1
|
Ding X, Liu J, Chen X, Zhang X, Fang Y, Huang D. Application of methylation in the diagnosis of ankylosing spondylitis. Clin Rheumatol 2024; 43:3073-3082. [PMID: 39167325 DOI: 10.1007/s10067-024-07113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, mainly characterized by perifibrocartilage osteitis of the sacroiliac joints and spinal enthesitis. To date, the exact pathogenesis of AS remains elusive. It is generally believed that AS is a multifactorial disease involving genetics, infection, environment, and immunity. Among them, genetic factors are the primary determinants of disease risk and severity. In recent years, epigenetic mechanisms such as DNA methylation have been extensively surveyed with respect to the pathogenesis of AS. This review summarizes the latest research progress of methylation in AS, from whole-genome sequencing to individual differentially methylated gene. And finally, the role of methylase in AS inflammation, autophagy, and osteogenic differentiation was explored. In summary, the results of this review attempt to explain the role of methylation in the occurrence and development of AS and point out the shortcomings of current methylation research, providing directions for subsequent methylation research in AS.
Collapse
Affiliation(s)
- Xiang Ding
- Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China.
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Xiaolu Chen
- Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China
| | - Xianheng Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China
| | - Yanyan Fang
- Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China
| | - Dan Huang
- Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Shushan, Hefei, 230038, Anhui, China
| |
Collapse
|
2
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Zhou T, Wang X, Kong J, Yu L, Xie H, Wang F, Xu S, Shuai Z, Zhou Q, Pan F. PRICKLE1 gene methylation and abnormal transcription in Chinese patients with ankylosing spondylitis. Immunobiology 2023; 228:152742. [PMID: 37742487 DOI: 10.1016/j.imbio.2023.152742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a common inflammatory arthritis without a reliable biomarker. The role of methylation and mRNA expression of PRICKLE1 promoter in the pathogenesis of ankylosing spondylitis remains unclear. METHODS A two-stage case-control design was used to detect the characteristics of methyl group and transcriptome of PRICKLE1 gene in Ankylosing spondylitis. The methylation degree of PRICKLE1 gene promoter region was tested by phosphate-sequencing, and further analyzed whether there was significant difference in methylation level of PRICKLE1 gene. The expression levels of PRICKLE1 mRNA in 50 AS patients and 50 healthy controls were detected by real-time quantitative PCR (RT-qPCR). RESULTS Compared with healthy control group, the intensity of methylation in 4 ponds of PRICKLE1 in patients with Ankylosing spondylitis was low, and the mRNA levels were overexpressed (P = 0.017). ROC results showed that the sensitivity of PRICKLE1 was 68.67% and specificity was 71.43%. CONCLUSION There is a significant change in the concentration of serum PRICKLE1 mRNAin patients with Ankylosing spondylitis, and the degree of gene methylation is significantly reduced, suggesting that PRICKLE1 gene maybe involved in the pathogenesis of Ankylosing spondylitis, which may be useful for predicting the occurrence of AS and finding new early screening indicators.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiangping Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shenqian Xu
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zongwen Shuai
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, No. 678#, Furong Road, 230601 Hefei, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
Sun T, Wang M, Liang W, Gao P, Liu Q, Yan X. Revealing mechanism of Methazolamide for treatment of ankylosing spondylitis based on network pharmacology and GSEA. Sci Rep 2023; 13:15370. [PMID: 37717047 PMCID: PMC10505193 DOI: 10.1038/s41598-023-42721-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
Methazolamide is a carbonic anhydrase (CA) inhibitor with satisfactory safety. Our previous studies have demonstrated the elevation of CA1 expression and the therapeutic effect of Methazolamide in Ankylosing spondylitis (AS). In this study, we explored the pathogenic role of CA1 and the pharmacological mechanism of Methazolamide in AS through Gene Set Enrichment Analysis (GSEA) and network pharmacology. Seven out of twelve CA1 related gene sets were enriched in AS group. CA1 was core enriched in above seven gene sets involving zinc ion binding, arylesterase activity and one carbon metabolic process. Functional analysis of the candidate target genes obtained from the intersection of AS associated genes and Methazolamide target genes indicated that Methazolamide exerts therapeutic effects on AS mainly through inflammatory pathways which regulate the production of tumor necrosis factor, IL-6 and nitric oxide. PTGS2, ESR1, GSK3β, JAK2, NOS2 and CA1 were selected as therapeutic targets of Methazolamide in AS. Molecular docking and molecular dynamics simulations were performed successfully. In addition, we innovatively obtained the intersection of Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and GSEA results, and found that 18 GO terms and 5 KEGG terms were indicated in the pharmacological mechanism of Methazolamide in AS, involving bone mineralization, angiogenesis, inflammation, and chemokine signaling pathways. Nevertheless, validation for these mechanisms is needed in vivo/vitro experiments.
Collapse
Affiliation(s)
- Tao Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Weiqiang Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Ping Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Qiang Liu
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xinfeng Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province, China.
| |
Collapse
|
5
|
Ni M, Chen Y, Sun X, Deng Y, Wang X, Zhang T, Wu Y, Yu L, Xu S, Yu H, Shuai Z, Pan F. DNA methylation and transcriptional profiles of IRF5 gene in ankylosing spondylitis: A case-control study. Int Immunopharmacol 2022; 110:109033. [PMID: 35810492 DOI: 10.1016/j.intimp.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Interferon regulatory factor 5 (IRF5) plays an important role in the inflammation and immune responses, but its association with ankylosing spondylitis (AS) is under investigated. We aimed to examine the association of IRF5 promoter methylation patterns and transcript levels with the susceptibility to AS. METHODS A total of 60 AS patients and 60 healthy controls were included in this study. We used the bisulfite conversion to detect the DNA methylation pattern of IRF5 promoter in whole blood, and the quantitative real-time PCR (qRT-PCR) to detect the relative mRNA expression level in peripheral blood mononuclear cells (PBMCs). RESULTS The overall methylation level of IRF5 promoter was lower in AS patients compared to healthy controls (P < 0.001). The methylation level of IRF5 promoter was negatively correlated with mRNA level (P = 0.005). The results of receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) was 0.810 (P < 0.001), and the sensitivity and specificity were 71.67% and 85.00%, respectively. There were significant differences between the severe dysfunction group and healthy control group, and between the mild dysfunction group and healthy control group (P = 0.006 and P < 0.001, respectively). Only CRP was significantly correlated with mRNA relative level, while the others were not significant. CONCLUSION These findings indicate that IRF5 methylation profile may be involved in the pathological process of AS, and that it may help identify AS patients.
Collapse
Affiliation(s)
- Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shenqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui 236000, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Xu S, Zhang X, Wang X, Xie H, Wang F, Zhou T, Yu L, Xu S, Pan F. DNA methylation and transcription of the FOXO3a gene are associated with ankylosing spondylitis. Clin Exp Med 2022; 23:483-493. [PMID: 35511319 DOI: 10.1007/s10238-022-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
To explore the association between methylation level and transcript level of Forkhead box O3a (FOXO3a) gene with ankylosing spondylitis (AS) susceptibility. Methylation levels of the FOXO3a promoter were measured in 84 AS patients and 83 healthy controls. A total of 77 patients and 66 healthy subjects were included in subsequent mRNA level testing. DNA methylation levels of 107 CpG sites on 6 CpG islands in the FOXO3a gene were investigated. This study indicated that CpG-4 and CpG-5 islands were markedly hypomethylated in AS patients. The methylation level of CpG-4 island in AS patients was negatively correlated with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and Ankylosing Spondylitis Disease Activity Score (ASDAS). Moreover, FOXO3a mRNA levels were significantly decreased in AS patients and were obviously negatively correlated with the methylation levels of CpG-2 and CpG-5 islands in AS patients without treatment. The sensitivity and specificity of differential methylated CpG sites of FOXO3a were 74.7 and 85.4%, respectively. Besides, FOXO3a mRNA had a sensitivity of 80.0% and a specificity of 68.8%. DNA methylation and transcription of FOXO3a might be related to AS susceptibility and play a crucial role in the diagnosis of AS, but many open questions remain.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoyi Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Xiao M, Zheng X, Li X, Wu X, Huang Y, Wei Q, Cao S, Gu J. Integrative blood-derived epigenetic and transcriptomic analysis reveals the potential regulatory role of DNA methylation in ankylosing spondylitis. Arthritis Res Ther 2022; 24:15. [PMID: 34986893 PMCID: PMC8728943 DOI: 10.1186/s13075-021-02697-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Background The currently known risk loci could explain a small proportion of the heritability of ankylosing spondylitis (AS). Epigenetics might account for the missing heritability. We aimed to seek more novel AS-associated DNA methylation alterations and delineate the regulatory effect of DNA methylation and gene expression with integrated analysis of methylome and transcriptome. Methods Epigenome-wide DNA methylation and mRNA expression were profiled in peripheral blood mononuclear cells (PBMCs) from 45 individuals (AS: health controls (HCs) = 30:15) with high-throughput array. The methylome was validated in an independent cohort (AS: HCs = 12:12). Pearson correlation analysis and causal inference tests (CIT) were conducted to determine potentially causative regulatory effects of methylation on mRNA expression. Results A total of 4794 differentially methylated positions (DMPs) were identified associated with AS, 2526 DMPs of which were validated in an independent cohort. Both cohorts highlighted T cell receptor (TCR) signaling and Th17 differentiation pathways. Besides, AS patients manifested increased DNA methylation variability. The methylation levels of 158 DMPs were correlated with the mRNA expression levels of 112 genes, which formed interconnected network concentrated on Th17 cell differentiation and TCR signaling pathway (LCK, FYN, CD3G, TCF7, ZAP70, CXCL12, and PLCG1). We also identified several cis-acting DNA methylation and gene expression changes associated with AS risk, which might regulate the cellular mechanisms underlying AS. Conclusions Our studies outlined the landscapes of epi-signatures of AS and several methylation-gene expression-AS regulatory axis and highlighted the Th17 cell differentiation and TCR signaling pathway, which might provide innovative molecular targets for therapeutic interventions for AS. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02697-3.
Collapse
Affiliation(s)
- Min Xiao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Xuqi Zheng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaomin Li
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Xinyu Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yefei Huang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuangyan Cao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
8
|
Ma Y, Fan D, Xu S, Deng J, Gao X, Guan S, Zhang X, Pan F. Ankylosing Spondylitis Patients Display Aberrant ERAP1 Gene DNA Methylation and Expression. Immunol Invest 2021; 51:1548-1560. [PMID: 34555981 DOI: 10.1080/08820139.2021.1982965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endoplasmic reticulum aminopeptidase 1 (ERAP1) is known to participate in the pathogenesis of ankylosing spondylitis (AS). This study aimed to evaluate the relationship between promoter methylation and mRNA levels of ERAP1 and AS susceptibility. METHODS DNA methylation levels of 100 AS patients and 100 healthy controls (HCs) were tested using a targeted bisulfite sequencing assay. To verify the results of DNA methylation, mRNA levels of ERAP1 were measured in 20 AS patients and HCs used quantitative real-time reverse transcription-polymerase chain reaction. RESULTS The DNA methylation levels of two CpG islands containing 31 loci in ERAP1 promoter were measured. ERAP1_1 (P< .001) and ERAP1_2 (P< .001) islands were significantly hypermethylated in AS patients compared with HCs. In the verification study, the mRNA levels of ERAP1 were significantly decreased in AS patients. The ROC curve analysis showed that the sensitivity, specificity and area under curve were 0.717, 0.737, and 0.779 of differential methylated CpG loci of ERAP1 for AS diagnosis. In AS patients, the methylation levels of EARP1 were associated with family history, non-steroidal anti-inflammatory drugs use, X-ray classification, and clinical manifestations. CONCLUSIONS Our study demonstrated that the ERAP1 gene is significantly hypermethylated, and mRNA levels of EARP1 decreased, in AS patients. Our findings suggested that the aberrant methylation of ERAP1 promoter may be involved in the pathogenesis of AS and could be considered as a diagnostic tool and therapeutic target of AS.Abbreviations AS: Ankylosing Spondylitis; AUC: Area Under Curve; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index; CI: Confidence Interval; CpG: Cytosine-guanine Dinucleotide; CRP: C-reactive Protein; ERAP1: Endoplasmic Reticulum Aminopeptidase 1; ESR: Erythrocyte Sedimentation Rate; EWAS: Epigenome-Wide Association Study; HLA: Human Leukocyte Antigen; OR: Odds Ratio; PCR: Polymerase Chain Reaction; ROC: Receiver Operating Characteristic; NSAIDs: Non-Steroidal Anti-Inflammatory Drugs.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Association of methylation level and transcript level in TRAF5 gene with ankylosing spondylitis: a case-control study. Genes Immun 2021; 22:101-107. [PMID: 34021268 DOI: 10.1038/s41435-021-00135-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
To explore the association between methylation level and transcript level of TNF receptor-associated factor 5 (TRAF5) gene with ankylosing spondylitis (AS) in Chinese Han population. Methylation and mRNA expression level of the TRAF5 gene were tested in 98 patients and 98 healthy controls. Among the 21 CpG sites, methylation levels at eight sites were significantly different between AS patients and healthy controls. However, only three sites remained significantly different after the correction by the Benjamini-Hochberg method. Compared with controls, the CpG island of TRAF5 gene promoter was highly methylated in AS patients, and the relative mRNA expression level of TRAF5 was significantly reduced in AS patients. And the mRNA level was negatively correlated with the methylation level of TRAF5 gene in AS patients (rs = -0.453, P < 0.001). Subgroup analyses indicated that there was no significant difference in the level of methylation between groups of different status of HLA-B27 and medications in AS patients. Multiple linear regression showed that disease-modifying antirheumatic drugs could reduce methylation levels of AS patients after adjusting for the effects of other drugs. In conclusion, the hypermethylation of the TRAF5 might contribute to the pathogenesis of AS, but many open questions remain.
Collapse
|
10
|
Yang H, Chen Y, Xu W, Shao M, Deng J, Xu S, Gao X, Guan S, Wang J, Xu S, Shuai Z, Pan F. Epigenetics of ankylosing spondylitis: Recent developments. Int J Rheum Dis 2021; 24:487-493. [PMID: 33608999 DOI: 10.1111/1756-185x.14080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease which mainly affects the spine, sacroiliac joint and peripheral joints. To date, the exact causes and pathogenesis of AS still remain unknown. It is considered that the pathogenesis of AS is associated with genetic, infection, environment, immunity and other factors. Among them, the role of genetic factors in the pathogenesis of AS has been studied most deeply. However, over the past few years, the function of environmental predisposition and epigenetic modification in the pathogenesis of AS has received extensive attention. This paper summarizes the recent progress in the epigenetics of AS, including abnormal epigenetic modifications at AS-associated genomic loci, such as DNA methylation, histone modification, microRNA, and so on. In summary, the findings of this review attempt to explain the role of epigenetic modification in the occurrence and development of AS. Nevertheless, there are still unknown and complicated aspects worth exploring to deepen our understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Cherqaoui B, Crémazy F, Hue C, Garchon HJ, Breban M, Costantino F. Epigenetics of spondyloarthritis. Joint Bone Spine 2020; 87:565-571. [DOI: 10.1016/j.jbspin.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
|
12
|
Lamana A, Villares R, Seoane IV, Andrés N, Lucas P, Emery P, Vital EM, Triguero-Martínez A, Marquez A, Ortiz AM, Maxime R, Martínez C, Martín J, Gomariz RP, Ponchel F, González-Álvaro I, Mellado M. Identification of a Human SOCS1 Polymorphism That Predicts Rheumatoid Arthritis Severity. Front Immunol 2020; 11:1336. [PMID: 32670294 PMCID: PMC7332777 DOI: 10.3389/fimmu.2020.01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an autoimmune response in the joints and an exacerbation of cytokine responses. A minority of patients with RA experience spontaneous remission, but most will show moderate/high disease activity, with aggressive joint damage and multiple systemic manifestations. There is thus is a great need to identify prognostic biomarkers for disease risk to improve diagnosis and prognosis, and to inform on the most appropriate therapy. Here we focused on suppressor of cytokine signaling 1 (SOCS1), a physiological negative regulator of cytokines that modulates cell activation. Using four independent cohorts of patients with arthritis, we characterized the correlation between SOCS1 mRNA levels and clinical outcome. We found a significant inverse correlation between SOCS1 mRNA expression and disease activity throughout the follow-up of patients with RA. Lower baseline SOCS1 levels were associated with poorer disease control in response to methotrexate and other conventional synthetic disease-modifying anti-rheumatic drugs in early arthritis, and to rituximab in established (active) RA. Moreover, we identified several single nucleotide polymorphisms in the SOCS1 gene that correlated with SOCS1 mRNA expression, and that might identify those patients with early arthritis that fulfill RA classification criteria. One of them, rs4780355, is in linkage disequilibrium with a microsatellite (TTTTC)3−5, mapped 0.9 kb downstream of the SNP, and correlated with reduced SOCS1 expression in vitro. Overall, our data support the association between SOCS1 expression and disease progression, disease severity and response to treatment in RA. These observations underlie the relevance of SOCS1 mRNA levels for stratifying patients prognostically and guiding therapeutic decisions.
Collapse
Affiliation(s)
- Amalia Lamana
- Rheumatology Service, Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Iria V Seoane
- Department of Cellular Biology, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Andrés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), The University of Leeds, Leeds, United Kingdom
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), The University of Leeds, Leeds, United Kingdom
| | - Ana Triguero-Martínez
- Rheumatology Service, Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Ana Marquez
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Ana M Ortiz
- Rheumatology Service, Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Robin Maxime
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), The University of Leeds, Leeds, United Kingdom
| | - Carmen Martínez
- Department of Cellular Biology, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Rosa P Gomariz
- Department of Cellular Biology, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), The University of Leeds, Leeds, United Kingdom
| | - Isidoro González-Álvaro
- Rheumatology Service, Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
13
|
The multifaceted functional role of DNA methylation in immune-mediated rheumatic diseases. Clin Rheumatol 2020; 40:459-476. [PMID: 32613397 DOI: 10.1007/s10067-020-05255-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Genomic predisposition cannot explain the onset of complex diseases, as well illustrated by the largely incomplete concordance among monozygotic twins. Epigenetic mechanisms, including DNA methylation, chromatin remodelling and non-coding RNA, are considered to be the link between environmental stimuli and disease onset on a permissive genetic background in autoimmune and chronic inflammatory diseases. The paradigmatic cases of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjogren's syndrome (SjS) and type-1 diabetes (T1D) share the loss of immunological tolerance to self-antigen influenced by several factors, with a largely incomplete role of individual genomic susceptibility. The most widely investigated epigenetic mechanism is DNA methylation which is associated with gene silencing and is due to the binding of methyl-CpG binding domain (MBD)-containing proteins, such as MECP2, to 5-methylcytosine (5mC). Indeed, a causal relationship occurs between DNA methylation and transcription factors occupancy and recruitment at specific genomic locus. In most cases, the results obtained in different studies are controversial in terms of DNA methylation comparison while fascinating evidence comes from the comparison of the epigenome in clinically discordant monozygotic twins. In this manuscript, we will review the mechanisms of epigenetics and DNA methylation changes in specific immune-mediated rheumatic diseases to highlight remaining unmet needs and to identify possible shared mechanisms beyond different tissue involvements with common therapeutic opportunities. Key Points • DNA methylation has a crucial role in regulating and tuning the immune system. • Evidences suggest that dysregulation of DNA methylation is pivotal in the context of immune-mediated rheumatic diseases. • DNA methylation dysregulation in FOXP3 and interferons-related genes is shared within several autoimmune diseases. • DNA methylation is an attractive marker for diagnosis and therapy.
Collapse
|
14
|
Epigenetics and Inflammatory Markers: A Systematic Review of the Current Evidence. Int J Inflam 2019; 2019:6273680. [PMID: 31205673 PMCID: PMC6530203 DOI: 10.1155/2019/6273680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms have been suggested to play a role in the genetic regulation of pathways related to inflammation. Therefore, we aimed to systematically review studies investigating the association between DNA methylation and histone modifications with circulatory inflammation markers in blood. Five bibliographic databases were screened until 21 November of 2017. We included studies conducted on humans that examined the association between epigenetic marks (DNA methylation and/or histone modifications) and a comprehensive list of inflammatory markers. Of the 3,759 identified references, 24 articles were included, involving, 17,399 individuals. There was suggestive evidence for global hypomethylation but better-quality studies in the future have to confirm this. Epigenome-wide association studies (EWAS) (n=7) reported most of the identified differentially methylated genes to be hypomethylated in inflammatory processes. Candidate genes studies reported 18 differentially methylated genes related to several circulatory inflammation markers. There was no overlap in the methylated sites investigated in candidate gene studies and EWAS, except for TMEM49, which was found to be hypomethylated with higher inflammatory markers in both types of studies. The relation between histone modifications and inflammatory markers was assessed by one study only. This review supports an association between epigenetic marks and inflammation, suggesting hypomethylation of the genome. Important gaps in the quality of studies were reported such as inadequate sample size, lack of adjustment for relevant confounders, and failure to replicate the findings. While most of the studies have been focused on C-reactive protein, further efforts should investigate other inflammatory markers.
Collapse
|
15
|
Ankylosing spondylitis is associated with aberrant DNA methylation of IFN regulatory factor 8 gene promoter region. Clin Rheumatol 2019; 38:2161-2169. [PMID: 30900036 DOI: 10.1007/s10067-019-04505-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To investigate the role of methylation levels of the IFN regulatory factor 8 (IRF8) gene promoter in the development of ankylosing spondylitis (AS). METHODS In this study, we compared the methylation levels of the IRF8 gene promoter between 99 AS patients and 99 healthy controls using MethylTarget approach. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to compare the mRNA levels of the IRF8 gene in the other 19 AS patients and 19 healthy controls. RESULTS Differential methylation was found in 91 CpG sites of the IRF8 gene promoter, and 4 CpG regions were highly methylated in AS patients compared to healthy controls (p < 0.05). In the verification stage, we found that the mRNA levels of the IRF8 gene in AS patients were significantly lower than that in controls (AS 0.77 (0.39-1.74), P = 0.038). Positive correlations between methylation of the IRF8 gene and the duration of disease, BASFI, and ESR were observed in AS patients. CONCLUSIONS We found a significant hypermethylation of the IRF8 gene promoter and a downregulation of the mRNA levels of the IRF8 gene in AS patients. This suggests that aberrant methylation of the IRF8 gene promoter may probably contribute to the development and pathogenesis of AS through regulating the expression of mRNA.
Collapse
|
16
|
DNA methylation and transcriptome signature of the IL12B gene in ankylosing spondylitis. Int Immunopharmacol 2019; 71:109-114. [PMID: 30889422 DOI: 10.1016/j.intimp.2019.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is an autoimmune disease without a reliable biomarker. This study investigated the IL12B gene methylation as a robust marker by integrating DNA methylation and mRNA data. METHODS A two-stage design was used for methylome and transcriptome investigation. The first phase detected methylation level from 99 AS patients and 99 healthy controls (HCs) whilst the second phase measured mRNA level from 20 patients and 20 HCs. We conducted analysis of differential methylation sites and receiver operating characteristic (ROC) as well as mRNA level to verify methylation. RESULTS We investigated 37 methylation sites that were mapped to 2 CpG islands (IL12B-1 and IL12B-2). Compared with HCs, the two islands were hypermethylated (IL12B-1: P = 4.6 ∗ 10 ^ -4; IL12B-2: P = 1.3 ∗ 10 ^ -5) and the mRNA level was overexpressed (P = 0.004) in AS patients. The subgroup analysis results showed a significant hypermethylation of the two islands in B27 positive group (IL12B-1: P = 3.7 ∗ 10 ^ -4; IL12B-2: P = 3.7 ∗ 10 ^ -6) and in male patients (IL12B-1: P = 4.9 ∗ 10 ^ -4; IL12B-2: P = 7.2 ∗ 10 ^ -6). ROC results found that the IL12B-1 island had a sensitivity of 62.6% and a specificity of 66.7%, and the IL12B-2 had a sensitivity of 50.0% and a specificity of 77.7%. CONCLUSION DNA methylation and transcriptome signature of the IL12B gene can discriminate AS patients from HCs, and hypermethylation of the IL12B may contribute to the pathogenesis of AS.
Collapse
|
17
|
Pasha HF, Mohamed RH, Radwan MI. RASSF1A and SOCS1 genes methylation status as a noninvasive marker for hepatocellular carcinoma. Cancer Biomark 2019; 24:241-247. [DOI: 10.3233/cbm-181638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Heba F. Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Randa H. Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed I. Radwan
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation. Cell Tissue Res 2018; 373:477-485. [PMID: 29654353 DOI: 10.1007/s00441-018-2826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
Abstract
Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.
Collapse
|
19
|
Zhao C, Wang W, Yao H, Wang X. SOCS3 Is Upregulated and Targeted by miR30a-5p in Allergic Rhinitis. Int Arch Allergy Immunol 2018; 175:209-219. [DOI: 10.1159/000486857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/12/2018] [Indexed: 01/12/2023] Open
|
20
|
Abou-Raya A, Abou-Raya S. Cardiovascular Manifestations of Immune-Mediated Inflammatory Disorders. CARDIOVASCULAR GENETICS AND GENOMICS 2018:679-693. [DOI: 10.1007/978-3-319-66114-8_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Li Z, Brown MA. Progress of genome-wide association studies of ankylosing spondylitis. Clin Transl Immunology 2017; 6:e163. [PMID: 29333268 PMCID: PMC5750450 DOI: 10.1038/cti.2017.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023] Open
Abstract
Ankylosing spondylitis (AS) is an immune-mediated arthritis which primarily affects the spine and sacroiliac joints. Significant progress has been made in discovery of genetic associations with AS by genome-wide association studies (GWAS) over past decade. These findings have uncovered novel pathways involved pathogenesis of the disease and have led to introduction of novel therapeutic treatments for AS. In this Review, we discuss the genetic variations associated with AS identified by GWAS, the major pathways revealed by these AS-associated variations and critical cell types involved in AS development.
Collapse
Affiliation(s)
- Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Karami J, Mahmoudi M, Amirzargar A, Gharshasbi M, Jamshidi A, Aslani S, Nicknam MH. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun 2017; 18:170-175. [DOI: 10.1038/gene.2017.17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
|
23
|
Hao J, Liu Y, Xu J, Wang W, Wen Y, He A, Fan Q, Guo X, Zhang F. Genome-wide DNA methylation profile analysis identifies differentially methylated loci associated with ankylosis spondylitis. Arthritis Res Ther 2017; 19:177. [PMID: 28743287 PMCID: PMC5526246 DOI: 10.1186/s13075-017-1382-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic rheumatic and autoimmune disease. Little is known about the potential role of DNA methylation in the pathogenesis of AS. This study was undertaken to explore the potential role of DNA methylation in the genetic mechanism of AS. Methods In this study, we compared the genome-wide DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) between five AS patients and five healthy subjects, using the Illumina Infinium HumanMethylation450 BeadChip. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate the relevance of the identified differentially methylated genes for AS, using another independent sample of five AS patients and five healthy subjects. Results Compared with healthy controls, we detected 1915 differentially methylated CpG sites mapped to 1214 genes. The HLA-DQB1 gene achieved the most significant signal (cg14323910, adjusted P = 1.84 × 10–6, β difference = 0.5634) for AS. Additionally, the CpG site cg04777551 of HLA-DQB1 presented a suggestive association with AS (adjusted P = 1.46 × 10–3, β difference = 0.3594). qRT-PCR observed that the mRNA expression level of HLA-DQB1 in AS PBMCs was significantly lower than that in healthy control PBMCs (ratio = 0.48 ± 0.10, P < 0.001). Gene Ontology (GO) and KEGG pathway enrichment analysis of differentially methylated genes identified four GO terms and 10 pathways for AS, functionally related to antigen dynamics and function. Conclusions Our results demonstrated the altered DNA methylation profile of AS and implicated HLA-DQB1 in the development of AS. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1382-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangcan Hao
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yang Liu
- Xi'an No.5 Hospital, Xi'an, People's Republic of China
| | - Jiawen Xu
- Department of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenyu Wang
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Awen He
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qianrui Fan
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemc Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
24
|
Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management? Clin Rheumatol 2017; 36:1935-1947. [PMID: 28725948 DOI: 10.1007/s10067-017-3744-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Most rheumatic diseases are complex or multifactorial entities with pathogeneses that interact with both multiple genetic factors and a high number of diverse environmental factors. Knowledge of the human genome sequence and its diversity among populations has provided a crucial step forward in our understanding of genetic diseases, identifying many genetic loci or genes associated with diverse phenotypes. In general, susceptibility to autoimmunity is associated with multiple risk factors, but the mechanism of the environmental component influence is poorly understood. Studies in twins have demonstrated that genetics do not explain the totality of the pathogenesis of rheumatic diseases. One method of modulating gene expression through environmental effects is via epigenetic modifications. These techniques open a new field for identifying useful new biomarkers and therapeutic targets. In this context, the development of "-omics" techniques is an opportunity to progress in our knowledge of complex diseases, impacting the discovery of new potential biomarkers suitable for their introduction into clinical practice. In this review, we focus on the recent advances in the fields of genomics and epigenomics in rheumatic diseases and their potential to be useful for the diagnosis, follow-up, and treatment of these diseases. The ultimate aim of genomic studies in any human disease is to understand its pathogenesis, thereby enabling the prediction of the evolution of the disease to establish new treatments and address the development of personalized therapies.
Collapse
|
25
|
Zhou L, Wang N, Li H, Tong G, Yang J, Lai L, Pan H, Ye X, Huang J. SOCS1 gene promoter methylation status is associated with in-stent restenosis after percutaneous coronary intervention. Oncotarget 2017; 8:56959-56967. [PMID: 28915645 PMCID: PMC5593616 DOI: 10.18632/oncotarget.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022] Open
Abstract
Background Inflammation is involved in the development of In-stent restenosis (ISR) after percutaneous coronary intervention. We aimed to investigate the association between of suppressor of cytokine signaling-1 (SOCS1), a major negative regulator for inflammation, and the occurrence of ISR in Chinese patients. Methods We enrolled patients with coronary artery disease who underwent PCI with stenting. PCI procedures were performed successfully and a follow-up angiography was repeated 1 year later to determine ISR presence. Real-time quantitative reverse transcription polymerase chain reaction and methylation-specific polymerase chain reaction (MSP) was used for SOCS1 methylation status determination. Results There are a total of 187 patients had SOCS1 methylation while there are 275 had no methylated SOCS1. Patients with SOCS1 methylation have a higher inflammatory status. Of note, patients with SOCS1 methylation had a significantly lower SOCS1 mRNA levels compared to those without. Patients with ISR tend to have a significantly higher percentage of SOCS1 gene methylation (P<0.001). We next conducted the Binary logistic regression analyses to determine the correlation of SOCS1 with ISR, using demographic and clinical characteristics. Our data show that SOCS1 methylation is the only factors which are closely associated with ISR incidence. Patients with SOCS1 methylation are 5 times more likely to have ISR after successful PCI as opposed to those without SOCS1 methylation (P<0.001). Conclusion Our data suggest that blood SOCS1 gene promoter methylation status is closely associated with ISR occurrence, thus may be used as a marker to predict ISR.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Ningfu Wang
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Hong Li
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Guoxin Tong
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Jianmin Yang
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Lei Lai
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Hao Pan
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Xianhua Ye
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University Hangzhou Hospital, Hangzhou, 310006 China
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This article discusses genomic investigations in ankylosing spondylitis (AS) beyond genome-wide association (GWA) studies, but prior to this, genetic variants achieving genome-wide significance will be summarized highlighting key pathways contributing to disease pathogenesis. RECENT FINDINGS Evidence suggests that disease pathogenesis is attributed to a complex interplay of genetic, environmental and immunological factors. GWA studies have greatly enhanced our understanding of AS pathogenesis by illuminating distinct immunomodulatory pathways affecting innate and acquired immunity, most notably the interleukin-23/interleukin-17 pathway. However, despite the wealth of new information gleaned from such studies, a fraction of the heritability (24.4%) has been explained. This review will focus on investigations beyond GWA studies including copy number variants, gene expression profiling, including microRNA (miRNA), epigenetics, rare variants and gene-gene interactions. SUMMARY To address the 'missing heritability' and advance beyond GWA studies, a concerted effort involving rethinking of study design and implementation of newer technologies will be required. The coming of age of next-generation sequencing and advancements in epigenetic and miRNA technologies, combined with familial-focused investigations using well-characterized cohorts, is likely to reveal some of the hidden genomic mysteries associated with AS.
Collapse
|
27
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
28
|
Epigenetic Changes in Chronic Inflammatory Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:139-189. [DOI: 10.1016/bs.apcsb.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
How twin studies help to understand inflammatory joint disease. Joint Bone Spine 2016; 83:637-643. [DOI: 10.1016/j.jbspin.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 01/07/2023]
|
30
|
Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin Rheumatol 2016; 35:2723-2731. [DOI: 10.1007/s10067-016-3403-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
|
31
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
32
|
Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol 2016; 27:198-209. [PMID: 27425039 DOI: 10.1080/14397595.2016.1206174] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, characterized by typically an axial arthritis. AS is the prototype of a group of disorders called spondyloarthropathies, which is believed to have common clinical manifestations and genetic predisposition. To date, the exact etiology of AS remains unclear. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused through environmental factors have been extensively surveyed with respect to the pathogenesis of AS, resulted in important advances. This review article focuses on the recent advances in the field of AS research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with AS. HLA genes most significantly linked with AS susceptibility include HLA-B27 and its subtypes. Numerous non-HLA genes such as those in ubiquitination, aminopeptidases and MHC class I presentation molecules like ERAP-1 were also reported. Moreover, epigenetic modifications occurred in AS has been summarized. Taken together, the findings presented in this review attempt to explain the circumstance by which both genetic variations and epigenetic modifications are involved in triggering and development of AS. Nonetheless, several unanswered dark sides continue to clog our exhaustive understanding of AS. Future researches in the field of epigenetics should be carried out to extend our vision of AS etiopathogenesis.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Saeed Aslani
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | | | - Jafar Karami
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Ahmad Reza Jamshidi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
33
|
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49:69-83. [DOI: 10.3109/08916934.2015.1134511] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Bleil J, Maier R, Syrbe U, Sieper J, Appel H. In situ analysis of interleukin-6 expression at different sites of zygapophyseal joints from patients with ankylosing spondylitis in comparison to controls. Scand J Rheumatol 2015; 44:296-301. [PMID: 25928402 DOI: 10.3109/03009742.2014.1000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Analysis of interleukin (IL)-6 serum levels in patients with ankylosing spondylitis (AS) has indicated that IL-6 might be a pro-inflammatory cytokine involved in AS. However, two placebo-controlled trials with monoclonal antibodies directed against the IL-6 receptor have failed to demonstrate the efficacy of the monoclonal humanized anti-human IL-6 receptor antibody over placebo for the treatment of symptoms of AS. In this study we conducted an in situ analysis of IL-6 expression at different sites of inflammation in zygapophyseal joints of patients with AS in comparison to osteoarthritis autopsy controls (CO). METHOD Our immunohistochemical analysis involved 14 patients with AS, 12 autopsy controls (CO), and 11 patients with osteoarthritis (OA). Immunohistochemistry was performed to detect IL-6+ cells at five different sites: within subchondral bone marrow, fibrous tissue replacing subchondral bone marrow, hyaline cartilage, and the subchondral bone plate, and at entheseal sites. RESULTS Apart from changes in subchondral bone marrow, no significant differences were observed at the sites analysed when comparing AS patients and controls. A significantly lower frequency of IL-6+ cells was evident in AS patients compared to controls (p = 0.0043). In addition, AS patients tended to have even lower percentages of IL-6+ cells than controls at subchondral bone plates and entheseal sites. A significantly lower number of IL-6 expressing cells was also seen within the fibrous tissue of AS compared to OA patients (p = 0.0237). CONCLUSIONS This in situ analysis confirms that IL-6 is not a key player in the pathogenesis of inflammatory processes in spondyloarthritides (SpA). The relevance of pro-inflammatory agents in axial SpA might be studied better in situ in bony specimens at the primary site of inflammation.
Collapse
Affiliation(s)
- J Bleil
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité University Hospital, Campus Benjamin Franklin , Berlin , Germany
| | | | | | | | | |
Collapse
|
35
|
Roberts SB, Wootton E, De Ferrari L, Albagha OM, Salter DM. Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 2015; 35:1293-305. [PMID: 25812537 DOI: 10.1007/s00296-015-3260-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.
Collapse
Affiliation(s)
- S B Roberts
- Bone Research Group, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK,
| | | | | | | | | |
Collapse
|
36
|
Gamsjaeger S, Srivastava AK, Wergedal JE, Zwerina J, Klaushofer K, Paschalis EP, Tatakis DN. Altered bone material properties in HLA-B27 rats include reduced mineral to matrix ratio and altered collagen cross-links. J Bone Miner Res 2014; 29:2382-91. [PMID: 24771481 DOI: 10.1002/jbmr.2268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/17/2023]
Abstract
Spondyloarthropathy and inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, are often associated with severe osteopenia/osteoporosis in both children and adults. HLA-B27 transgenic rats present a phenotype that includes severe colitis and severely accelerated alveolar bone loss. The purpose of this study was to evaluate long bone density status, systemic bone metabolic markers, and intrinsic bone material properties in HLA-B27 transgenic (TG) rats, and compare them with those of age- and sex-matched wild-type (WT) animals. The results indicate that in the HLA-B27 rat, an animal susceptible to both alveolar bone loss (ABL) and long bone osteopenia, there is a statistically significant negative correlation between ABL and long bone bone mineral density (BMD), as well as mineral/matrix ratio at active bone-forming trabecular surfaces. The TG animals had a lower mineral/matrix ratio and higher relative proteoglycan and advanced glycation end product (ϵ-N-Carboxymethyl-L-lysine) content and pyridinoline/divalent collagen cross-link ratio compared with WT. These results may provide better understanding of the interrelationship between osteoporosis and oral bone loss, the underlying causes of the inferior bone strength in the HLA-B27 transgenic animals, and could prove to be a useful model in the elucidation of the pathophysiology of spondyloarthropathy and IBD-associated osteopenia/osteoporosis and in the evaluation of pharmacological intervention(s) against such conditions.
Collapse
Affiliation(s)
- Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|