1
|
Feng S, Yao YT, Wang BB, Li YM, Li L, Bao AK. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. PLANT CELL REPORTS 2023; 43:5. [PMID: 38127154 DOI: 10.1007/s00299-023-03087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE The content of flavonoids could increase in A. canescens under saline conditions. Overexpression of AcCHI in transgenic A. thaliana promotes flavonoid biosynthesis, thereby functioning in the tolerance of transgenic plants to salt and osmotic stress by maintaining ROS homeostasis. Atriplex canescens is a halophytic forage shrub with excellent adaptation to saline environment. Our previous study showed that a large number of genes related to the biosynthesis of flavonoids in A. canescens were significantly up-regulated by NaCl treatments. However, it remains unclear whether flavonoids are involved in A. canescens response to salinity. In this study, we found that the accumulation of flavonoids significantly increased in either the leaves or roots of A. canescens seedling under 100 and 300 mM NaCl treatments. Correspondingly, AcCHS, AcCHI and AcF3H, which encode three key enzymes (chalcone synthases (CHS), chalcone isomerase (CHI), and flavanone 3-hydroxylase (F3H), respectively) of flavonoids biosynthesis, were significantly induced in the roots or leaves of A. canescens by 100 or 300 mM NaCl. Then, we generated the transgenic Arabidopsis thaliana overexpressing AcCHI and found that transgenic plants accumulated more flavonoids through enhancing the pathway of flavonoids biosynthesis. Furthermore, overexpression of AcCHI conferred salt and osmotic stress tolerance in transgenic A. thaliana. Contrasted with wild-type A. thaliana, transgenic lines grew better with greater biomass, less H2O2 content as well as lower relative plasma permeability in either salt or osmotic stress conditions. In conclusion, our results indicate that flavonoids play an important role in A. canescens response to salt stress through reactive oxygen species (ROS) scavenging and the key enzyme gene AcCHI in flavonoids biosynthesis pathway of A. canescens has the potential to improve the stress tolerance of forages and crops.
Collapse
Affiliation(s)
- Shan Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Ting Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Bei-Bei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Meng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Lim I, Kang M, Kim BC, Ha J. Metabolomic and transcriptomic changes in mungbean ( Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1030677. [PMID: 36325566 PMCID: PMC9618701 DOI: 10.3389/fpls.2022.1030677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Collapse
|
3
|
Zhu Z, Quan R, Chen G, Yu G, Li X, Han Z, Xu W, Li G, Shi J, Li B. An R2R3-MYB transcription factor VyMYB24, isolated from wild grape Vitis yanshanesis J. X. Chen., regulates the plant development and confers the tolerance to drought. FRONTIERS IN PLANT SCIENCE 2022; 13:966641. [PMID: 36160974 PMCID: PMC9495713 DOI: 10.3389/fpls.2022.966641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
In grapevines, the MYB transcription factors play an important regulatory role in the phenylpropanoid pathway including proanthocyanidin, anthocyanin, and flavonoid biosynthesis. However, the role of MYB in abiotic stresses is not clear. In this study, an R2R3-MYB transcription factor, VyMYB24, was isolated from a high drought-tolerant Chinese wild Vitis species V. yanshanesis. Our findings demonstrated that it was involved in plant development and drought tolerance. VyMYB24 is a nuclear protein and is significantly induced by drought stress. When over-expressed in tobacco, VyMYB24 caused plant dwarfing including plant height, leaf area, flower size, and seed weight. The GA1+3 content in transgenic plants was reduced significantly, and spraying exogenous gibberellin could recover the dwarf phenotype of VyMYB24 transgenic plants, suggesting that VyMYB24 might inhibit plant development by the regulation of gibberellin (GA) metabolism. Under drought stress, the VyMYB24 transgenic plants improved their tolerance to drought with a lower wilting rate, lower relative electrical conductivity, and stronger roots. Compared to wild-type tobacco plants, VyMYB24 transgenic plants accumulated less reactive oxygen, accompanied by increased antioxidant enzyme activity and upregulated gene expression levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) genes. In addition, transgenic plants accumulated more proline, and their related synthetic genes NtP5CR and NtP5CS genes were significantly upregulated when exposed to drought. Besides, abiotic stress-responsive genes, NtDREB, NtERD10C, NtERD10D, and NtLEA5, were upregulated significantly in VyMYB24 transgenic plants. These results indicate that VyMYB24 plays a positive regulatory role in response to drought stress and also regulates plant development, which provides new evidence to further explore the molecular mechanism of drought stress of the MYB gene family.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| | - Ran Quan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangxia Chen
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| | - Guanghui Yu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| | - Xiujie Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| | - Zhen Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| | - Wenwen Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, China
| |
Collapse
|
4
|
Raja V, Wani UM, Wani ZA, Jan N, Kottakota C, Reddy MK, Kaul T, John R. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. PLANT CELL REPORTS 2022; 41:619-637. [PMID: 34383122 DOI: 10.1007/s00299-021-02764-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.
Collapse
Affiliation(s)
- Vaseem Raja
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Umer Majeed Wani
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Zubair Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Chandrasekhar Kottakota
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Malireddy K Reddy
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Tanushri Kaul
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
5
|
Zhang ZX, Zhang R, Wang SC, Zhang D, Zhao T, Liu B, Wang YX, Wu YX. Identification of Malus halliana R2R3-MYB gene family under iron deficiency stress and functional characteristics of MhR2R3-MYB4 in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:344-355. [PMID: 34921493 DOI: 10.1111/plb.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. Fe deficiency can trigger leaf chlorosis and reduce fruit yield. Therefore, it is necessary to explore transcription factors in response to Fe deficiency stress. A total of 29 MhR2R3-MYB transcription factors were identified based on the transcriptome of Malus halliana under Fe deficiency stress. A comprehensive analysis of physical and chemical properties, gene structures, conserved motif composition, evolutionary relationship and chromosome distribution was performed. Subsequently, based on the transcriptome, 14 genes with the most significant expression under Fe deficiency stress were screened for qRT-PCR verification. Among them,the functional characteristics of MhR2R3-MYB4 (MD05G1089600) were further studied in Arabidopsis thaliana. Expression of 13 out of these 14 genes was upregulated, only one was downregulated. Maximum upregulation of MhR2R3-MYB4 under Fe deficiency was 36.39-fold and 58.21-fold compared with day 0 in leaves and roots, respectively. Overexpression of MhR2R3-MYB4 enhanced tolerance to Fe deficiency in A. thaliana and led to multiple biochemical changes: transgenic lines have higher chl a, chl b and Fe2+ content, higher enzyme activity (SOD, POD, CAT and FCR) and lower chlorosis than the wild type in Fe deficiency conditions. We suggest that MhR2R3-MYB4 plays an important part in Fe deficiency stress, which may contribute to improve Fe deficiency tolerance of apple in future.
Collapse
Affiliation(s)
- Z-X Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - R Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - S-C Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - D Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - T Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - B Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, Tian Z, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. PHYSIOLOGIA PLANTARUM 2021; 172:1966-1982. [PMID: 33774830 DOI: 10.1111/ppl.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids with great medicinal value play an important role in plant individual growth and stress resistance. Flavonol synthetase (FLS) is one of the key enzymes to synthesize flavonoids. However, the role of the FLS gene in flavonoid accumulation and tolerance to abiotic stresses, as well as its mechanism has not yet been investigated systematically in plants. The aim of this research is to evaluate the effect of FLS overexpression on the accumulation of active ingredients and stress resistance in Euphorbia kansui Liou. The results showed that when the EkFLS gene was overexpressed in Arabidopsis thaliana, the accumulation of flavonoids was improved. In addition, when the wild-type and EkFLS overexpressed Arabidopsis plants were treated with ABA and MeJA, compared with WT Arabidopsis, EkFLS overexpressed Arabidopsis promoted stomatal aperture to influence photosynthesis of the plants, which in turn can promote stress resistance. Meanwhile, under MeJA, NaCl, and PEG treatment, EkFLS overexpressed in Arabidopsis induced higher accumulation of flavonoids, which significantly enhanced peroxidase (POD) and superoxide dismutase (SOD) activities that can scavenge reactive oxygen species in cells to protect the plant. These results indicated that EkFLS overexpression is strongly correlated to the increase of flavonoid synthesis and therefore the tolerance to abiotic stresses in plants, providing a theoretical basis for further improving the quality of medicinal plants and their resistance to abiotic stresses simultaneously.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
8
|
Down-Regulation of SlGRAS10 in Tomato Confers Abiotic Stress Tolerance. Genes (Basel) 2021; 12:genes12050623. [PMID: 33922069 PMCID: PMC8143468 DOI: 10.3390/genes12050623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.
Collapse
|
9
|
Aničić N, Patelou E, Papanikolaou A, Kanioura A, Valdesturli C, Arapitsas P, Skorić M, Dragićević M, Gašić U, Koukounaras A, Kostas S, Sarrou E, Martens S, Mišić D, Kanellis A. Comparative Metabolite and Gene Expression Analyses in Combination With Gene Characterization Revealed the Patterns of Flavonoid Accumulation During Cistus creticus subsp. creticus Fruit Development. FRONTIERS IN PLANT SCIENCE 2021; 12:619634. [PMID: 33841455 PMCID: PMC8034662 DOI: 10.3389/fpls.2021.619634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Cistus creticus L. subsp. creticus (rockrose) is a shrub widespread in Greece and the Mediterranean basin and has been used in traditional medicine as herb tea for colds, for healing and digestive hitches, for the treatment of maladies, as perfumes, and for other purposes. Compounds from its flavonoid fraction have recently drawn attention due to antiviral action against influenza virus and HIV. Although several bioactive metabolites belonging to this group have been chemically characterized in the leaves, the genes involved in their biosynthesis in Cistus remain largely unknown. Flavonoid metabolism during C. creticus fruit development was studied by adopting comparative metabolomic and transcriptomic approaches. The present study highlights the fruit of C. creticus subsp. creticus as a rich source of flavonols, flavan-3-ols, and proanthocyanidins, all of which displayed a decreasing trend during fruit development. The majority of proanthocyanidins recorded in Cistus fruit are B-type procyanidins and prodelphinidins, while gallocatechin and catechin are the dominant flavan-3-ols. The expression patterns of biosynthetic genes and transcription factors were analyzed in flowers and throughout three fruit development stages. Flavonoid biosynthetic genes were developmentally regulated, showing a decrease in transcript levels during fruit maturation. A high degree of positive correlations between the content of targeted metabolites and the expression of biosynthetic genes indicated the transcriptional regulation of flavonoid biosynthesis during C. creticus fruit development. This is further supported by the high degree of significant positive correlations between the expression of biosynthetic genes and transcription factors. The results suggest that leucoanthocyanidin reductase predominates the biosynthetic pathway in the control of flavan-3-ol formation, which results in catechin and gallocatechin as two of the major building blocks for Cistus proanthocyanidins. Additionally, there is a decline in ethylene production rates during non-climacteric Cistus fruit maturation, which coincides with the downregulation of the majority of flavonoid- and ethylene-related biosynthetic genes and corresponding transcription factors as well as with the decline in flavonoid content. Finally, functional characterization of a Cistus flavonoid hydroxylase (F3'5'H) was performed for the first time.
Collapse
Affiliation(s)
- Neda Aničić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antigoni Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthi Kanioura
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Camilla Valdesturli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Panagiotis Arapitsas
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Dragićević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefanos Kostas
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization - DEMETER, Thessaloniki, Greece
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Developmental transcriptome profiling uncovered carbon signaling genes associated with almond fruit drop. Sci Rep 2021; 11:3401. [PMID: 33564060 PMCID: PMC7873282 DOI: 10.1038/s41598-020-69395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/29/2020] [Indexed: 01/30/2023] Open
Abstract
Almond is one of the most featured nut crops owing to its high nutritional value. However, due to three different waves of flower and fruitlet drop, fruit drop is a major concern for growers. In this study, we carried out a time-course transcriptome analysis to investigate gene expression differences between normal and abnormal fruitlet development. By de novo assembly analysis, we identified 33,577 unigenes and provided their functional annotations. In total, we identified 7,469 differentially expressed genes and observed the most apparent difference between normal and abnormal fruits at 12 and 17 days after flowering. Their biological functions were enriched in carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction. RT-qPCR validated the expression pattern of 14 representative genes, including glycosyltransferase like family 2, MYB39, IAA13, gibberellin-regulated protein 11-like and POD44, which confirmed the reliability of our transcriptome data. This study provides an insight into the association between abnormal fruit development and carbohydrate signaling from the early developmental stages and could be served as useful information for understanding the regulatory mechanisms related to almond fruit drop.
Collapse
|
11
|
Yang C, Zhao W, Wang Y, Zhang L, Huang S, Lin J. Metabolomics Analysis Reveals the Alkali Tolerance Mechanism in Puccinellia tenuiflora Plants Inoculated with Arbuscular Mycorrhizal Fungi. Microorganisms 2020; 8:E327. [PMID: 32110985 PMCID: PMC7142761 DOI: 10.3390/microorganisms8030327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022] Open
Abstract
Soil alkalization is a major environmental threat that affects plant distribution and yield in northeastern China. Puccinellia tenuiflora is an alkali-tolerant grass species that is used for salt-alkali grassland restoration. However, little is known about the molecular mechanisms by which arbuscular mycorrhizal fungi (AMF) enhance P. tenuiflora responses to alkali stress. Here, metabolite profiling in P. tenuiflora seedlings with or without arbuscular mycorrhizal fungi (AMF) under alkali stress was conducted using liquid chromatography combined with time-of-flight mass spectrometry (LC/TOF-MS). The results showed that AMF colonization increased seedling biomass under alkali stress. In addition, principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) demonstrated that non-AM and AM seedlings showed different responses under alkali stress. A heat map analysis showed that the levels of 88 metabolites were significantly changed in non-AM seedlings, but those of only 31 metabolites were significantly changed in AM seedlings. Moreover, the levels of a total of 62 metabolites were significantly changed in P. tenuiflora seedlings after AMF inoculation. The results suggested that AMF inoculation significantly increased amino acid, organic acid, flavonoid and sterol contents to improve osmotic adjustment and maintain cell membrane stability under alkali stress. P. tenuiflora seedlings after AMF inoculation produced more plant hormones (salicylic acid and abscisic acid) than the non-AM seedlings, probably to enhance the antioxidant system and facilitate ion balance under stress conditions. In conclusion, these findings provide new insights into the metabolic mechanisms of P. tenuiflora seedlings with arbuscular mycorrhizal fungi under alkali conditions and clarify the role of AM in the molecular regulation of this species under alkali stress.
Collapse
Affiliation(s)
- Chunxue Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Wenna Zhao
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Yingnan Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Liang Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Shouchen Huang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Jixiang Lin
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
12
|
Waseem M, Rong X, Li Z. Dissecting the Role of a Basic Helix-Loop-Helix Transcription Factor, SlbHLH22, Under Salt and Drought Stresses in Transgenic Solanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2019; 10:734. [PMID: 31231412 PMCID: PMC6558761 DOI: 10.3389/fpls.2019.00734] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
Environmental stresses, such as temperature, heavy metals, drought, cold, and microbial infections adversely damage various aspects of plant growth and development. Salinity and drought are among major hazardous factors, which adversity affects plant growth and productivity. Transcription factors, such as basic helix-loop-helix play critical roles in regulating plant physiological processes under abiotic stresses. In this study, we presented the characterization of a tomato SlbHLH22 gene under abiotic stresses such as drought and salinity. Plants overexpressing SlbHLH22 showed short height with small leaves and enhanced flavonoid accumulation. In wild type (WT) plant, the elevated levels of SlbHLH22 were detected under salt and D-mannitol stresses. Subcellular localization analysis revealed that SlbHLH22 protein was targeted to the nucleus in onion epidermal cells. Transactivation assay in yeast demonstrated that SlbHLH22 had transcriptional activation ability. The transgenic plants overexpressing SlbHLH22 displayed enhanced vigor and more tolerant to drought and salinity than WT. Overexpression of SlbHLH22 significantly peaked the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) to minimize the impacts of reactive oxygen species such as H2O2, which was reduced significantly in transgenic plants along with Malondialdehyde (MDA). Moreover, the expression levels of ROS defense genes (SlPOD, SlCAT, SlSOD), ABA biosynthesis genes, proline biosynthesis, and flavonoids synthesis genes were also activated under salinity and drought. Taken together, our study implies that the overexpression of SlbHLH22 improved tomato plant stress resistance by improving ROS scavenging system, increasing osmotic potential and enhanced accumulation of secondary metabolites in tomato plants.
Collapse
Affiliation(s)
| | | | - Zhengguo Li
- *Correspondence: Zhengguo Li, orcid.org/0000-0002-4643-9540
| |
Collapse
|
13
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
14
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
15
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
16
|
Zhang T, Zhao Y, Wang Y, Liu Z, Gao C. Comprehensive Analysis of MYB Gene Family and Their Expressions Under Abiotic Stresses and Hormone Treatments in Tamarix hispida. FRONTIERS IN PLANT SCIENCE 2018; 9:1303. [PMID: 30283465 PMCID: PMC6156436 DOI: 10.3389/fpls.2018.01303] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/17/2018] [Indexed: 05/18/2023]
Abstract
The MYB transcription factors (TFs) is a plant TF families, which involves in hormone signal transduction, and abiotic stress tolerance, etc. However, there are few studies on the MYB TFs family and its regulatory mechanism in Tamarix hispida. In this study, 14 MYB genes (named ThMYB1 - ThMYB14) were cloned and characterized from T. hispida. The transcription profiles of ThMYBs in T. hispida under different abiotic stress conditions were monitored using qRT-PCR. Most of studied ThMYBs were significantly downregulated and/or upregulated by salt and osmotic stress, ABA, GA3 and JA treatments in at least one organ. Especially, ThMYB13 was induced in the leaves and roots of T. hispida when exposed to NaCl treatment at all study periods, indicating that it may involve in salt stress. To further study ThMYB13 function, ThMYB13 overexpression and knock-down plants and control plants transformed with an empty pROKII were obtained using a transient transformation system. Overexpression of ThMYB13 in T. hispida displayed the lowest O2-, H2O2 and MDA accumulation, minimal cell death, the most stable K+/Na+ ratio and the lowest electrolyte leakage rate among the three kinds of transient expression in T. hispida. Conversely, the RNAi-silencing, transiently transformed plants displayed the opposite physiological changes. Therefore, ThMYB13 might play a role in salt stress tolerance in transgenic T. hispida plants.
Collapse
Affiliation(s)
- Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yulin Zhao
- Taiyuan Botanical Garden, Taiyuan, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Caiqiu Gao,
| |
Collapse
|
17
|
Wang P, Su L, Gao H, Jiang X, Wu X, Li Y, Zhang Q, Wang Y, Ren F. Genome-Wide Characterization of bHLH Genes in Grape and Analysis of their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:64. [PMID: 29449854 PMCID: PMC5799661 DOI: 10.3389/fpls.2018.00064] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are involved in many abiotic stress responses as well as flavonol and anthocyanin biosynthesis. In grapes (Vitis vinifera L.), flavonols including anthocyanins and condensed tannins are most abundant in the skins of the berries. Flavonols are important phytochemicals for viticulture and enology, but grape bHLH genes have rarely been examined. We identified 94 grape bHLH genes in a genome-wide analysis and performed Nr and GO function analyses for these genes. Phylogenetic analyses placed the genes into 15 clades, with some remaining orphans. 41 duplicate gene pairs were found in the grape bHLH gene family, and all of these duplicate gene pairs underwent purifying selection. Nine triplicate gene groups were found in the grape bHLH gene family and all of these triplicate gene groups underwent purifying selection. Twenty-two grape bHLH genes could be induced by PEG treatment and 17 grape bHLH genes could be induced by cold stress treatment including a homologous form of MYC2, VvbHLH007. Based on the GO or Nr function annotations, we found three other genes that are potentially related to anthocyanin or flavonol biosynthesis: VvbHLH003, VvbHLH007, and VvbHLH010. We also performed a cis-acting regulatory element analysis on some genes involved in flavonoid or anthocyanin biosynthesis and our results showed that most of these gene promoters contained G-box or E-box elements that could be recognized by bHLH family members.
Collapse
|
18
|
Rihani KA, Jacobsen HJ, Hofmann T, Schwab W, Hassan F. Metabolic engineering of apple by overexpression of the MdMyb10 gene. J Genet Eng Biotechnol 2017; 15:263-273. [PMID: 30647663 PMCID: PMC6296568 DOI: 10.1016/j.jgeb.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/18/2016] [Accepted: 01/02/2017] [Indexed: 12/01/2022]
Abstract
Flavonoids are low-molecular-weight phenolic compounds that are widely distributed in the plant kingdom. They have different roles in plant resistance to biotic and abiotic stresses. The transcription factor gene MdMyb10 (Gene Bank: DQ267896) was introduced into two apple (Malus domestica Borkh.) cultivars i.e. 'Holsteiner Cox (HC)' and 'Gala' via Agrobacterium-mediated transformation. The regenerated shoots were selected on kanamycin containing media. The presence of additional MdMyb10 gene in putative shoots was confirmed by PCR, RT-PCR and Southern blotting. Expression level of introduced MdMyb10 gene was analyzed by quantitative real time PCR. The results confirmed a dramatic increase in overexpression of MdMyb10 in the transgenic plants, up to 1261 and 847-folds for cultivars Holsteiner Cox and Gala, respectively compared to non-transformed negative control plants. HPLC-MS was used to determine the levels of different flavonoid compounds in both non-transgenic and transgenic plants. In MdMyb10 'HC' transgenic plants, some of the polyphenols analyzed were enhanced while others were reduced in comparison to their levels in the non-transgenic plants. On the other hand, all of the analyzed polyphenol classes were induced in MdMyb10 'Gala' transgenic plants in comparison to their levels in the non-transgenic plants. In the present study, the flavonoid pathway was successfully modified in apple by overexpressing the MdMyb10 transcription factor to validate the hypothesis of increased effect on plant disease resistance.
Collapse
Affiliation(s)
- Khaled A.L. Rihani
- General Commission for Scientific Agricultural Research (GCSAR), Biotechnology Department, Damascus, Douma, P.O. Box 12573, Syria
- Institute of Plant Genetics, Section of Plant Biotechnology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Jörg Jacobsen
- Institute of Plant Genetics, Section of Plant Biotechnology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Hofmann
- Research Department Nutrition and Food Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Wilfried Schwab
- Research Department Nutrition and Food Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Fathi Hassan
- Institute of Plant Genetics, Section of Plant Biotechnology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Laboratory for experimental trauma Surgery, Justus-Liebig University of Giessen, Aulweg 128, 35392 Giessen, Germany
| |
Collapse
|
19
|
Yu D, Zhang L, Zhao K, Niu R, Zhai H, Zhang J. VaERD15, a Transcription Factor Gene Associated with Cold-Tolerance in Chinese Wild Vitis amurensis. FRONTIERS IN PLANT SCIENCE 2017; 8:297. [PMID: 28326090 PMCID: PMC5339311 DOI: 10.3389/fpls.2017.00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/17/2017] [Indexed: 05/23/2023]
Abstract
Early responsive to dehydration (ERD) genes can be rapidly induced to counteract abiotic stresses, such as drought, low temperatures or high salinities. Here, we report on an ERD gene (VaERD15) related to cold tolerance from Chinese wild Vitis amurensis accession 'Heilongjiang seedling'. The full-length VaERD15 cDNA is 685 bp, including a 66 bp 5'-untranslated region (UTR), a 196 bp 3'-UTR region and a 423 bp open reading frame encoding 140 amino acids. The VaERD15 protein shares a high amino acid sequence similarity with ERD15 of Arabidopsis thaliana. In our study, VaERD15 was shown to have a nucleic localization function and a transcriptional activation function. Semi-quantitative PCR and Western blot analyses showed that VaERD15 was constitutively expressed in young leaves, stems and roots of V. amurensis accession 'Heilongjiang seedling' plants, and expression levels increased after low-temperature treatment. We also generated a transgenic Arabidopsis Col-0 line that over-expressed VaERD15 and carried out a cold-treatment assay. Real-time quantitative PCR (qRT-PCR) and Western blot analyses showed that as the duration of cold treatment increased, the expression of both gene and protein levels increased continuously in the transgenic plants, while almost no expression was detected in the wild type Arabidopsis. Moreover, the plants that over-expressed VaERD15 showed higher cold tolerance and accumulation of proline, soluble sugars, proteins, malondialdehyde and three antioxidases (superoxide dismutase, peroxidase, and catalase). Lower levels of relative ion leakage also occurred under cold stress. Taken together, our results indicate that the transcription factor VaERD15 was induced by cold stress and was able to enhance cold tolerance.
Collapse
Affiliation(s)
- Dongdong Yu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Lihua Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Kai Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Ruxuan Niu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Huan Zhai
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Meng D, Yu X, Ma L, Hu J, Liang Y, Liu X, Yin H, Liu H, He X, Li D. Transcriptomic Response of Chinese Yew ( Taxus chinensis) to Cold Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:468. [PMID: 28503178 PMCID: PMC5408010 DOI: 10.3389/fpls.2017.00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/17/2017] [Indexed: 05/04/2023]
Abstract
Taxus chinensis is a rare and endangered shrub, highly sensitive to temperature changes and widely known for its potential in cancer treatment. How gene expression of T. chinensis responds to low temperature is still unknown. To investigate cold response of the genus Taxus, we obtained the transcriptome profiles of T. chinensis grown under normal and low temperature (cold stress, 0°C) conditions using Illumina Miseq sequencing. A transcriptome including 83,963 transcripts and 62,654 genes were assembled from 4.16 Gb of reads data. Comparative transcriptomic analysis identified 2,025 differently expressed (DE) isoforms at p < 0.05, of which 1,437 were up-regulated by cold stress and 588 were down-regulated. Annotation of DE isoforms indicated that transcription factors (TFs) in the MAPK signaling pathway and TF families of NAC, WRKY, bZIP, MYB, and ERF were transcriptionally activated. This might have been caused by the accumulation of secondary messengers, such as reactive oxygen species (ROS) and Ca2+. While accumulation of ROS will have caused damages to cells, our results indicated that to adapt to low temperatures T. chinensis employed a series of mechanisms to minimize these damages. The mechanisms included: (i) cold-enhanced expression of ROS deoxidant systems, such as peroxidase and phospholipid hydroperoxide glutathione peroxidase, to remove ROS. This was further confirmed by analyses showing increased activity of POD, SOD, and CAT under cold stress. (ii) Activation of starch and sucrose metabolism, thiamine metabolism, and purine metabolism by cold-stress to produce metabolites which either protect cell organelles or lower the ROS content in cells. These processes are regulated by ROS signaling, as the "feedback" toward ROS accumulation.
Collapse
Affiliation(s)
- Delong Meng
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
- School of Biology and Environmental Science, University College DublinDublin, Ireland
| | - Xianghua Yu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
- *Correspondence: Xianghua Yu
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Jin Hu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Xiaojia He
- The Administrative Centre for China's Agenda 21Beijing, China
| | - Diqiang Li
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment, and Protection, Chinese Academy of ForestryBeijing, China
| |
Collapse
|
21
|
Wang F, Zhu H, Kong W, Peng R, Liu Q, Yao Q. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. PLANTA 2016; 244:59-73. [PMID: 26945856 DOI: 10.1007/s00425-016-2489-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/12/2016] [Indexed: 05/19/2023]
Abstract
A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase the content of valuable flavonoids and improve tolerance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Feibing Wang
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Hong Zhu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Weili Kong
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
22
|
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC PLANT BIOLOGY 2016; 16:86. [PMID: 27079791 PMCID: PMC4831116 DOI: 10.1186/s12870-016-0771-y] [Citation(s) in RCA: 915] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. RESULTS Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. CONCLUSIONS The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.
Collapse
Affiliation(s)
- Vivek Verma
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- />Present address: School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Pratibha Ravindran
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| | - Prakash P. Kumar
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
23
|
Wang F, Kong W, Wong G, Fu L, Peng R, Li Z, Yao Q. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genomics 2016; 291:1545-59. [PMID: 27033553 DOI: 10.1007/s00438-016-1203-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
Abstract
In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Feibing Wang
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Weili Kong
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Gary Wong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
24
|
Cao Y, Han Y, Li D, Lin Y, Cai Y. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.): Genome-Wide Identification, Classification, and Expression Profiling during Fruit Development. FRONTIERS IN PLANT SCIENCE 2016; 7:577. [PMID: 27200050 PMCID: PMC4850919 DOI: 10.3389/fpls.2016.00577] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/14/2016] [Indexed: 05/18/2023]
Abstract
The MYB family is one of the largest families of transcription factors in plants. Although, some MYBs were reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd.) has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations, and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes). The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the 20 genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.
Collapse
Affiliation(s)
- Yunpeng Cao
- These authors have contributed equally to this work.
| | - Yahui Han
- These authors have contributed equally to this work.
| | | | | | | |
Collapse
|
25
|
Shukla PS, Gupta K, Agarwal P, Jha B, Agarwal PK. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. PLANTA 2015; 242:1291-308. [PMID: 26202734 DOI: 10.1007/s00425-015-2366-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/02/2015] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION SbMYB15, R2R3-type MYB was induced by the different stresses, and conferred stress tolerance in transgenic tobacco by regulating the expression of stress-responsive genes. MYBs are the master regulators of various metabolic processes and stress responses in plants. In this study, we functionally characterised a R2R3-type SbMYB15 transcription factor (TF) from the extreme halophyte Salicornia brachiata. The SbMYB15 acts as a transcriptional activator. Transcriptional analysis showed that SbMYB15 transcript was strongly upregulated in red shoots and was also induced by different stresses; however, its expression remained unchanged with ABA. Overexpression of SbMYB15 in tobacco significantly improved salinity and dehydration tolerance. The enhanced tolerance of the transgenic plants was defined by the changes in chlorophyll, malondialdehyde (MDA), proline, total soluble sugar and total amino acid contents. The transgenic plants exhibited a higher membrane stability and reduced electrolyte leakage, H2O2 and O 2 (-) content compared to the wild type (WT). With ionic stress, transgenics showed a low Na(+) and a high K(+) content. In the transgenic plants, the expression of stress-responsive genes such as LEA5, ERD10D, PLC3, LTP1, HSF2, ADC, P5CS, SOD and CAT was enhanced in the presence of salinity, dehydration and heat. Exposure to gradual salinity and dehydration resulted in an increased stomatal conductance, water use efficiency, photosynthesis rate, photochemical quenching and reduced transpiration rate. Thus, SbMYB15 served as an important mediator of stress responses regulating different stress signalling pathways, leading to enhanced stress tolerance.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Kapil Gupta
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Parinita Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
26
|
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J Mol Sci 2015; 16:15811-51. [PMID: 26184177 PMCID: PMC4519927 DOI: 10.3390/ijms160715811] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.
Collapse
|
27
|
|
28
|
Li PC, Yu SW, Shen J, Li QQ, Li DP, Li DQ, Zheng CC, Shu HR. The transcriptional response of apple alcohol acyltransferase (MdAAT2) to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco. PLANT MOLECULAR BIOLOGY 2014; 85:627-38. [PMID: 24893956 DOI: 10.1007/s11103-014-0207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/27/2014] [Indexed: 05/06/2023]
Abstract
Volatile esters are major factors affecting the aroma of apple fruits, and alcohol acyltransferases (AATs) are key enzymes involved in the last steps of ester biosynthesis. The expression of apple AAT (MdAAT2) is known to be induced by salicylic acid (SA) or ethylene in apple fruits, although the mechanism of its transcriptional regulation remains elusive. In this study, we reveal that two apple transcription factors (TFs), MdMYB1 and MdMYB6, are involved in MdAAT2 promoter response to SA and ethylene in transgenic tobacco. According to electrophoretic mobility shift assays, MdMYB1 or MdMYB6 can directly bind in vitro to MYB binding sites in the MdAAT2 promoter. In vivo, overexpression of the two MYB TFs can greatly enhance MdAAT2 promoter activity, as demonstrated by dual luciferase reporter assays in transgenic tobacco. In contrast to the promoter of MdMYB1 or MdMYB6, the MdAAT2 promoter cannot be induced by SA or ethephon (ETH) in transgenic tobacco, even in stigmas in which the MdAAT2 promoter can be highly induced under normal conditions. However, the induced MYB TFs can dramatically enhance MdAAT2 promoter activity under SA or ETH treatment. We conclude that MdMYB1 and MdMYB6 function in MdAAT2 responses to SA and ethylene in transgenic tobacco, suggesting that a similar regulation mechanism may exist in apple.
Collapse
Affiliation(s)
- Peng-Cheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis). Mol Biol Rep 2014; 41:6769-85. [DOI: 10.1007/s11033-014-3563-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/24/2014] [Indexed: 01/22/2023]
|
30
|
Agarwal PK, Shukla PS, Gupta K, Jha B. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 2013; 54:102-23. [PMID: 22539206 DOI: 10.1007/s12033-012-9538-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genetic engineering of plants for abiotic stress tolerance is a challenging task because of its multifarious nature. Comprehensive studies for developing abiotic stress tolerance are in progress, involving genes from different pathways including osmolyte synthesis, ion homeostasis, antioxidative pathways, and regulatory genes. In the last decade, several attempts have been made to substantiate the role of "single-function" gene(s) as well as transcription factor(s) for abiotic stress tolerance. Since, the abiotic stress tolerance is multigenic in nature, therefore, the recent trend is shifting towards genetic transformation of multiple genes or transcription factors. A large number of crop plants are being engineered by abiotic stress tolerant genes and have shown the stress tolerance mostly at laboratory level. This review presents a mechanistic view of different pathways and emphasizes the function of different genes in conferring salt tolerance by genetic engineering approach. It also highlights the details of successes achieved in developing salt tolerance in plants thus far.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, 364021 Gujarat, India.
| | | | | | | |
Collapse
|
31
|
Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 2013; 8:e69955. [PMID: 23950843 PMCID: PMC3735319 DOI: 10.1371/journal.pone.0069955] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/14/2013] [Indexed: 12/01/2022] Open
Abstract
The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses.
Collapse
Affiliation(s)
- Zhong-Hui Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shi-Zhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rong-Kai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Fen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- * E-mail:
| |
Collapse
|
32
|
Hanano A, Al-Arfi M, Shaban M, Daher A, Shamma M. Removal of petroleum-crude oil from aqueous solution bySaccharomyces cerevisiaeSHSY strain necessitates at least an inducible CYP450ALK homolog gene. J Basic Microbiol 2013; 54:358-68. [DOI: 10.1002/jobm.201200525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/23/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology; Atomic Energy Commission of Syria (AECS); Damascus Syria
| | - Malek Al-Arfi
- Department of Molecular Biology and Biotechnology; Atomic Energy Commission of Syria (AECS); Damascus Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology; Atomic Energy Commission of Syria (AECS); Damascus Syria
| | - Amal Daher
- Department of Molecular Biology and Biotechnology; Atomic Energy Commission of Syria (AECS); Damascus Syria
| | - Motassim Shamma
- Department of Molecular Biology and Biotechnology; Atomic Energy Commission of Syria (AECS); Damascus Syria
| |
Collapse
|
33
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 2011; 39:969-87. [PMID: 21573796 DOI: 10.1007/s11033-011-0823-1] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 05/03/2011] [Indexed: 01/10/2023]
Abstract
Abiotic stresses, especially cold, salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signaling pathways, some of which are specific, but others may cross-talk at various steps. In this review article, we first expound the general stress signal transduction pathways, and then highlight various aspects of biotic stresses signal transduction networks. On the genetic analysis, many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. The Salt-Overly-Sensitive (SOS) pathway, identified through isolation and study of the sos1, sos2, and sos3 mutants, is essential for maintaining favorable ion ratios in the cytoplasm and for tolerance of salt stress. Both ABA-dependent and -independent signaling pathways appear to be involved in osmotic stress tolerance. ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules and the ROS signaling networks can control growth, development, and stress response. Finally, we talk about the common regulatory system and cross-talk among biotic stresses, with particular emphasis on the MAPK cascades and the cross-talk between ABA signaling and biotic signaling.
Collapse
|
35
|
Xi L, Xu K, Qiao Y, Qu S, Zhang Z, Dai W. Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus pyrifolia). Mol Biol Rep 2010; 38:4405-13. [DOI: 10.1007/s11033-010-0568-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|