1
|
Ko NC, Noda S, Okada Y, Tazawa K, Kawashima N, Okiji T. Biocompatibility and pro-mineralization effects of premixed calcium silicate-based materials on human dental pulp stem cells: An in vitro and in vivo study. Dent Mater J 2024; 43:729-737. [PMID: 39231720 DOI: 10.4012/dmj.2024-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Premixed calcium silicate-based materials have recently been developed and are recommended for a wide range of endodontic procedures, including vital pulp therapy. This study investigated the in vitro biocompatibility and pro-mineralization effect and in vivo reparative dentin formation of EndoSequence Root Repair Material, EndoSequence BCRRM, Bio-C Repair, and Well-pulp PT. Both fresh and set extracts had no detrimental effect on the growth of human dental pulp stem cells. The fresh extracts had a higher calcium concentration than the set extracts and induced considerably greater mineralized nodule formation. EndoSequence Root Repair Material had the longest setting time, whereas Bio-C Repair had the shortest. When these materials were applied to exposed rat molar pulps, mineralized tissue deposition was found at the exposure sites after 2 weeks. These results indicate that the premixed calcium silicate-based materials tested could have positive benefits for direct pulp capping procedures.
Collapse
Affiliation(s)
- Nyein Chan Ko
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yamato Okada
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
2
|
İnan S, Barış E. The role of autophagy in odontogenesis, dental implant surgery, periapical and periodontal diseases. J Cell Mol Med 2024; 28:e18297. [PMID: 38613351 PMCID: PMC11015398 DOI: 10.1111/jcmm.18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.
Collapse
Affiliation(s)
- Sevinç İnan
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| |
Collapse
|
3
|
Ha YJ, Lee D, Kim SY. The Combined Effects on Human Dental Pulp Stem Cells of Fast-Set or Premixed Hydraulic Calcium Silicate Cements and Secretome Regarding Biocompatibility and Osteogenic Differentiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:305. [PMID: 38255473 PMCID: PMC10820558 DOI: 10.3390/ma17020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
An important part of regenerative endodontic procedures involving immature permanent teeth is the regeneration of the pulp-dentin complex with continuous root development. Hydraulic calcium silicate cements (HCSCs) are introduced for the pulpal treatment of immature permanent teeth. The stem-cell-derived secretome recently has been applied for the treatment of various damaged tissues. Here, we evaluated the biocompatibility and osteogenic differentiation of HCSCs combined with secretome on human dental pulp stem cells. In the Cell Counting Kit-8 test and wound healing assays, significantly higher cell viability was observed with secretome application. In alkaline phosphatase analysis, the activity was significantly higher with secretome application in all groups, except for RetroMTA on day 2 and Endocem MTA Premixed on day 4. In an Alizarin Red S staining analysis, all groups with secretome application had significantly higher staining values. Quantitative real-time polymerase chain reaction results showed that the day 7 expression of OSX significantly increased with secretome application in all groups. SMAD1 and DSPP expression also increased significantly with secretome addition in all groups except for Biodentine. In conclusion, HCSCs showed favorable biocompatibility and osteogenic ability and are predicted to demonstrate greater synergy with the addition of secretome during regenerative endodontic procedures involving immature permanent teeth.
Collapse
Affiliation(s)
- Yun-Jae Ha
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Donghee Lee
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Sin-Young Kim
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
4
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
5
|
Ballikaya E, Çelebi-Saltik B. Approaches to vital pulp therapies. AUST ENDOD J 2023; 49:735-749. [PMID: 37515353 DOI: 10.1111/aej.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Tooth decay, which leads to pulpal inflammation due to the pulp's response to bacterial components and byproducts is the most common infectious disease. The main goals of clinical management are to eliminate sources of infection, to facilitate healing by regulating inflammation indental tissue, and to replace lost tissues. A variety of novel approaches from tissue engineering based on stem cells, bioactive molecules, and extracellular matrix-like scaffold structures to therapeutic applications, or a combination of all these are present in the literature. Shortcomings of existing conventional materials for pulp capping and the novel approches aiming to preserve pulp vitality highligted the need for developing new targeted dental materials. This review looks at the novel approches for vital pulp treatments after briefly addresing the conventional vital pulp treatment as well as the regenerative and self defense capabilities of the pulp. A narrative review focusing on the current and future approaches for pulp preservation was performed after surveying the relevant papers on vital pulp therapies including pulp capping, pulpotomy, and potential approaches for facilitating dentin-pulp complex regeneration in PubMed, Medline, and Scopus databases.
Collapse
Affiliation(s)
- Elif Ballikaya
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Pediatric Dentistry, Hacettepe University Faculty of Dentistry, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Ahmed HMA, El-Karim I, Duncan HF, Krastl G, Galler K. Implications of root, pulp chamber, and canal anatomy on pulpotomy and revitalization procedures. Clin Oral Investig 2023; 27:6357-6369. [PMID: 37870593 DOI: 10.1007/s00784-023-05284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES This review aims to discuss the implications of anatomy of the root, pulp chamber, and canals on pulpotomy and revitalization procedures (RPs) as treatment alternatives to root canal treatment procedures. METHODS This narrative review was undertaken to address two main questions - why remove vital pulp tissue in teeth with complex canal anatomy when it can be preserved? And why replace the necrotic pulp in teeth with mature roots with a synthetic material when we can revitalize? This review also aims to discuss anatomical challenges with pulpotomy and revitalization procedures. RESULTS Maintaining the vitality of the pulp via partial or full pulpotomy procedures avoids the multiple potential challenges faced by clinicians during root canal treatment. However, carrying out pulpotomy procedures requires a meticulous understanding of the pulp chamber anatomy, which varies from tooth to tooth. Literature shows an increased interest in the application of RPs in teeth with mature roots; however, to date, the relation between the complexity of the root canal system and outcomes of RPs in necrotic multi-rooted teeth with mature roots is unclear and requires further robust comparative research and long-term follow-up. CONCLUSIONS Whenever indicated, pulpotomy procedures are viable treatment options for vital teeth with mature roots; however, comparative, adequately powered studies with long-term follow-up are needed as a priority in this area. RPs show promising outcomes for necrotic teeth with mature roots that warrant more evidence in different tooth types with long-term follow-ups. CLINICAL RELEVANCE: Clinicians should be aware of the pulp chamber anatomy, which is subject to morphological changes by age or as a defensive mechanism against microbial irritation, before practicing partial and full pulpotomy procedures. RP is a promising treatment option for teeth with immature roots, but more evidence is needed for its applications in teeth with mature roots. A universal consensus and considerably more robust evidence are needed for the standardization of RPs in teeth with mature roots.
Collapse
Affiliation(s)
- Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Ikhlas El-Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, Center of Dental, Traumatology University Hospital of Würzburg Pleicherwall, 2, 97070, Würzburg, Germany
| | - Kerstin Galler
- Department of Restorative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Zhou L, Zhao S, Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: a review. Front Physiol 2023; 14:1272764. [PMID: 37929208 PMCID: PMC10622672 DOI: 10.3389/fphys.2023.1272764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can differentiate into odontoblast-like cells and protect the pulp. The differentiation of DPSCs can be influenced by biomaterials or growth factors that activate different signaling pathways in vitro or in vivo. In this review, we summarized six major pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways. Various factors can influence the odontogenic differentiation of DPSCs through one or more signaling pathways. By understanding the interactions between these signaling pathways, we can expand our knowledge of the mechanisms underlying the regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
| | | | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Liang Z, Chen D, Jiang Y, Su Z, Pi Y, Luo T, Jiang Q, Yang L, Guo L. Multifunctional Lithium-Doped Mesoporous Nanoparticles for Effective Dentin Regeneration in vivo. Int J Nanomedicine 2023; 18:5309-5325. [PMID: 37746049 PMCID: PMC10516199 DOI: 10.2147/ijn.s424930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Effective infection control without irritating the pulp tissue is the key to successful vital pulp therapy. Developing a novel antibacterial biomaterial that promotes dentin regeneration for pulp capping is thus a promising strategy for enhancing vital pulp therapy. Methods Lithium-doped mesoporous nanoparticles (Li-MNPs) were synthesized using an alkali-catalyzed sol-gel method. The particle size, elemental distribution, surface morphology, pore structure, and ion release from Li-MNPs were measured. Human dental pulp stem cells (hDPSCs) and Streptococcus mutans (S. mutans) were used to evaluate the biological effects of Li-MNPs. In addition, a dental pulp exposure mouse model was used to evaluate the regenerative effects of Li-MNPs. Results Li-MNPs had a larger surface area (221.18 m2/g), a larger pore volume (0.25 cm3/g), and a smaller particle size (520.92 ± 35.21 nm) than MNPs. The in vitro investigation demonstrated that Li-MNPs greatly enhanced the biomineralization and odontogenic differentiation of hDPSCs through the Wnt/β-catenin signaling pathway. Li-MNPs showed a strong antibacterial effect on S. mutans. As expected, Li-MNPs significantly promoted dentin regeneration in situ and in vivo. Conclusion Li-MNPs promoted dentin regeneration and inhibited S. mutans growth, implying a possible application as a pulp capping agent in vital pulp therapy.
Collapse
Affiliation(s)
- Zitian Liang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Ding Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Ye Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Zhikang Su
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Yixing Pi
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Li Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| |
Collapse
|
9
|
Yousefi-Koma AA, Assadian H, Mohaghegh S, Nokhbatolfoghahaei H. Comparative Biocompatibility and Odonto-/Osteogenesis Effects of Hydraulic Calcium Silicate-Based Cements in Simulated Direct and Indirect Approaches for Regenerative Endodontic Treatments: A Systematic Review. J Funct Biomater 2023; 14:446. [PMID: 37754860 PMCID: PMC10532331 DOI: 10.3390/jfb14090446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Regenerative dentistry is the operation of restoring dental, oral and maxillofacial tissues. Currently, there are no guidelines for the ideal cement/material in regenerative endodontic treatments (RET). Hydraulic calcium silicate-based cements (hCSCs) are currently the material of choice for RET. OBJECTIVES This systematic review was conducted to gather all of the different direct and indirect approaches of using hCSCs in RET in vitro and in vivo, and to ascertain if there are any superiorities to indirect approaches. METHODS AND MATERIALS This systematic review was conducted according to the 2020 PRISMA guidelines. The study question according to the PICO format was as follows: Comparison of the biological behavior (O) of stem cells (P) exposed to hCSCs through direct and indirect methods (I) with untreated stem cells (C). An electronic search was executed in Scopus, Google Scholar, and PubMed. RESULTS A total of 78 studies were included. Studies were published between 2010 and 2022. Twenty-eight commercially available and eighteen modified hCSCs were used. Seven exposure methods (four direct and three indirect contacts) were assessed. ProRoot MTA and Biodentine were the most used hCSCs and had the most desirable results. hCSCs were either freshly mixed or set before application. Most studies allowed hCSCs to set in incubation for 24 h before application, which resulted in the most desirable biological outcomes. Freshly mixed hCSCs had the worst outcomes. Indirect methods had significantly better viability/proliferation and odonto-/osteogenesis outcomes. CONCLUSION Biodentine and ProRoot MTA used in indirect exposure methods result in desirable biological outcomes.
Collapse
Affiliation(s)
- Amir-Ali Yousefi-Koma
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hadi Assadian
- Department of Endodontics, Tehran University of Medical Sciences, Tehran 1417614418, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
10
|
Kearney M, Cooper PR, Smith AJ, Duncan HF. Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes. Int J Mol Sci 2023; 24:ijms24108631. [PMID: 37239975 DOI: 10.3390/ijms24108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Within regenerative endodontics, exciting opportunities exist for the development of next-generation targeted biomaterials that harness epigenetic machinery, including microRNAs (miRNAs), histone acetylation, and DNA methylation, which are used to control pulpitis and to stimulate repair. Although histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) induce mineralisation in dental pulp cell (DPC) populations, their interaction with miRNAs during DPC mineralisation is not known. Here, small RNA sequencing and bioinformatic analysis were used to establish a miRNA expression profile for mineralising DPCs in culture. Additionally, the effects of a HDACi, suberoylanilide hydroxamic acid (SAHA), and a DNMTi, 5-aza-2'-deoxycytidine (5-AZA-CdR), on miRNA expression, as well as DPC mineralisation and proliferation, were analysed. Both inhibitors increased mineralisation. However, they reduced cell growth. Epigenetically-enhanced mineralisation was accompanied by widespread changes in miRNA expression. Bioinformatic analysis identified many differentially expressed mature miRNAs that were suggested to have roles in mineralisation and stem cell differentiation, including regulation of the Wnt and MAPK pathways. Selected candidate miRNAs were demonstrated by qRT-PCR to be differentially regulated at various time points in mineralising DPC cultures treated with SAHA or 5-AZA-CdR. These data validated the RNA sequencing analysis and highlighted an increased and dynamic interaction between miRNA and epigenetic modifiers during the DPC reparative processes.
Collapse
Affiliation(s)
- Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, D02 F859 Dublin, Ireland
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Anthony J Smith
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham B5 7EG, UK
| | - Henry F Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, D02 F859 Dublin, Ireland
| |
Collapse
|
11
|
Enamel Matrix Derivative Enhances the Odontoblastic Differentiation of Dental Pulp Stem Cells via Activating MAPK Signaling Pathways. Stem Cells Int 2022; 2022:2236250. [PMID: 35530415 PMCID: PMC9071913 DOI: 10.1155/2022/2236250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
The odontoblastic differentiation of dental pulp stem cells (DPSCs) contributes to pulp-dentin regeneration. Enamel matrix derivative (EMD) is considered to be a critical epithelial signal to induce cell differentiation during odontogenesis and has been widely applied to clinical periodontal tissue regeneration. The purpose of this study was to explore the effect of EMD on DPSCs proliferation and odontoblastic differentiation, as well as the underlying mechanisms. We conducted in vitro and in vivo researches to get a comprehensive understanding of EMD. In vitro phase: cell proliferation was assessed by a cell counting kit-8 (CCK-8) assay; then, alkaline phosphatase (ALP) activity and staining, alizarin red staining, real-time RT-PCR, and western blot analysis were conducted to determine the odontoblastic potential and involvement of MAPK signaling pathways. In vivo phase: after ensuring the biocompatibility of VitroGel 3D-RGD via scanning electron microscopy (SEM), the hydrogel mixture was subcutaneously injected into nude mice followed by histological and immunohistochemical analyses. The results revealed that EMD did not interfere with DPSCs proliferation but promoted the odontoblastic differentiation of DPSCs in vitro and in vivo. Furthermore, blocking the MAPK pathways suppressed the EMD-enhanced differentiation of DPSCs. Finally, VitroGel 3D-RGD could well support the proliferation, differentiation, and regeneration of DPSCs. Overall, this study demonstrates that EMD enhances the odontoblastic differentiation of DPSCs through triggering MAPK signaling pathways. The findings provide a new insight into the mechanism by which EMD affects DPSCs differentiation and proposes EMD as a promising candidate for future stem cell therapy in endodontics.
Collapse
|
12
|
Sabatini C, Ayenew L, Khan T, Hall R, Lee T. Dental Pulp Cells Conditioning Through Poly(I:C) Activation of Toll-Like Receptor 3 (TLR3) for Amplification of Trophic Factors. J Endod 2022; 48:872-879. [PMID: 35447294 DOI: 10.1016/j.joen.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Regeneration of the pulp-dentin complex hinges on functionally diverse growth factors, cytokines, chemokines, signaling molecules, and other secreted factors collectively referred to as trophic factors. Delivery of exogenous factors and induced release of endogenous dentin-bound factors by conditioning agents have been explored towards these goals. The aim of this study was to investigate a promising regeneration strategy based on the conditioning of dental pulp cells (DPCs) with polyinosinic-polycytidylic acid [poly(I:C)] for amplification of endogenous trophic factors. METHODS DPCs were isolated from human dental pulps, propagated in culture, and treated with an optimized dose of poly(I:C). MTT assay and metabolite analysis were conducted to monitor the cytotoxicity of poly(I:C). ELISA and qPCR assays were performed to quantify induction of trophic factors in response to DPC conditioning. Statistical significance was P < .05. RESULTS Analysis of 32 trophic factors involved in Wnt signaling, cell migration and chemotaxis, cell proliferation and differentiation, extracellular matrix (ECM) remodeling and angiogenesis, and immunoregulation revealed that DPCs abundantly express many trophic factors including AMF, BDNF, BMP2, FGF1, FGF2, FGF5, HGF, MCP1, NGF, SDF1, TGFβ1, TIMP1, TIMP2, TIMP3, and VEGF-A, many of which were further induced by DPC conditioning; induction, which was significant for BDNF, EGF, HGF, LIF, MCP1, SDF1, IL6, IL11, MMP9 and TIMP1. Both DPCs proliferation and lactate production (P < .05) were inhibited by 8 μg/ml poly(I:C) relative to the control. CONCLUSIONS In vitro DPC conditioning through poly(I:C) activation of TLR3 led to amplification of trophic factors involved in tissue repair. The strategy offers promise for endodontic regeneration and tooth repair and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Techung Lee
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
13
|
Transcriptome Profile of Membrane and Extracellular Matrix Components in Ligament-Fibroblastic Progenitors and Cementoblasts Differentiated from Human Periodontal Ligament Cells. Genes (Basel) 2022; 13:genes13040659. [PMID: 35456465 PMCID: PMC9031187 DOI: 10.3390/genes13040659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ligament-fibroblastic cells and cementoblasts, two types of progenitor cells that differentiate from periodontal ligament stem cells (hPDLSCs), are responsible for the formation of the adhesive tissues in the tooth root. Since one of the factors that determines the fate of stem cell differentiation is the change in the microenvironment of the stem/progenitor cells, this study attempted to compare and analyze the molecular differences in the membrane and ECM of the two progenitor cells. Single cells derived from hPDLSCs were treated with TGF-β1 and BMP7 to obtain ligament-fibroblastic and cementoblastic cells, respectively. The transcriptome profiles of three independent replicates of each progenitor were evaluated using next-generation sequencing. The representative differentially expressed genes (DEGs) were verified by qRT-PCR, Western blot analysis, and immunohistochemistry. Among a total of 2245 DEGs identified, 142 and 114 DEGs related to ECM and cell membrane molecules were upregulated in ligament-fibroblastic and cementoblast-like cells, respectively. The major types of integrin and cadherin were found to be different between the two progenitor cells. In addition, the representative core proteins for each glycosaminoglycan-specific proteoglycan class were different between the two progenitors. This study provides a detailed understanding of cell–cell and cell–ECM interactions through the specific components of the membrane and ECM for ligament-fibroblastic and cementoblastic differentiation of hPDLSCs.
Collapse
|
14
|
Rodrigues MNM, Bruno KF, de Alencar AHG, Silva JDS, de Siqueira PC, Decurcio DDA, Estrela C. Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures. Restor Dent Endod 2021; 46:e59. [PMID: 34909423 PMCID: PMC8636073 DOI: 10.5395/rde.2021.46.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.
Collapse
Affiliation(s)
| | - Kely Firmino Bruno
- Department of Endodontics, South American College, Goiânia, Goiás, Brazil
| | | | | | | | | | - Carlos Estrela
- Department of Endodontics, School of Dentistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
15
|
Novel Bioactive Adhesive Monomer CMET Promotes Odontogenic Differentiation and Dentin Regeneration. Int J Mol Sci 2021; 22:ijms222312728. [PMID: 34884533 PMCID: PMC8657467 DOI: 10.3390/ijms222312728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed to evaluate the in vitro effect of the novel bioactive adhesive monomer CMET, a calcium salt of 4-methacryloxyethyl trimellitate acid (4-MET), on human dental pulp stem cells (hDPSCs) and its capacity to induce tertiary dentin formation in a rat pulp injury model. Aqueous solutions of four tested materials [4-MET, CMET, Ca(OH)2, and mineral trioxide aggregate (MTA)] were added to the culture medium upon confluence, and solvent (dH2O) was used as a control. Cell proliferation was assessed using the Cell Counting Kit-8 assay, and cell differentiation was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. The mineralization-inducing capacity was evaluated using alizarin red S staining and an alkaline phosphatase activity assay. For an in vivo experiment, a mechanical pulp exposure model was prepared on Wistar rats; damaged pulp was capped with Ca(OH)2 or CMET. Cavities were sealed with composite resin, and specimens were assessed after 14 and 28 days. The in vitro results showed that CMET exhibited the lowest cytotoxicity and highest odontogenic differentiation capacity among all tested materials. The favorable outcome on cell mineralization after treatment with CMET involved p38 and c-Jun N-terminal kinases signaling. The nuclear factor kappa B pathway was involved in the CMET-induced mRNA expression of odontogenic markers. Similar to Ca(OH)2, CMET produced a continuous hard tissue bridge at the pulp exposure site, but treatment with only CMET produced a regular dentinal tubule pattern. The findings suggest that (1) the evaluated novel bioactive adhesive monomer provides favorable biocompatibility and odontogenic induction capacity and that (2) CMET might be a very promising adjunctive for pulp-capping materials.
Collapse
|
16
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
17
|
El karim IA, Cooper PR, About I, Tomson PL, Lundy FT, Duncan HF. Deciphering Reparative Processes in the Inflamed Dental Pulp. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research over several decades has increased our understanding of the nature of reparative and regenerative processes in the dental pulp, at both the cellular and molecular level. However, advances in scientific knowledge have not translated into novel clinical treatment strategies for caries-induced pulpitis. This narrative review explores the evidence regarding the ability of inflamed pulp tissue to heal and how this knowledge may be used therapeutically. A literature search and evidence analysis covering basic, translational and clinical pulp biology research was performed. The review focuses on (1) the regenerative and defense capabilities of the pulp during caries-induced inflammation; (2) the potential of novel biomaterials to harness the reparative and regenerative functions of the inflamed pulp; and (3) future perspectives and opportunities for conservative management of the inflamed pulp. Current conservative management strategies for pulpitis are limited by a combination of unreliable diagnostic tools and an outdated understanding of pulpal pathophysiological responses. This approach leads to the often unnecessary removal of the entire pulp. Consequently, there is a need for better diagnostic approaches and a focus on minimally-invasive treatments utilizing biologically-based regenerative materials and technologies.
Collapse
|
18
|
Nam SH, Yamano A, Kim JA, Lim J, Baek SH, Kim JE, Kwon TG, Saito Y, Teruya T, Choi SY, Kim YK, Bae YC, Shin HI, Woo JT, Park EK. Prenylflavonoids isolated from Macaranga tanarius stimulate odontoblast differentiation of human dental pulp stem cells and tooth root formation via the mitogen-activated protein kinase and protein kinase B pathways. Int Endod J 2021; 54:1142-1154. [PMID: 33641170 DOI: 10.1111/iej.13503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/09/2023]
Abstract
AIM To identify odontogenesis-promoting compounds and examine the molecular mechanism underlying enhanced odontoblast differentiation and tooth formation. METHODOLOGY Five different nymphaeols, nymphaeol B (NB), isonymphaeol B (INB), nymphaeol A (NA), 3'-geranyl-naringenin (GN) and nymphaeol C (NC) were isolated from the fruit of Macaranga tanarius. The cytotoxic effect of nymphaeols on human DPSCs was observed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of nymphaeols on odontoblast differentiation was analysed with Alizarin Red S staining and odontoblast marker expression was assessed using real-time polymerase chain reaction and Western blot analysis. The molecular mechanism was investigated with Western blot analysis. In order to examine the effect of INB on dentine formation in the developing tooth germ, INB-soaked beads were placed under the tooth bud explants in the collagen gel; thereafter, the tooth bud explant-bead complexes were implanted into the sub-renal capsules for 3 weeks. Tooth root formation was analysed using micro-computed tomography and histological analysis. Data are presented as mean ± standard error (SEM) values of three independent experiments, and results are compared using a two-tailed Student's t-test. The data were considered to have statistical significance when the P-value was less than 0.05. RESULTS Three of the compounds, NB, INB, and GN, did not exert a cytotoxic effect on human DPSCs. However, INB was most effective in promoting the deposition of calcium minerals in vitro (P < 0.001) and induced the expression of odontogenic marker genes (P < 0.05). Moreover, this compound strongly induced the phosphorylation of mitogen-activated protein (MAP) kinases and protein kinase B (AKT) (P < 0.05). The inhibition of p38 MAP, c-Jun N-terminal kinase (JNK), and AKT substantially suppressed the INB-induced odontoblast differentiation (P < 0.001). In addition, isonymphaeol B significantly induced the formation of dentine and elongation of the tooth root in vivo (P < 0.05). CONCLUSIONS Prenylflavonoids, including INB, exerted stimulatory effects on odontoblast differentiation and tooth root and dentine formation via the MAP kinase and AKT signalling pathways. These results suggest that nymphaeols could stimulate the repair processes for dentine defects or injuries.
Collapse
Affiliation(s)
- S H Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - A Yamano
- Faculty of Education, University of the Ryukyu, Nakagami-gun, Japan
| | - J A Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - J Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - S H Baek
- Orthognathic/Oral & Maxillofacial Surgery, Cha & Baek Dental Clinic, Daegu, Korea
| | - J E Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - T G Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Y Saito
- Faculty of Education, University of the Ryukyu, Nakagami-gun, Japan
| | - T Teruya
- Faculty of Education, University of the Ryukyu, Nakagami-gun, Japan
| | - S Y Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Y K Kim
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Y C Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - H I Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - J T Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - E K Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Abou ElReash A, Hamama H, Grawish M, Saeed M, Zaen El-Din AM, Shahin MA, Zhenhuan W, Xiaoli X. A laboratory study to test the responses of human dental pulp stem cells to extracts from three dental pulp capping biomaterials. Int Endod J 2021; 54:1118-1128. [PMID: 33567103 DOI: 10.1111/iej.13495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
AIM This laboratory study aimed to investigate the effects of three endodontic biomaterials; MTA-HP, iRoot-BP-Plus and ACTIVA on the proliferation, adhesion and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). METHODOLOGY The hDPSCs were isolated from the dental pulps of 21 patients scheduled for surgical extraction of their impacted third molars. The MTT assay was used for assessing cellular proliferation. Ninety-six-well plates were used and the experiment was repeated four times under the same condition and the assay was done in triplicate. Four groups were assigned in which the hDPSCs were cultured in complete media only and considered as negative control. Whilst in the 2nd , 3rd and 4th groups, the cells were treated with CM supplemented with 1.5 μl MTA-HP (CM-MTA, iRoot-BP-Plus (CM-BP), and ACTIVA(CM-AC) extracts, respectively. Attachment adhesion and growth morphology of hDPSCs were observed using SEM and the osteogenic differentiation assay was evaluated by Alizarin red stain test (ARS). The data of proliferation and osteogenic differentiation were analysed using two-way ANOVA followed by Tukey's post hoc multiple comparison test. A p-value < 0.05 was considered significant to analyse the differences amongst the means of groups. RESULTS Both CM-MTA and CM-BP groups were associated with a significant increase in hDPSC proliferation in comparison with CM-AC and CM groups (p = 0.001). hDPSCs exhibited a greater cellular attachment to iRoot-BP-Plus surfaces followed by MTA-HP, whilst less attachment was observed in the ACTIVA group. Moreover, at day 7 there was a significant difference in formation of mineralizing nodules; CM-BP, CM-MTA and CM-AC groups respectively (p = 0.001). Whilst there was no significance of difference between CM-AC and CM groups (p > 0.05). CONCLUSIONS In a laboratory setting, ACTIVA, MTA-HP and iRoot-BP-Plus promoted hDPSCs proliferation, mineralization and attachment, which may explain their in-situ success as endodontic biomaterials.
Collapse
Affiliation(s)
- A Abou ElReash
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - H Hamama
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - M Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - M Saeed
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - A M Zaen El-Din
- Restorative Dental Sciences Department, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - M A Shahin
- Electron Microscope Unit, Mansoura University, Mansoura, Egypt
| | - W Zhenhuan
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - X Xiaoli
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
20
|
Hayashi Y, Kawaki H, Hori M, Shintani K, Hasegawa T, Tanaka M, Kondoh N, Yoshida T, Kawano S, Tamaki Y. Evaluation of the mechanical properties and biocompatibility of gypsum-containing calcium silicate cements. Dent Mater J 2021; 40:863-869. [PMID: 33642445 DOI: 10.4012/dmj.2020-086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mineral trioxide aggregate (MTA) cement is widely used in the field of endodontic treatment. We herein synthesized calcium silicates from calcium carbonate and silicon dioxide, with the aim of reducing the cost associated with the MTA. Additionally, we prepared gypsum-containing calcium silicate cement to reduce the setting time while enhancing the mechanical strength. We evaluated the physical properties of this cement and investigated the response of human dental pulp stem cells (hDPSCs) grown in culture media containing cement eluate. Our results revealed that calcium silicates could be easily synthesized in lab-scale. Furthermore, we demonstrate that gypsum addition helps shorten the setting time while increasing the compressive strength of dental cements. The synthesized gypsum-containing calcium silicate cement showed minimal cytotoxicity and did not inhibit the proliferation of hDPSCs. These results suggested that the newly developed calcium silicate material could be a promising pulp capping material.
Collapse
Affiliation(s)
- Yumiyo Hayashi
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Masaharu Hori
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Tomoya Hasegawa
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Masashi Tanaka
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Takakazu Yoshida
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Satoshi Kawano
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Yukimichi Tamaki
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| |
Collapse
|
21
|
Sanz JL, Rodríguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies. Dent Mater 2021; 37:e256-e268. [PMID: 33573840 DOI: 10.1016/j.dental.2021.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). METHODS A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. RESULTS The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. SIGNIFICANCE HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Concha Lopez-Gines
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleon
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
22
|
Qi X, Liu C, Li G, Al-Alfe D, Paurazas S, Askar M, Yang D, Zhou Z. Evaluation of Cannabinoids on the Odonto/Osteogenesis in Human Dental Pulp Cells In Vitro. J Endod 2021; 47:444-450. [PMID: 33352148 DOI: 10.1016/j.joen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cannabinoids possess anti-inflammatory, analgesic, and osteogenic effects in different cell types and tissues. The null hypothesis is delta-9-tetrahydrocannabinol (THC) might induce dental tissue repair and regeneration. The aim of this study was to investigate the effect of THC on human dental pulp cell (HDPC) viability and biomineralization as well as the molecular mechanism of THC-induced odonto/osteogenic differentiation of HDPCs. METHODS The toxicity of THC on HDPCs was determined by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. The odonto/osteogenic differentiation marker genes of HDPCs were assessed by real-time polymerase chain reaction with or without THC treatment. HDPC biomineralization was examined by collagen synthesis and calcium nodule deposition. The molecular mechanism of THC on HDPCs was investigated by examining the mitogen-activated protein kinase (MAPK) signaling pathway via blocking cannabinoid receptor type 1 or 2 receptors. RESULTS We found that THC had no inhibition of HDPC vitality in the testing concentration (0-100 μmol/L). THC showed biphasic effects on HDPC proliferation. At a low dose (<5 μmol/L), THC considerably increased HDPC cell division. HDPC proliferation reduced with higher THC concentrations (>5 μmol/L). The expression of odonto/osteogenic marker genes were up-regulated in the presence of cannabinoids. These were confirmed by increased collagen synthesis and mineralized calcium nodule formation in the cannabinoid group. The effect of THC-induced odonto/osteogenesis occurred via MAPK signaling. CONCLUSIONS THC was biocompatible to HDPCs by promoting their mitogenic division in a biphasic pattern depending on the concentration. THC induced HDPC odonto/osteogenic differentiation through the activation of MAPK mediated by CB1 and CB2 receptors. Cannabinoids may play an important role in the HDPC regeneration process and potentially be used as a pulp-capping agent.
Collapse
Affiliation(s)
- Xia Qi
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Chunyan Liu
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Guohua Li
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dalia Al-Alfe
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Susan Paurazas
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Mazin Askar
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dongru Yang
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China; Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| | - Zheng Zhou
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| |
Collapse
|
23
|
Yin J, Xu J, Cheng R, Shao M, Qin Y, Yang H, Hu T. Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair. Int J Oral Sci 2021; 13:1. [PMID: 33414369 PMCID: PMC7791050 DOI: 10.1038/s41368-020-00105-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Dental pulp can initiate its damage repair after an injury of the pulp–dentin complex by rearrangement of odontoblasts and formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were arranged along the pulp–dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuandong Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Kim YJ, Kim WJ, Bae SW, Yang SM, Park SY, Kim SM, Jung JY. Mineral trioxide aggregate-induced AMPK activation stimulates odontoblastic differentiation of human dental pulp cells. Int Endod J 2020; 54:753-767. [PMID: 33277707 DOI: 10.1111/iej.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
AIM To investigate the role of autophagy in MTA-induced odontoblastic differentiation of human dental pulp cells (HDPCs). METHODOLOGY In MTA-treated HDPCs, odontoblastic differentiation was assessed based on expression levels of dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP1), alkaline phosphatase activity (ALP) activity by ALP staining and the formation of mineralized nodule by Alizarin red S staining. Expression of microtubule-associated protein 1A/1B-light chain3 (LC3), adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signalling molecules and autophagy-related genes was analysed by Western blot analysis and Acridine orange staining was used to detect autophagic lysosome. For in vivo experiments, tooth cavity preparation models on rat molars were established and the expression of proteins-related odontogenesis and autophagy markers was observed by Immunohistochemistry and Western blot analysis. Kruskal-Wallis with Dunn's multiple comparison was used for statistical analysis. RESULTS Mineral trioxide aggregate (MTA) promoted odontoblastic differentiation of HDPCs, accompanied by autophagy induction, including formation of autophagic lysosome and cleavage of LC3 to LC3II (P < 0.05). Conversely, inhibition of autophagy through 3MA significantly attenuated the expression level of DSPP (P < 0.05) and DMP1 (P < 0.05) as well as formation of mineralized nodules (P < 0.05), indicating the functional significance of autophagy in MTA-induced odontoblastic differentiation. Also, MTA increased the activity of AMPK (P < 0.01), whereas inhibition of AMPK by compound C downregulated DSPP (P < 0.01) and DMP1 (P < 0.05), but increased the phosphorylation of mTOR (P < 0.05), p70S6 (P < 0.01) and Unc-51-like kinases 1 (ULK1) (ser757) (P < 0.01), explaining the involvement of AMPK pathway in MTA-induced odontoblast differentiation. In vivo study, MTA treatment after tooth cavity preparation on rat molars upregulated DMP-1 and DSPP as well as autophagy-related proteins LC3II and p62, and enhanced the phosphorylation of AMPK. CONCLUSION MTA induced odontoblastic differentiation and mineralization by modulating autophagy with AMPK activation in HDPCs. Autophagy regulation is a new insight on regenerative endodontic therapy using MTA treatment.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Won-Jae Kim
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Sun-Woong Bae
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Sun-Mi Yang
- Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sam-Young Park
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Seon-Mi Kim
- Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Ji-Yeon Jung
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
25
|
Babaki D, Amoako K, Bahrami AR, Yaghoubi S, Mirahmadi M, Matin MM. MTA Enhances the Potential of Adipose-Derived Mesenchymal Stem Cells for Dentin-Pulp Complex Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5712. [PMID: 33333801 PMCID: PMC7765251 DOI: 10.3390/ma13245712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The aim of the current study was to investigate the effects of mineral trioxide aggregate (MTA) on the proliferation and differentiation of human adipose-derived mesenchymal stem cells (Ad-MSCs) as a surrogate cell source in futuristic stem-cell-based endodontic therapies. Human Ad-MSCs and mesenchymal stem cells derived from bone marrow (BM-MSCs) were isolated from liposuction waste adipose tissue and femur, respectively, and the effects of MTA-conditioned media on their viability, mineralization potential, and osteo/odontogenic differentiation capacity were subsequently evaluated. Alkaline phosphatase (ALP) activity, quantitative alizarin red S staining, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were performed to investigate and compare the osteo/odontogenic induction potential of MTA on the Ad/BM-MSCs. The results of cytotoxicity assay revealed that at different concentrations, MTA-conditioned medium was not only biocompatible toward both cell types, but also capable of promoting cell proliferation. ALP activity assay showed that 0.2 mg/mL was the optimal concentration of MTA-conditioned medium for osteo/odontogenic induction in Ad/BM-MSCs. The expression of osteo/odontogenic gene markers was increased in Ad/BM-MSCs treated with 0.2 mg/mL MTA-conditioned media. Our results indicated that MTA can efficiently enhance the osteo/odontogenic potential of Ad-MSCs, and thus they can be considered as a better cell source for dentin-pulp complex regeneration. However, further investigations are required to test these potentials in animal models.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA; (D.B.); (K.A.)
| | - Kagya Amoako
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA; (D.B.); (K.A.)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Sanam Yaghoubi
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad 9177948974, Iran;
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
26
|
Babaki D, Yaghoubi S, Matin MM. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent 2020; 7:175-185. [PMID: 33313519 PMCID: PMC7717865 DOI: 10.1080/26415275.2020.1848432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The significance of dental materials in dentin-pulp complex tissue engineering is undeniable. The mechanical properties and bioactivity of mineral trioxide aggregate (MTA) make it a promising biomaterial for future stem cell-based endodontic therapies. There are numerous in vitro studies suggesting the low cytotoxicity of MTA towards various types of cells. Moreover, it has been shown that MTA can enhance mesenchymal stem cells' (MSCs) osteo/odontogenic ability. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), a literature review was conducted in the Medline, PubMed, and Scopus databases. Among the identified records, the cytotoxicity and osteo/odontoblastic potential of MTA or its extract on stem cells were investigated. Previous studies have discovered the differentiation-inducing potential of MTA on MSCs, providing a background for dentin-pulp complex cell therapies using the MTA, however, animal trials are needed before moving into clinical trials. In conclusion, MTA can be a promising candidate dental biomaterial for futuristic stem cell-based endodontic therapies.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Sanam Yaghoubi
- Visiting Scholar at Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, Spagnuolo G, Rodríguez-Lozano FJ. Cytocompatibility and Bioactive Properties of Hydraulic Calcium Silicate-Based Cements (HCSCs) on Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs): A Systematic Review of In Vitro Studies. J Clin Med 2020; 9:jcm9123872. [PMID: 33260782 PMCID: PMC7761433 DOI: 10.3390/jcm9123872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The implementation of hydraulic calcium silicate-based endodontic cements (HCSCs) in biologically based endodontic procedures for the primary dentition has been recently investigated, focusing on the biological response of stem cells from human exfoliated deciduous teeth (SHEDs) towards them. The present systematic review aimed to present a qualitative synthesis of the available literature consisting of in vitro assays, which assessed the cytocompatibility and bioactive properties of HCSCs in direct contact with SHEDs. Following the PRISMA statement, an electronic database search was carried out in Medline, Scopus, Embase, Web of Science, and SciELO on March 31st and updated on November 16th, 2020. In vitro studies evaluating the biological response of SHEDs to the treatment with HCSCs were eligible. Within the term biological response, assays assessing the cytocompatibility (i.e., cell viability, migration, proliferation), cell plasticity or differentiation (i.e., osteo/odontogenic marker expression), and bioactivity or biomineralization (i.e., mineralized nodule formation) were included. A total of seven studies were included after the selection process. The study sample comprised an extensive range of cell viability, migration, proliferation, adhesion, and bioactivity assays regarding the biological response of SHEDs towards five different commercially available HCSCs (MTA, ProRoot MTA, Biodentine, iRoot BP Plus, and Theracal LC). Biodentine, MTA, and iRoot BP Plus showed significant positive results in cytocompatibility and bioactivity assays when cultured with SHEDs. The results from in vitro assays assessing the cytocompatibility and bioactivity of the HCSCs MTA, Biodentine, and iRoot BP Plus towards SHEDs support their use in vital pulp treatment for the primary dentition.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
- Correspondence: ; Tel.: +34-963864175
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Julia Guerrero-Gironés
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
28
|
Souza TA, Bezerra MM, Silva PGB, Costa JJN, Carneiro RFLA, Barcelos JOF, Vasconcelos BC, Chaves HV. Bone morphogenetic proteins in biomineralization of two endodontic restorative cements. J Biomed Mater Res B Appl Biomater 2020; 109:348-357. [PMID: 32830897 DOI: 10.1002/jbm.b.34704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
To assess the effect of biodentine (BD) and MTA-angelus (MTA) on biocompatibility, BMP2, BMP4, and osteocalcin (OC) expression. Subcutaneously implanted tubes of four groups (MTA, BD, Control, and Sham) were kept over 15, 30, and 60 days; histological analyses were performed using H&E and Von Kossa; ELISA quantified IL-1β and IL-8 expression; and qRT-PCR verified gene expression of BMPs and OC. Sham showed slight changes in profile/intensity of inflammatory infiltrate in all periods. Control had an inflammatory score significantly higher than Sham at 15 days (p < .05). BD revealed a similar inflammatory response to Sham, without significant changes over periods. MTA group exhibited an increase in chronic inflammatory profile at 30 days, with significant reduction at 60 days, when compared to Sham (p < .05). At 30/60 days, experimental groups presented birefringent areas. At 30/60 days, BD and MTA significantly increase IL-1β compared to Control, whereas an increase in IL-8 was observed only in BD. At 30/60 days, BD produces an expression of BMP2 whereas MTA influenced BMP4 and OC. Materials tested are biocompatible and they have osteoinductive activity; the materials influenced the expression of the tested mediators differently, suggesting different affinities with the substrate and the dental substrates.
Collapse
Affiliation(s)
- Tamara A Souza
- Graduate Program in Health Sciences, Federal University of Ceará-Campus Sobral, Sobral, Ceará, Brazil.,Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mirna M Bezerra
- Graduate Program in Health Sciences, Federal University of Ceará-Campus Sobral, Sobral, Ceará, Brazil.,Medical School, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Paulo G B Silva
- Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José J N Costa
- Graduate Program in Health Sciences, Federal University of Ceará-Campus Sobral, Sobral, Ceará, Brazil
| | | | | | - Bruno C Vasconcelos
- Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Dental School, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Hellíada V Chaves
- Graduate Program in Health Sciences, Federal University of Ceará-Campus Sobral, Sobral, Ceará, Brazil.,Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Dental School, Federal University of Ceará, Sobral, Ceará, Brazil
| |
Collapse
|
29
|
Time-Dependent Response of Human Deciduous Tooth-Derived Dental Pulp Cells Treated with TheraCal LC: Functional Analysis of Gene Interactions Compared to MTA. J Clin Med 2020; 9:jcm9020531. [PMID: 32075286 PMCID: PMC7074006 DOI: 10.3390/jcm9020531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
Pulp capping material should facilitate hard tissue regeneration on the injured pulp tissue. TheraCal LC (TC) was recently developed. Although TC has shown reliable clinical outcomes after direct pulp capping, there are still remaining concerns regarding its detrimental effect on pulp cells. Therefore, this study aimed to identify the gene expression of human deciduous tooth-derived dental pulp cells exposed to TC compared to mineral trioxide aggregate (MTA). The cells were cultured and exposed to TC and MTA for 24 and 72 h. Next, total RNA was isolated. QuantSeq 3′ mRNA-sequencing was used to examine differentially expressed genes (DEGs) in exposed to TC and MTA. Functional analysis of DEGs was performed using bioinformatics analysis. In gene ontology (GO) functional enrichment analysis, cells in TC for 24 h presented significantly enriched immune response (p < 0.001) and inflammatory response (p < 0.01) compared to MTA. TC showed enriched positive regulation of cell migration at 72 h (p < 0.001). In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, neuroactive ligand–receptor interaction (p = 1.19 × 10−7) and calcium signaling pathway (p = 2.96 × 10−5) were confirmed in the shared DEGs in TC. In conclusion, DEGs in TC may be involved in pathways associated with osteoclastogenesis and osteoclastic differentiation.
Collapse
|
30
|
Du J, Lu Y, Song M, Yang L, Liu J, Chen X, Ma Y, Wang Y. Effects of ERK/p38 MAPKs signaling pathways on MTA-mediated osteo/odontogenic differentiation of stem cells from apical papilla: a vitro study. BMC Oral Health 2020; 20:50. [PMID: 32050954 PMCID: PMC7017546 DOI: 10.1186/s12903-020-1016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Stem cells from apical papilla (SCAP) located in the root apex of immature permanent teeth are a reliable cell source for pulp-dentine complex regeneration. Mineral trioxide aggregate (MTA) is a biocompatible material which has been widely used in endodontic treatments. The aim of this study was to elucidate the regulatory role of MTA in the proliferation and differentiation of SCAP. METHODS Cell viability was detected by Cell counting kit-8. Characteristics of SCAP were confirmed by Flow cytometric (FCM) analysis and alizarin red staining. Then, MTA-mediated osteo/odontogenic differentiation of SCAP was investigated by reverse transcription polymerase chain reaction. The effect of MAPKs on MTA-mediated osteo/odontogenic differentiation was evaluated by western blot analysis. RESULTS There was no significant difference in cell viability between the control group and the group with lower concentrations of MTA. However, higher concentrations of MTA could inhibit proliferation of SCAP. It is demonstrated that the ALP activity were enhanced, the mRNA and protein expression of BSP, OCN, DSPP, Runx2 were up-regulated. In addition, phosphorylation proteins of ERK, p38 were activated through western blot analysis. CONCLUSIONS MTA at appropriate concentration could enhance osteo/odontogenic differentiation of SCAP by activating p38 and ERK signaling pathways. This study provides a new idea for the clinical application of MTA and the treatment of endodontic diseases.
Collapse
Affiliation(s)
- Jing Du
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yating Lu
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, China
| | - Mengxiao Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University & Department of Oral Pathology, School of Stomatology, Zhengzhou University, No. 40 University Road, Zhengzhou, 450052, Henan, China
| | - Lin Yang
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, 250001, China
| | - Junqing Liu
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xinyu Chen
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, 250001, China
| | - Yue Ma
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Yan Wang
- Department of VIP center, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
31
|
Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study. Dent J (Basel) 2020; 8:dj8010017. [PMID: 32046292 PMCID: PMC7148534 DOI: 10.3390/dj8010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Biodentine™ is a tricalcium silicate-based cement material that has a great impact on different biological processes of dental stem cells, compared to other biomaterials. Therefore, we aimed to investigate the optimum biocompatible concentration of Biodentine™ with stem cells derived from periodontal ligament (hPDLSCs) by determining cell proliferation, cytotoxicity, migration, adhesion and mineralization potential. hPDLSCs were treated with Biodentine™ extract at different concentrations; 20, 2, 0.2 and 0.02 mg/mL. Cells cultured without Biodentine™ were used as a blank control. The proliferation potential of hPDLSCs was evaluated by MTT viability analysis for 6 days. Cytotoxicity assay was performed after 3 days by using AnnexinV/7AAD. Migration potential was investigated by wound healing and transwell migration assays at both cellular and molecular levels. The expression levels of chemokines CXCR4, MCP-1 and adhesion molecules FGF-2, FN, VCAM and ICAM-1 were measured by qPCR. The communication potentials of these cells were determined by adhesion assay. In addition, mineralization potential was evaluated by measuring the expression levels of osteogenic markers; ALP, OCN, OPN and Collagen type1 by qPCR. Our results showed significant increase in the proliferation of hPDLSCs at low concentrations of Biodentine™ (2, 0.2 and 0.02 mg/mL) while higher concentration (20 mg/mL) exhibited cytotoxic effect on the cells. Moreover, 2 mg/mL Biodentine™ showed a significant increase in the migration, adhesion and mineralization potentials of the derived cells among all concentrations and when compared to the blank control. Our findings suggest that 2 mg/mL of Biodentine™ is the most biocompatible concentration with hPDLSCs, showing a high stimulatory effect on the biological processes.
Collapse
|
32
|
Induction of Osteogenic Differentiation of Mesenchymal Stem Cells by Bioceramic Root Repair Material. MATERIALS 2019; 12:ma12142311. [PMID: 31331019 PMCID: PMC6678914 DOI: 10.3390/ma12142311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the osteogenic activity of Endosequence Root Repair Material (ERRM) putty using rat mesenchymal stem cells (MSCs). The extract of set ERRM and ProRoot-mineral trioxide aggregate (MTA) (control) was cocultured with rat MSCs and incubated for one, three, and seven days. The cell viability and proliferation were assessed. A quantitative real-time polymerase chain reaction for bone morphogenetic protein-2 (BMP-2), alkaline phosphatase, bone sialoprotein, and osteocalcin gene expression was performed. Both materials enhanced cell viability and proliferation, which increased over time. On day seven, the cells treated with either material exhibited significantly greater cell viability compared with control untreated cells. MSCs treated with either material showed deeper alkaline phosphatase staining after three days compared to control untreated cells. Treated MSCs also exhibited upregulation of the gene expression of bone morphogenetic protein-2, alkaline phosphatase, bone sialoprotein, and osteocalcin. Both ERRM and ProRoot-MTA enhance the osteogenic differentiation of MSCs.
Collapse
|
33
|
Saberi E, Farhad-Mollashahi N, Sargolzaei Aval F, Saberi M. Proliferation, odontogenic/osteogenic differentiation, and cytokine production by human stem cells of the apical papilla induced by biomaterials: a comparative study. Clin Cosmet Investig Dent 2019; 11:181-193. [PMID: 31372059 PMCID: PMC6636314 DOI: 10.2147/ccide.s211893] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction Clinical applications of bioactive materials are increasing in biomedical tissue engineering. This study sought to assess the effect of calcium enriched mixture (CEM) cement, Biodentine, mineral trioxide aggregate (MTA), octacalcium phosphate (OCP), and Atlantik on proliferation, odontogenic/osteogenic differentiation, and pro-inflammatory cytokine production by human stem cells of the apical papilla (SCAPs). Materials and methods Proliferation of SCAPs treated with different biomaterials was evaluated using trypan blue exclusion test and flow cytometry. Differentiation of cells was evaluated using ALP activity, alizarin red staining, and RT-PCR. The expression of genes of pro-inflammatory cytokines was also evaluated using RT-PCR. Results The SCAPs treated with biomaterials showed significantly higher proliferation, increased ALP activity, higher number of calcified nodules, and up-regulation of genes related to odontogenic/osteogenic markers compared to the control group. The expression of pro-inflammatory cytokines increased in all groups compared to the control group. Conclusion The tested biomaterials could induce odontogenic/osteogenic differentiation in SCAPs. MTA had a greater potential for induction of differentiation of SCAPs to odontoblast-like cells while OCP had higher potential to induce differentiation of SCAPs to osteoblast-like cells (MTA↔ BD↔ CEM↔ Atlantik↔ OCP).
Collapse
Affiliation(s)
- Eshaghali Saberi
- Oral and Dental Diseases Research Center, Department of Endodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Farhad-Mollashahi
- Oral and Dental Diseases Research Center, Department of Endodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fereydoon Sargolzaei Aval
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Anatomical, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
34
|
Ge X, Li Z, Jing S, Wang Y, Li N, Lu J, Yu J. Parathyroid hormone enhances the osteo/odontogenic differentiation of dental pulp stem cells via ERK and P38 MAPK pathways. J Cell Physiol 2019; 235:1209-1221. [PMID: 31276209 DOI: 10.1002/jcp.29034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parathyroid hormone (PTH) is a main systemic mediator of calcium and phosphate homeostasis in the bone. Dental pulp stem cells (DPSCs) have been extensively studied in the regeneration of bone and tooth tissues. This paper aims to uncover the influences of PTH on the proliferative ability and osteo/odontogenic differentiation of DPSCs, as well as the underlying mechanisms. MATERIALS AND METHODS The optimal concentration of PTH on DPSCs was determined by alkaline phosphatase (ALP) activity assay, ALP staining and western blot analysis. Proliferative ability and cell cycle distribution of DPSCs were analyzed by Cell counting kit-8, 5-ethynyl-20-deoxyuridine assay, and flow cytometry. Osteo/odontogenic capacity of DPSCs was evaluated and finally, the involvement of mitogen-activated protein kinase (MAPK) pathway was assessed. RESULTS Purified DPSCs were obtained by enzymatic digestion, which presented a typical fibroblast-like morphology. 10-9 mol/L PTH was concerned as the optimal concentration for DPSCs induction. 10-9 mol/L PTH treatment did not change the proliferative rate of DPSCs (p > .05). Relative expressions of DSPP/DSPP, RUNX2/RUNX2, OSX/OSX, and ALP/ALP were upregulated in PTH-treated DPSCs relative to control group. Particularly, their mRNA/protein levels at Day 7 were markedly higher relative to those at Day 3 (p < .05 or p < .01). Mineralized nodules were formed after PTH induction, and calcium content increased by cetylpyridinium chloride quantitative analysis. Mechanistically, the protein levels of p-ERK and p-P38 significantly increased after PTH treatment, and the inhibitors targeting MAPK were identified that weakened the effects of PTH on the committed differentiation of DPSCs. CONCLUSIONS PTH enhances the osteo/odontogenic differentiation capacity of DPSCs via ERK and P38 signaling pathways.
Collapse
Affiliation(s)
- Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuanglin Jing
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanqiu Wang
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiamin Lu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Zhu N, Chatzistavrou X, Papagerakis P, Ge L, Qin M, Wang Y. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomater Sci Eng 2019; 5:4624-4633. [DOI: 10.1021/acsbiomaterials.9b00811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Petros Papagerakis
- College of Dentistry and Biomedical Engineering, Toxicology, Pharmacy/Nutrition, Anatomy and Cell Biology Colleges Graduate Programs, University of Saskatchewan, Saskatoon, Canada
| | - Lihong Ge
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
36
|
Cai B, Wang X, Liu H, Ma S, Zhang K, Zhang Y, Li Q, Wang J, Yao M, Guan F, Yin G. Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p. Cell Cycle 2019; 18:1588-1600. [PMID: 31203719 DOI: 10.1080/15384101.2019.1624111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hair follicle stem cells (HFSCs), located in the bulge region of the follicle, maintain hair follicle growth and cycling. Long non-coding RNAs (lncRNAs), non-protein coding transcripts, are widely known to play critical roles in differentiation and proliferation of stem cells. Therefore, the current study aimed to explore the regulatory roles of lncRNA5322 in HFSCs proliferation and the underlying regulatory mechanisms. Initially, the expression patterns of lncRNA5322 and microRNA-19b-3p (miR-19b-3p) in HFSCs were detected. Subsequently, gain-and loss-of-functions analyses were conducted to explore the roles of lncRNA5322, miR-19b-3p and mitogen-activated protein kinase 1 (MAPK1) in cell proliferation, colony formation and apoptosis of HFSCs, with the expression of cyclin-dependent kinase (CDK)1 and CDK2 examined. Also, the interaction relationships among lncRNA5322, miR-19b-3p and MAPK1 were explored. Furthermore, a mouse model was established to detect the roles of lncRNA5322, miR-19b-3p, and MAPK1 in wound contraction and epidermal regeneration. Over-expressed lncRNA5322 was found to promote proliferation, colony formation ability but inhibit apoptosis of HFSCs, in addition to up-regulation of the expression of CDK1 and CDK2. LncRNA5322 was found to act as a ceRNA of miR-19b-3p which directly targeted MAPK1. Furthermore, up-regulation of lncRNA5322 enhanced wound contraction and epidermal regeneration in vivo by increasing the expression of MAPK1 through functioning as a ceRNA of miR-19b-3p. In summary, the results in this study suggested that lncRNA5322 serves as a ceRNA of miR-19b-3p to elevate the expression of MAPK1, ultimately promoting HFSCs proliferation, wound contraction and epidermal regeneration of mouse model.
Collapse
Affiliation(s)
- Bingjie Cai
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Xinxin Wang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongtao Liu
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Shanshan Ma
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Kun Zhang
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Yanting Zhang
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Qinghua Li
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Junmin Wang
- c College of Basic Medical Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Minghao Yao
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Fangxia Guan
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Guangwen Yin
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
37
|
Silva RAB, Borges ATN, Hernandéz-Gatón P, de Queiroz AM, Arzate H, Romualdo PC, Nelson-Filho P, Silva LAB. Histopathological, histoenzymological, immunohistochemical and immunofluorescence analysis of tissue response to sealing materials after furcation perforation. Int Endod J 2019; 52:1489-1500. [PMID: 31099018 DOI: 10.1111/iej.13145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
AIM To evaluate in vivo tissue responses after sealing furcation perforations in dog's teeth with either Biodentine™, mineral trioxide aggregate (MTA) or gutta-percha, by means of histopathological, histoenzymological, immunohistochemical and immunofluorescence analysis. METHODOLOGY After root canal treatment, perforations were created in the central region of the pulp chamber floor using a round diamond bur and filled with one or other of the materials. The animals were euthanized after 120 days, and the teeth (n = 30) were processed for histopathological analysis of new mineralized tissue formation and collagen fibre reinsertion, immunohistochemical analysis of osteopontin (OPN) and alkaline phosphatase (ALP) and immunofluorescence analysis for bone morphogenetic protein (BMP-2), cementum attachment protein (CAP), bone sialoprotein (BSP), osteocalcin (OCN) and cementum protein1 (CEMP1). Histoenzymology was performed for TRAP activity and osteoclast count. Data were analysed statistically (α = 0.05) using chi-square and Kruskal-Wallis tests. RESULTS Gutta-percha did not induce mineralized tissue formation. MTA and BiodentineTM formed mineralized tissue in 88% and 92% of specimens, respectively, with no significant difference (P > 0.05). Gutta-percha was associated with scattered collagen fibres parallel to the perforations. Groups treated with MTA or BiodentineTM had partial fibre reinsertion perpendicular to the newly formed mineralized tissue. All materials induced OPN and ALP expression, weakest for gutta-percha and strongest for MTA (P < 0.05). Only MTA induced BMP-2, BSP, OCN, CAP and CEMP1 expression. Osteoclast counts were similar in all groups (P = 0.97). CONCLUSIONS Mineral trioxide aggregate and BiodentineTM were biocompatible, with formation of mineralized tissue and partial reinsertion of collagen fibres. In addition, the participation of several molecules by which calcium silicate-based materials induce the formation of mineralized tissue were noted, with expression of ALP and OPN mineralization markers, without interference in the number of osteoclasts. Only MTA stimulated the expression of proteins associated with the formation of a cementum-like mineralized tissue.
Collapse
Affiliation(s)
- R A B Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A T N Borges
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Faculty of Amazonas, Manaus, Amazonas, Brazil
| | - P Hernandéz-Gatón
- Department of Integrated Paediatric Dentistry, School of Dentistry, University of Barcelona, Barcelona, Spain
| | - A M de Queiroz
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - H Arzate
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| | - P C Romualdo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L A B Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
38
|
Chen D, Yu F, Wu F, Bai M, Lou F, Liao X, Wang C, Ye L. The role of Wnt7B in the mediation of dentinogenesis via the ERK1/2 pathway. Arch Oral Biol 2019; 104:123-132. [PMID: 31181411 DOI: 10.1016/j.archoralbio.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study investigates the role of Wnt7b in mouse dentin formation. DESIGN C57BL/6 mouse tooth germs at different developmental stages were collected to measure the expression of Wnt7b by immunohistochemical staining. The morphology of mandibles of Dmp1-cre;ROSA26-Wnt7b transgenic mice and ROSA26-Wnt7b littermates was analyzed by Micro-CT and HE staining. The ultramicrostructure of dentin was scanned with an electron microscope. Primary mouse dental papillae cells (MDPCs) and odontoblastic cell line (A11) were cultured and infected with adenovirus to overexpress Wnt7b. Cell proliferation and cell apoptosis were evaluated using CCK-8 and flow cytometry. Osteogenic differentiation of MDPCs and A11 was assessed by Alizarin red staining, and qPCR detection of osteogenic gene expression. The activation of signaling pathways was measured by the use of western blot analysis. The ERK1/2 inhibitor was used to test the effect of Wnt7b regulated cell differentiation. RESULTS Wnt7b was expressed principally in the mouse odontoblast layer after the early bell stage. In transgenic mice, Wnt7b was over-expressed in tooth mesenchyme, with a thinner predentin layer and thicker intertubular dentin. Both the micro-hardness value and the Ca/Pi ratio of dentin of transgenic mice were higher. Wnt7b promoted proliferation and mineralization of MDPCs and A11. The protein level of p-ERK1/2 was found to be higher in A11 infected with Ad-Wnt7b. The ERK signaling pathway inhibitor partly rescued the Wnt7b-induced differentiation of A11. CONCLUSIONS Wnt7b enhances dentinogenesis by increasing the proliferation and differentiation of dental mesenchymal cells partly through ERK1/2 pathway.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Feng Lou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
39
|
Kim JH, Kim SY, Woo SM, Jeong HN, Jung JY, Kim SM, Lim HS. Combination of mineral trioxide aggregate and propolis promotes odontoblastic differentiation of human dental pulp stem cells through ERK signaling pathway. Food Sci Biotechnol 2019; 28:1801-1809. [PMID: 31807353 DOI: 10.1007/s10068-019-00609-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
The aim of this study is to investigate combined effects of mineral trioxide aggregate (MTA) and propolis on odontoblastic differentiation of human dental pulp stem cells (DPSCs) and to find a signaling pathway involved. Combination of MTA and propolis significantly up-regulated the expression of DSPP and DMP1, and facilitated a mineral nodule formation (p < 0.05). Treatments with MTA, propolis or combined increased the phosphorylation of extracellular signal-regulated kinases (ERK), one of mitogen-activated protein kinases signaling cascades during odontogenic differentiation of DPSCs (p < 0.05), and U0126, an inhibitor of ERK, decreased calcium deposits (p < 0.05). Combination of MTA and propolis promotes odontogenic differentiation and mineralization of DPSCs through ERK pathway.
Collapse
Affiliation(s)
- Jae-Hwan Kim
- 1Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, Republic of Korea
| | - Soo-Yung Kim
- 1Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, Republic of Korea
| | - Su-Mi Woo
- 2Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, Republic of Korea
| | - Ha-Na Jeong
- 3Department of Dentistry, Chonnam National University Hwasun Hospital, Seoyang-ro 322, Ilsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do Republic of Korea
| | - Ji-Yeon Jung
- 2Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, Republic of Korea
| | - Seon-Mi Kim
- 1Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, Republic of Korea
| | - Hae-Soon Lim
- 3Department of Dentistry, Chonnam National University Hwasun Hospital, Seoyang-ro 322, Ilsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do Republic of Korea.,4Department of Dental Education, School of Dentistry, Dental Science Research Institute, Chonnam National University, Yongbong-ro 33, Buk-gu, Gwangju, 61186 Republic of Korea
| |
Collapse
|
40
|
Yunnan Baiyao Conditioned Medium Promotes the Odonto/Osteogenic Capacity of Stem Cells from Apical Papilla via Nuclear Factor Kappa B Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9327386. [PMID: 31179335 PMCID: PMC6507233 DOI: 10.1155/2019/9327386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 μg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.
Collapse
|
41
|
Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: A Systematic Review. MATERIALS 2019; 12:ma12071015. [PMID: 30934746 PMCID: PMC6479584 DOI: 10.3390/ma12071015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Dentistry-applied bioceramic materials are ceramic materials that are categorized as bioinert, bioactive and biodegradable. They share a common characteristic of being specifically designed to fulfil their function; they are able to act as root canal sealers, cements, root repair or filling materials. Bioactivity is only attributed to those materials which are capable of inducing a desired tissue response from the host. The aim of this study is to present a systematic review of available literature investigating bioactivity of dentistry-applied bioceramic materials towards dental pulp stem cells, including a bibliometric analysis of such a group of studies and a presentation of the parameters used to assess bioactivity, materials studied and a summary of results. The research question, based on the PICO model, aimed to assess the current knowledge on dentistry-based bioceramic materials by exploring to what extent they express bioactive properties in in vitro assays and animal studies when exposed to dental pulp stem cells, as opposed to a control or compared to different bioceramic material compositions, for their use in the dentin-pulp complex therapy. A systematic search of the literature was performed in six databases, followed by article selection, data extraction, and quality assessment. Studies assessing bioactivity of one or more bioceramic materials (both commercially available or novel/experimental) towards dental pulp stem cells (DPSCs) were included in our review. A total of 37 articles were included in our qualitative review. Quantification of osteogenic, odontogenic and angiogenic markers using reverse transcriptase polymerase chain reaction (RT-PCR) is the prevailing method used to evaluate bioceramic material bioactivity towards DPSCs in the current investigative state, followed by alkaline phosphatase (ALP) enzyme activity assays and Alizarin Red Staining (ARS) to assess mineralization potential. Mineral trioxide aggregate and Biodentine are the prevalent reference materials used to compare with newly introduced bioceramic materials. Available literature compares a wide range of bioceramic materials for bioactivity, consisting mostly of in vitro assays. The desirability of this property added to the rapid introduction of new material compositions makes this subject a clear candidate for future research.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit, Hematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, 30120 Murcia, Spain.
- School of Dentistry, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
| | - Carmen Llena
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| | - Salvatore Sauro
- Department of Dentistry, Faculty of Health Sciences, Universidad CEU-Cardenal Herrera, 46115 Alfara del Patriarca (Valencia), Spain.
- Faculty of Dentistry, Oral & Craniofacial Sciences at King's College London, Floor 17 Tower Wing, Guy's Hospital, London SE1 9RT, UK.
| | - Leopoldo Forner
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
42
|
The Conditioned Medium of Calcined Tooth Powder Promotes the Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells via MAPK Signaling Pathways. Stem Cells Int 2019; 2019:4793518. [PMID: 31015840 PMCID: PMC6444228 DOI: 10.1155/2019/4793518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
The calcined tooth powder (CTP), a type of allogeneic biomimetic mineralized material, has been confirmed that can promote new bone formation when obtained at high temperature. The aim of this study was to investigate effects of the conditioned medium of calcined tooth powder (CTP-CM) on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs) and the underlying mechanisms involved. First, ALP activity assay determined that 200 μg/mL was the optimal concentration of CTP-CM for the following experiments. CTP-CM had no significant effect on the proliferation of hDPSCs as indicated by CCK-8 and FCM analysis. Both the gene and protein (DSPP/DSPP, RUNX2/RUNX2, OCN/OCN, OSX/OSX, OPN/OPN, ALP/ALP, and COL-1/COL-1) expression levels increased in the CTP-CM-induced hDPSC group as compared with those in the control group at day 3 or 7, showing the positive regulation of CTP-CM on the osteo/odontogenic differentiation of hDPSCs. Mechanistically, MAPK signaling pathways were activated after the CTP-CM treatment, and the inhibitors targeting MAPK were identified which weakened the effects of CTM-CM on the committed differentiation of hDPSCs. These findings could lead to the creation of stem cell therapies for dental regeneration.
Collapse
|
43
|
The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells. Dent J (Basel) 2018; 6:dj6040048. [PMID: 30248979 PMCID: PMC6313531 DOI: 10.3390/dj6040048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to compare the osteogenic differentiation capacity of the dental pulp pluripotent-like stem cells (DPPSCs) using conditional media pretreated with ProRoot-MTA, Biodentine (BD) or the newly manufactured pure Portland cement Med-PZ (MZ). DPPSCs, isolated from human third molars, are the most relevant cell model to draw conclusions about the role of biomaterials on dental tissue regeneration. Cytotoxicity, alkaline phosphatase (ALP) activity, and calcium deposition analysis were evaluated at different differentiation time points. Gene expression of key osteogenic markers (RUNX2, Collagen I and Osteocalcin) was determined by qRT-PCR analysis. The osteogenic capacity of cells cultured in conditioned media prepared from MZ or MTA cements was comparable. BD conditioned media supported cell proliferation but failed to induce osteogenesis. Relative to controls and other cements, high osteogenic gene expression was observed in cultures pre-treated with the novel endodontic cement MZ. In conclusion, the in vitro behavior of a MZ- endodontic cement was evaluated, showing similar enhanced cell proliferation compared to other commercially available cements but with an enhanced osteogenic capacity with prospective potential as a novel cement for endodontic treatments.
Collapse
|
44
|
Xin T, Zhang T, Li Q, Yu T, Zhu Y, Yang R, Zhou Y. A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway. Stem Cell Res Ther 2018; 9:221. [PMID: 30134957 PMCID: PMC6106924 DOI: 10.1186/s13287-018-0965-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
Background Tooth agenesis, one of the most common developmental anomalies, can affect the function and esthetics of patients. The aim of the present study was to identify genetic clues for familial tooth agenesis and explore the underlying mechanisms, focusing on the role of human dental pulp stem cells (hDPSCs). Methods We applied Sanger sequencing to identify the cause of oligodontia in a Chinese family. DNA transfection and functional analysis in DPSCs was also performed to explore the impact of the identified mutation on this phenotype. Results In this study, a novel frameshift mutation, the twenty-nucleotide deletion (c.128_147del20, p.Met43Serfsx125), in exon1 of MSX1 was detected in a Chinese family causing autosomal dominant nonsyndromic oligodontia. The mutation cosegregated with the tooth agenesis phenotype in this family. DPSCs transfected with mutant MSX1 plasmid showed decreased capacity of osteo/odontogenic differentiation with a lower expression level of dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) compared with those transfected with control MSX1 plasmid. Mechanically, control MSX1 showed nuclear localization while the mutant MSX1 inhibited its nuclear translocation and localized on the cytoplasm to inhibit ERK phosphorylation. Furthermore, we inhibited the ERK pathway using ERK inhibitor (U0126) treatment in control MSX1-transfected DPSCs which could downregulate mineralized nodule formation and the expression of odontogenic genes. Conclusion We demonstrated a novel MSX1 mutation causing familial nonsyndromic oligodontia and mechanically MSX1 regulates odontogenesis through the ERK signaling pathway in human dental pulp stem cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-0965-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Yunyan Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| |
Collapse
|
45
|
Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway. J Cell Physiol 2018; 234:1442-1451. [PMID: 30132853 DOI: 10.1002/jcp.26950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
Human dental pulp stem cells (hDPSCs) are primarily derived from the pulp tissues of permanent third molar teeth. They were widely used in human bone tissue engineering. It was previously indicated that microRNA (miR) expressions are closely associated with hDPSCs development. However, the specific effect of miR-488 on hDPSCs still remains unclear. In this study, we aimed to investigate effects of miR-488 on the differentiation of hDPSCs into odontoblast cells through the p38 mitogen-activated protein kinases (MAPK) signaling pathway by binding to MAPK1. The hDPSCs were isolated and cultured in vitro. Dual-luciferase reporter gene assay was performed to test the relationship between MAPK1 (p38) and miR-488. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to detect the mRNA and protein expressions of p38 MAPK signaling pathway-related genes (MAPK1, Ras, and Mitogen-activated protein kinase kinase 3/6 [MKK3/6]), along with expressions of dentin Sialophosphoprotein (DSPP), alkaline phosphatase (ALP), and osteonectin (OCN). ALP staining and alizarin red staining were conducted to detect ALP activity and degree of mineralization. Initially, we found that MAPK1 was the target gene of miR-488. Besides, downregulation of miR-488 was observed to stimulate the p38 MAPK signaling pathway and to increase the messenger RNA and protein expressions of DSPP, ALP, and OCN. Furthermore, ALP activity and formation of a mineralized nodule in hDPSCs were enhanced upon downregulation of miR-488. The aforementioned findings provided evidence supporting that downregulation of miR-488 promotes odontoblastic differentiation of hDPSCs through the p38 MAPK signaling pathway by targeting MAPK1, paving the basis for further study about hDPSCs.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Jin-Zhang Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Di Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Hui-Hui Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Guang-Hong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
46
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
47
|
Tsai CL, Ke MC, Chen YH, Kuo HK, Yu HJ, Chen CT, Tseng YC, Chuang PC, Wu PC. Mineral trioxide aggregate affects cell viability and induces apoptosis of stem cells from human exfoliated deciduous teeth. BMC Pharmacol Toxicol 2018; 19:21. [PMID: 29764492 PMCID: PMC5952617 DOI: 10.1186/s40360-018-0214-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mineral trioxide aggregate (MTA) is widely used for pulp-capping procedures in permanent teeth and as a gold standard material in endodontics. The aim of the study was to investigate the effect of MTA on cell viability and apoptosis when MTA is directly in contact with Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs). METHODS MTA was mixed and coated in the bottom of a 24-well plate. SHEDs collected and cultured from normal exfoliated human deciduous teeth (passages 3-4) were seeded on square cover glasses. The glasses with seeded SHEDs were incubated in the plates with or without MTA coating. They were divided into four groups: MTA direct contact, direct control, MTA indirect contact, and indirect control. After 1, 2 and 3 days of culturing, cell morphology was observed and cell viability was assessed by the WST-1 cell cytotoxicity assay. TUNEL assay, immunofluorescent labeling and western blot analysis were used to study the effects of MTA on SHEDs apoptosis. RESULTS MTA impaired cell viability of SHEDs in 1, 2 and 3 days, and the effect of direct contact was more severe. Cell apoptosis with positive Annexin V and TUNEL staining was noted when there was direct contact with MTA. Western blot analysis revealed that Bcl-2 and Bcl-xL decreased after SHEDs were in contact with MTA. CONCLUSIONS This study shows that direct contact with 1 week post-set MTA significantly decreases the viability of SHEDs and induced cell apoptosis. The results suggest that there is a possible cytotoxic effect of pulp tissue when there is direct contact with MTA. Different responses would be expected due to the strong alkaline characteristics of fresh mixed MTA.
Collapse
Affiliation(s)
- Chia-Ling Tsai
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mu-Chan Ke
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Hsi-Kung Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Hun-Ju Yu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Chueh-Tan Chen
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Ya-Chi Tseng
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China.
| |
Collapse
|
48
|
Sun Y, Luo T, Shen Y, Haapasalo M, Zou L, Liu J. Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One 2017; 12:e0186848. [PMID: 29059236 PMCID: PMC5653327 DOI: 10.1371/journal.pone.0186848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of iRoot Fast Set root repair material (iRoot FS) on the proliferation, migration and differentiation of human dental pulp stem cells (hDPSCs). The hDPSCs were treated with eluates of iRoot FS at concentrations of 0.2 and 2 mg/mL, referred to as FS0.2 and FS2, respectively, and Biodentine (BD; Septodont, Saint Maur des Faussés, France) eluates at the corresponding concentrations as positive controls. A CCK8 assay was performed to determine cell proliferation. Wound healing and transwell assays were conducted to examine cell migration. Osteogenic differentiation was evaluated based on alkaline phosphatase activity, Alizarin Red S staining and quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) to analyze the mRNA expression of differentiation gene markers. Cell proliferation was higher in the FS and BD groups than in the blank controls at 3 and 7 days. Moreover, FS0.2 enhanced cell migration and significantly promoted the osteogenic differentiation of hDPSCs. These findings suggested that iRoot FS is a bioactive material that promotes the proliferation, migration and osteogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ling Zou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (JL); ) (LZ)
| | - Jun Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (JL); ) (LZ)
| |
Collapse
|
49
|
Qiu W, Sun B, He F, Zhang Y. MTA-induced Notch activation enhances the proliferation of human dental pulp cells by inhibiting autophagic flux. Int Endod J 2017; 50 Suppl 2:e52-e62. [DOI: 10.1111/iej.12811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- W. Qiu
- Graduate School at Shenzhen; Tsinghua University; Shenzhen China
- Department of Chemistry; Tsinghua University; Beijing China
- Key Lab in Healthy Science and Technology; Division of Life Science; Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - B. Sun
- Graduate School at Shenzhen; Tsinghua University; Shenzhen China
- Key Lab in Healthy Science and Technology; Division of Life Science; Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - F. He
- Department of Stomatology; the Second Clinical Medical College; Shenzhen People's Hospital; Jinan University; Shenzhen China
| | - Y. Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Graduate School at Shenzhen; Tsinghua University; Shenzhen China
- Open FIESTA Center; Tsinghua University; Shenzhen China
| |
Collapse
|
50
|
Vidovic Zdrilic I, de Azevedo Queiroz IO, Matthews BG, Gomes-Filho JE, Mina M, Kalajzic I. Mineral trioxide aggregate improves healing response of periodontal tissue to injury in mice. J Periodontal Res 2017; 52:1058-1067. [PMID: 28691752 DOI: 10.1111/jre.12478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Mineral trioxide aggregate (MTA) is a biomaterial used in endodontic procedures as it exerts beneficial effects on regenerative processes. In this study, we evaluate the effect of MTA on healing of periodontal ligament (PDL) and surrounding tissue, following injury, in a transgenic mouse model and on the differentiation of murine mesenchymal progenitor cells in vitro. MATERIAL AND METHODS We used an inducible Cre-loxP in vivo fate mapping approach to examine the effects of MTA on the contributions of descendants of cells expressing the αSMA-CreERT2 transgene (SMA9+ ) to the PDL and alveolar bone after experimental injury to the root furcation on the maxillary first molars. Col2.3GFP was used as a marker to identify mature osteoblasts, cementoblasts and PDL fibroblasts. The effects of MTA were examined 2, 17 and 30 days after injury and compared histologically with sealing using an adhesive system. The effects of two dilutions of medium conditioned with MTA on proliferation and differentiation of mesenchymal progenitor cells derived from bone marrow (BMSC) and periodontal ligament (PDLC) in vitro were examined using the PrestoBlue viability assay, alkaline phosphatase and Von Kossa staining. The expression of markers of differentiation was assessed using real-time PCR. RESULTS Histological analyses showed better repair in teeth restored with MTA, as shown by greater expansion of SMA9+ progenitor cells and Col2.3GFP+ osteoblasts compared with control teeth. We also observed a positive effect on differentiation of SMA9+ progenitors into osteoblasts and cementoblasts in the apical region distant from the site of injury. The in vitro data showed that MTA-conditioned medium reduced cell viability and osteogenic differentiation in both PDLC and BMSC, indicated by reduced von Kossa staining and lower expression of osteocalcin and bone sialoprotein. In addition, cultures grown in the presence of MTA had marked decreases in SMA9+ and Col2.3GFP+ areas as compared with osteogenic medium, confirming reduced osteogenesis. CONCLUSION MTA promotes regeneration of injured PDL and alveolar bone, reflected as contribution of progenitors (SMA9+ cells) into osteoblasts (Col2.3GFP+ cells). In vitro, MTA-conditioned medium fails to promote osteogenic differentiation of both PDLC and BMSC.
Collapse
Affiliation(s)
- I Vidovic Zdrilic
- Department of Pediatric Dentistry, Uconn Health, Farmington, CT, USA
| | | | - B G Matthews
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT, USA
| | - J E Gomes-Filho
- Department of Endodontics, School of Dentistry, São Paulo State University, Aracatuba, Brazil
| | - M Mina
- Department of Pediatric Dentistry, Uconn Health, Farmington, CT, USA
| | - I Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT, USA
| |
Collapse
|