/2023]
Abstract
Polymorphisms in genes that encode P450 cytochrome enzymes may increase carcinogen activation or decrease their inactivation and consequently, promote the development of cancer. The aims of this study were to identify the MspI-CYP1A1, PstI-CYP2E1 and DraI-CYP2E1 polymorphisms in patients with head and neck cancer and to compare with individuals without cancer; to evaluate the association of these polymorphisms with risk factors and clinical histopathological parameters. In the study group, 313 patients were evaluated for CYP1A1, 217 for CYP2E1 (PstI) and 211 for CYP2E1 (DraI) and in the control group 417, 334 and 374 individuals, respectively. Molecular analysis was performed by PCR-RFLP technique, and chi-square and multiple logistic regression tests were used for statistical analysis. The result of analysis regarding individuals evaluated for CYP1A1 (MspI) showed that age (OR: 8.15; 95% CI 5.57-11.92) and smoking (OR: 5.37; 95% CI 3.52-8.21) were predictors for the disease; for the CYP2E1 (PstI and DraI), there were associations with age (PstI-OR: 9.10; 95% CI 5.86-14.14/DraI-OR: 8.07; 95% CI 5.12-12.72), smoking (PstI-OR: 4.10; 95% CI 2.44-6.89/DraI-OR: 5.73; 95% CI 3.34-9.82), alcohol (PstI-OR: 1.93; 95% CI 1.18-3.16/DraI-OR: 1.69; 95% CI 1.02-2.81), respectively, with disease development. CYP2E1 (PstI) was less frequent in patient group (OR: 0.48; 95% CI 0.23-0.98). Regarding clinical histopathological parameters, CYP1A1 polymorphism was less frequent in the larynx primary anatomic site (OR = 0.45; 95% CI = 0.28-0.73; P = 0.014). In conclusion, we confirm that age, smoking and alcohol consumption are risk factors for this disease and the polymorphisms investigated have no association with the development of head and neck cancer.
Collapse
Affiliation(s)
- Nathália Moreno Cury
- Genetics and Molecular Biology Research Unit-UPGEM, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang X, Wang Z, Liu JZ, Hu JX, Chen HL, Li WL, Hai CX. Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol In Vitro 2011; 25:839-47. [PMID: 21333731 DOI: 10.1016/j.tiv.2011.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 02/07/2023]
Abstract
Chronic hyperglycemia is the hallmark of diabetes and its complication. High glucose-induced excessive reactive oxygen species (ROS) production has been considered to play an important role in the development of diabetes. However, the influence of high glucose on the liver remains to be clarified. Rosiglitazone (RSG) is a member of thiazolidinediones (TDZs) family, which is the ligand of the of nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ), being used clinically for the treatment of type 2 diabetic patients through their insulin-sensitizing effect. In the present study, we investigated the cytotoxicity of high glucose in QZG hepatocytes and evaluated the protective effect of RSG. The results showed that high glucose significantly reduced cell viability through generation of ROS via activation of PKC, which was inhibited by RSG. On the one hand, RSG notably inhibited the activation of PKC induced by high glucose independent of PPARγ, leading to the decrease of ROS generation. On the other hand, RSG notably increased the expression of key antioxidant transcription factor Nrf2 and antioxidant enzyme HO-1 in a PPARγ-dependent manner, leading to the elimination of excessive ROS. In addition, RSG also inhibited the decrease of COX-2 expression induced by high glucose through activating PPARγ. Furthermore, the activation of Akt and MAPKs was involved in the effect of RSG on Nrf2, HO-1 and COX-2. In summary, our study supports the hypothesis that RSG protect hepatocytes from high glucose-induced toxicity through PPARγ-dependent and PPARγ-independent pathways.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Faculty of Preventive Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|