1
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
2
|
Zhu P, Li R, Fan W, Xia Z, Li J, Wang C, Zhao A. A mulberry 9- cis-epoxycarotenoid dioxygenase gene MaNCED1 is involved in plant growth regulation and confers salt and drought tolerance in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1228902. [PMID: 37575921 PMCID: PMC10416802 DOI: 10.3389/fpls.2023.1228902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
The phytohormone abscisic acid (ABA) is vital in regulating root elongation, seed germination, and abiotic stress responses in plants. Conversely, the mechanisms of ABA in mulberry root growth, seed germination, and abiotic stress responses are poorly understood. Here, we reported that exogenous ABA and drought treatment inhibited the growth of mulberry seedlings but significantly increased the ratio of root/stem. Inhibition of ABA synthesis by fluridone and sodium tungstate resulted in the decrease of root/stem ratio. We also showed that the expression of MaNCED1 in the root was strongly induced by drought and salt stress. Increasing the expression of MaNCED1 in tobacco using overexpression leads to increased root elongation and reduced seed germination. Compared with the wild type, the accumulation of H2O2 and MDA was reduced, while the POD activity and proline content was increased in the transgenic plants after drought and salt treatment. Further studies revealed increased resistance to drought and salt stress in MaNCED1 overexpressed tobaccos. Meanwhile, the auxin and ethylene signal pathway-related gene expression levels increased in MaNCED1 overexpressed tobaccos. This study demonstrated the roles of mulberry MaNCED1 in regulating plant development and abiotic stress responses. It gave further insights into the coordinated regulation of ABA, auxin, and ethylene in seed growth and germination.
Collapse
Affiliation(s)
- Panpan Zhu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ruolan Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jun Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chuanhong Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Liu J, Yuan X, Quan S, Zhang M, Kang C, Guo C, Zhang Z, Niu J. Genome-Wide Identification and Expression Analysis of NCED Gene Family in Pear and Its Response to Exogenous Gibberellin and Paclobutrazol. Int J Mol Sci 2023; 24:ijms24087566. [PMID: 37108747 PMCID: PMC10144387 DOI: 10.3390/ijms24087566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme for the process of ABA synthesis that plays key roles in a variety of biological processes. In the current investigation, genome-wide identification and comprehensive analysis of the NCED gene family in 'Kuerle Xiangli' (Pyrus sinkiangensis Yu) were conducted using the pear genomic sequence. In total, nineteen members of PbNCED genes were identified from the whole genome of pear, which are not evenly distributed over the scaffolds, and most of which were focussed in the chloroplasts. Sequence analysis of promoters showed many cis-regulatory elements, which presumably responded to phytohormones such as abscisic acid, auxin, etc. Synteny block indicated that the PbNCED genes have experienced strong purifying selection. Multiple sequence alignment demonstrated that these members are highly similar and conserved. In addition, we found that PbNCED genes were differentially expressed in various tissues, and three PbNCED genes (PbNCED1, PbNCED2, and PbNCED13) were differentially expressed in response to exogenous Gibberellin (GA3) and Paclobutrazol (PP333). PbNCED1 and PbNCED13 positively promote ABA synthesis in sepals after GA3 and PP333 treatment, whereas PbNCED2 positively regulated ABA synthesis in ovaries after GA3 treatment, and PbNCED13 positively regulated ABA synthesis in the ovaries after PP333 treatment. This study was the first genome-wide report of the pear NCED gene family, which could improve our understanding of pear NCED proteins and provide a solid foundation for future cloning and functional analyses of this gene family. Meanwhile, our results also give a better understanding of the important genes and regulation pathways related to calyx abscission in 'Kuerle Xiangli'.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Meng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| |
Collapse
|
4
|
Cui Y, Ouyang S, Zhao Y, Tie L, Shao C, Duan H. Plant responses to high temperature and drought: A bibliometrics analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1052660. [PMID: 36438139 PMCID: PMC9681914 DOI: 10.3389/fpls.2022.1052660] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is expected to further increase the frequency and severity of extreme events, such as high temperature/heat waves as well as drought in the future. Thus, how plant responds to high temperature and drought has become a key research topic. In this study, we extracted data from Web of Science Core Collections database, and synthesized plant responses to high temperature and drought based on bibliometric methods using software of R and VOSviewer. The results showed that a stabilized increasing trend of the publications (1199 papers) was found during the period of 2008 to 2014, and then showed a rapid increase (2583 papers) from year 2015 to 2021. Secondly, the top five dominant research fields of plant responses to high temperature and drought were Plant Science, Agroforestry Science, Environmental Science, Biochemistry, and Molecular Biology, respectively. The largest amount of published article has been found in the Frontiers in Plant Science journal, which has the highest global total citations and H-index. We also found that the journal of Plant Physiology has the highest local citations. From the most cited papers and references, the most important research focus was the improvement of crop yield and vegetation stress resistance. Furthermore, "drought" has been the most prominent keyword over the last 14 years, and more attention has been paid to "climate change" over the last 5 years. Under future climate change, how to regulate growth and development of food crops subjected to high temperature and drought stress may become a hotspot, and increasing research is critical to provide more insights into plant responses to high temperature and drought by linking plant above-below ground components. To summarize, this research will contribute to a comprehensive understanding of the past, present, and future research on plant responses to high temperature and drought.
Collapse
|
5
|
Sun L, Li J, Liu Y, Noman A, Chen L, Liu J. Transcriptome profiling in rice reveals a positive role for OsNCED3 in defense against the brown planthopper, Nilaparvata lugens. BMC Genomics 2022; 23:634. [PMID: 36064309 PMCID: PMC9446700 DOI: 10.1186/s12864-022-08846-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
9-cis-epoxycarotenoid dioxygenase (NCED) is the rate-limiting enzyme for abscisic acid (ABA) biosynthesis in higher plants. In rice, OsNCED3 was shown to promote ABA synthesis, and improve abiotic stress tolerance, but the function of OsNCED3 in regulating rice defense against the brown planthopper (Nilaparvata lugens; BPH) has been unclear. In this study, several parameters were used to assess rice resistance to BPH, including the average injury level, the functional plant loss index, and electrical penetration graph analysis. Rice lines overexpressing OsNCED3 (OE) were more resistant to BPH than the wild-type cv. Zhonghua11 (WT). Transcriptome analysis was performed on WT, OE, and a RNAi transgenic line silenced for OsNCED3; these three lines were either infested or non-infested with BPH. Seventeen RNA libraries were compared, and most of the differentially expressed genes (DEGs) were upregulated. The number of DEGs in the RNAi line infested with BPH was significantly higher than the OE, and WT lines, and many DEGs were related to the stress response, and biosynthesis of jasmonic acid. This study shows that overexpression of OsNCED3 in rice improves resistance to BPH, and has potential merit in rice breeding programs.
Collapse
Affiliation(s)
- Litong Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jitong Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yongyan Liu
- College of Guangling, Yangzhou University, Yangzhou, 225128, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38040, Pakistan
| | - Lin Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jinglan Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Woraathasin N, Nualsri C, Sutjit C, Keawraksa O, Rongsawat T, Nakkanong K. Genotypic variation in 9-Cis-Epoxycarotenoid Dioxygenase3 gene expression and abscisic acid accumulation in relation to drought tolerance of Hevea brasiliensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1513-1522. [PMID: 34366593 PMCID: PMC8295429 DOI: 10.1007/s12298-021-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a stress-related plant hormone, which is reported to confer drought tolerance. A key enzyme in ABA biosynthesis is 9-cis-epoxycarotenoid dioxygenase. In this study, changes in morphological, physiological response, HbNCED3, and ABA accumulation of RRIM 623 and PB 5/51 rubber clones were observed at different time points of water deficit conditions (0, 3, 5, 7, and 9 days of withholding water). During water deficit, the relative water content (RWC), photosynthetic rate (Pn), and stomatal conductance (Gs) decreased, whereas the electro leakage (EL) increased. The magnitudes of the changes in these parameters were greater for PB 5/51 than for RRIM 623. Therefore, RRIM 623 was designated as representative of drought-tolerant clone and PB 5/51 as a drought-sensitive clone. The HbNCED3 transcription level of RRIM 623 showed lower expression compared with that of PB 5/51, which corresponded to the accumulation of ABA. RRIM 623 accumulated less ABA than PB 5/51. The ABA in RRIM 623 gradually increased, especially on the 7th day of withholding water, whereas that in PB 5/51 rapidly increased during the early periods of drought conditions. Additionally, the sensitivity of stomatal response to ABA showed that RRIM 623 had a higher sensitivity than PB 5/51. These results demonstrate that the drought-tolerant rubber clone, RRIM 623, was characterized by lower ABA accumulation during drought stress than the drought-sensitive clone, PB 5/51. The drought tolerance mechanism of the RRIM 623 might be associated with stomatal sensitivity to ABA accumulation under drought stress.
Collapse
Affiliation(s)
- Natthakorn Woraathasin
- Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000 Thailand
| | - Charassri Nualsri
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Chutima Sutjit
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
| | - Orawan Keawraksa
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
| | - Thanyakorn Rongsawat
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Korakot Nakkanong
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| |
Collapse
|
7
|
Effects of Exogenous Abscisic Acid (ABA) on Carotenoids and Petal Color in Osmanthus fragrans 'Yanhonggui'. PLANTS 2020; 9:plants9040454. [PMID: 32260328 PMCID: PMC7238031 DOI: 10.3390/plants9040454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023]
Abstract
Osmanthus fragrans is a well-known native plant in China, and carotenoids are the main group of pigments in the petals. Abscisic acid (ABA) is one of the products of the metabolic pathway of carotenoids. Application of ABA could affect pigmentation of flower petals by changing the carotenoid content. However, little is known about the effects of ABA treatment on carotenoid accumulation in O. fragrans. In this study, different concentrations of ABA (0, 150 and 200 mg/L) were spread on the petals of O. fragrans 'Yanhonggui'. The petal color of 'Yanhonggui' receiving every ABA treatment was deeper than that of the control. The content of total carotenoids in the petals significantly increased with 200 mg/L ABA treatment. In the petals, α-carotene and β-carotene were the predominant carotenoids. The expression of several genes involved in the metabolism of carotenoids increased with 200 mg/L ABA treatment, including PSY1, PDS1, Z-ISO1, ZDS1, CRTISO, NCED3 and CCD4. However, the transcription levels of the latter two carotenoid degradation-related genes were much lower than of the five former carotenoid biosynthesis-related genes; the finding would explain the significant increase in total carotenoids in 'Yanhonggui' petals receiving the 200 mg/L ABA treatment.
Collapse
|
8
|
Gan Z, Shan N, Fei L, Wan C, Chen J. Isolation of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene from kiwifruit and its effects on postharvest softening and ripening. SCIENTIA HORTICULTURAE 2020. [DOI: 10.1016/j.scienta.2019.109020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L. 9- cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:162. [PMID: 29559982 PMCID: PMC5845534 DOI: 10.3389/fpls.2018.00162] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 05/20/2023]
Abstract
Although abscisic acid (ABA) is an important hormone that regulates seed dormancy, stomatal closure, plant development, as well as responses to environmental stimuli, the physiological mechanisms of ABA response to multiple stress in rice remain poorly understood. In the ABA biosynthetic pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is the key rate-limiting enzyme. Here, we report important functions of OsNCED3 in multi-abiotic stress tolerance in rice. The OsNCED3 is constitutively expressed in various tissues under normal condition, Its expression is highly induced by NaCl, PEG, and H2O2 stress, suggesting the roles for OsNCED3 in response to the multi-abiotic stress tolerance in rice. Compared with wild-type plants, nced3 mutants had earlier seed germination, longer post-germination seedling growth, increased sensitivity to water stress and H2O2 stress and increased stomata aperture under water stress and delayed leaf senescence. Further analysis found that nced3 mutants contained lower ABA content compared with wild-type plants, overexpression of OsNCED3 in transgenic plants could enhance water stress tolerance, promote leaf senescence and increase ABA content. We conclude that OsNCED3 mediates seed dormancy, plant growth, abiotic stress tolerance, and leaf senescence by regulating ABA biosynthesis in rice; and may provide a new strategy for improving the quality of crop.
Collapse
|
10
|
Insights into biosynthetic genes involved in the secondary metabolism of Gardenia jasminoides Ellis using transcriptome sequencing. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|