1
|
Lu J, Quan J, Zhou J, Liu Z, Ding J, Shang T, Zhao G, Li L, Zhao Y, Li X, Wu J. Combined transcriptomics and metabolomics to reveal the effects of copper exposure on the liver of rainbow trout(Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116996. [PMID: 39244881 DOI: 10.1016/j.ecoenv.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Copper (Cu) is recognized as an essential trace elements for the body; However, excessive levels of Cu can lead to toxic effects. We investigated the effects of Cu2+(75 μg/L, 150 μg/L, and 300 μg/L) on the rainbow trout liver. Combination of transcriptome and metabolome analyses, the regulatory mechanisms of the liver under Cu stress were elucidated. The results showed that Cu affected the antioxidant levels, leading to disruptions in the normal tissue structure of the liver. Combined transcriptome and metabolome analyses revealed significant enrichment of the insulin signaling pathway and the adipocytokine signaling pathway. Additionally, Cu2+ stress altered the amino acid metabolism in rainbow trout by reducing serine and arginine levels while increasing proline content. Apoptosis is inhibited and autophagy and lipid metabolism are suppressed; In summary, Cu2+ stress affects energy and lipid metabolism, and the reduction of serine and arginine represents a decrease in the antioxidant capacity, whereas the increase in proline and the promotion of apoptosis potentially serving as crucial strategies for Cu2+ resistance in rainbow trout. These findings provided insights into the regulatory mechanisms of rainbow trout under Cu2+ stress and informed the prevention of heavy metal pollution and the selection of biomarkers under Cu pollution.
Collapse
Affiliation(s)
- Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jing Zhou
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jieping Ding
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Tingting Shang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingcan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiangru Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jiajun Wu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
2
|
Mazurais D, Neven CJ, Servili A, Vitré T, Madec L, Collet S, Zambonino-Infante JL, Mark FC. Effect of long-term intergenerational exposure to ocean acidification on ompa and ompb transcripts expression in European seabass (Dicentrarchus labrax). MARINE ENVIRONMENTAL RESEARCH 2021; 170:105438. [PMID: 34340029 DOI: 10.1016/j.marenvres.2021.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Since sensory system allows organisms to perceive and interact with their external environment, any disruption in their functioning may have detrimental consequences on their survival. Ocean acidification has been shown to potentially impair olfactory system in fish and it is therefore essential to develop biological tools contributing to better characterize such effects. The olfactory marker protein (omp) gene is involved in the maturation and the activity of olfactory sensory neurons in vertebrates. In teleosts, two omp genes (ompa and ompb) originating from whole genome duplication have been identified. In this study, bioinformatic analysis allowed characterization of the ompa and ompb genes from the European seabass (Dicentrarchus labrax) genome. The European seabass ompa and ompb genes differ in deduced amino acid sequences and in their expression pattern throughout the tissues. While both ompa and ompb mRNA are strongly expressed in the olfactory epithelium, ompb expression was further observable in different brain areas while ompa expression was also detected in the eyes and in other peripheral tissues. Expression levels of ompa and ompb mRNA were investigated in adult seabass (4 years-old, F0) and in their offspring (F1) exposed to pH of 8 (control) or 7.6 (ocean acidification, OA). Under OA ompb mRNA was down-regulated while ompa mRNA was up-regulated in the olfactory epithelium of F0 adults, suggesting a long-term intragenerational OA-induced regulation of the olfactory sensory system. A shift in the expression profiles of both ompa and ompb mRNA was observed at early larval stages in F1 under OA, suggesting a disruption in the developmental process. Contrary to the F0, the expression of ompa and ompb mRNA was not anymore significantly regulated under OA in the olfactory epithelium of juvenile F1 fish. This work provides evidence for long-term impact of OA on sensorial system of European seabass as well as potential intergenerational acclimation of omp genes expression to OA in European seabass.
Collapse
Affiliation(s)
- David Mazurais
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F29280, Plouzané, France.
| | - Carolin J Neven
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Arianna Servili
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F29280, Plouzané, France
| | - Lauriane Madec
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F29280, Plouzané, France
| | - Sophie Collet
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F29280, Plouzané, France
| | | | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Exploring the Multimodal Role of Yucca schidigera Extract in Protection against Chronic Ammonia Exposure Targeting: Growth, Metabolic, Stress and Inflammatory Responses in Nile Tilapia ( Oreochromis niloticus L.). Animals (Basel) 2021; 11:ani11072072. [PMID: 34359200 PMCID: PMC8300167 DOI: 10.3390/ani11072072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ammonia is a problematic environmental toxicant for aquatic species. The current study aimed to declare the modulatory effect(s) of YSE against chronic ammonia intoxication in Nile tilapia through its effects on growth performance, haemato-biochemical and antioxidant-related parameters, and histopathological changes, as well as the molecular gene expression of some genes related to appetite and growth, glucose and lipid metabolism and some inflammatory cytokines. Our results indicated that Yucca schidigera extract alleviated the adverse impacts induced by ammonia intoxication. YSE could be used as a functional water supplement in aquaculture. Abstract Ammonia is a critical hazardous nitrogen metabolic product in aquaculture. Despite trials for its control, ammonia intoxication remains one of the most critical issues to overcome. In this study, we explored the modulatory effect and potential mechanism by which Yucca schidigera extract (YSE) can ameliorate ammonia intoxication-induced adverse effects on tilapia health and metabolism. A total number of 120 Nile tilapia were evenly assigned into four groups with three replicates each. The first group served as normal control group; the second group was exposed to ammonia alone from the beginning of the experiment and for four weeks. The third group was supplied with YSE in water at a dose of 8 mg/L and exposed to ammonia. The fourth group was supplied with YSE only in water at a dose of 8 mg/L. YSE supplementation succeeded in improving water quality by reducing pH and ammonia levels. Moreover, YSE supplementation markedly alleviated chronic ammonia-induced adverse impacts on fish growth by increasing the final body weight (FBW), specific growth rate (SGR), feed intake and protein efficiency ratio (PER) while reducing the feed conversion ratio (FCR) via improvements in food intake, elevation of hepatic insulin-like growth factor (ILGF-1) and suppression of myostatin (MSTN) expression levels with the restoration of lipid reserves and the activation of lipogenic potential in adipose tissue as demonstrated by changes in the circulating metabolite levels. In addition, the levels of hepato-renal injury biomarkers were restored, hepatic lipid peroxidation was inhibited and the levels of hepatic antioxidant biomarkers were enhanced. Therefore, the current study suggests that YSE supplementation exerted an ameliorative role against chronic ammonia-induced oxidative stress and toxic effects due to its free radical-scavenging potential, potent antioxidant activities and anti-inflammatory effects.
Collapse
|
4
|
Palma M, Trenkner LH, Rito J, Tavares LC, Silva E, Glencross BD, Jones JG, Wade NM, Viegas I. Limitations to Starch Utilization in Barramundi ( Lates calcarifer) as Revealed by NMR-Based Metabolomics. Front Physiol 2020; 11:205. [PMID: 32265728 PMCID: PMC7098972 DOI: 10.3389/fphys.2020.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy: Protein (P) – with high protein content (no digestible starch); and Starch (S) – with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization.
Collapse
Affiliation(s)
- Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lauren H Trenkner
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia.,School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - João Rito
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ludgero C Tavares
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Brett D Glencross
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia
| | - John G Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia
| | - Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Séité S, Pioche T, Ory N, Plagnes-Juan E, Panserat S, Seiliez I. The Autophagic Flux Inhibitor Bafilomycine A1 Affects the Expression of Intermediary Metabolism-Related Genes in Trout Hepatocytes. Front Physiol 2019; 10:263. [PMID: 30936838 PMCID: PMC6431650 DOI: 10.3389/fphys.2019.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an evolutionarily conserved process of cellular self-eating which emerged these last years as a major adaptive metabolic response to various stresses such as fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is currently available on its role in fish species which are directly exposed to frequent environmental perturbations. Here, we report that the treatment of fasted trout hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of many of the gluconeogenesis-related genes and increased those of genes involved in intracellular lipid stores. Concurrently, intracellular free amino acid levels dropped and the expression of the main genes involved in the endoplasmic reticulum (ER) stress exhibited a sharp increase in autophagy inhibited cells. Together these results highlight the strong complexity of the crosstalk between ER, autophagy and metabolism and support the importance of considering this function in future studies on metabolic adaptation of fish to environmental stresses.
Collapse
Affiliation(s)
- Sarah Séité
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
- Evonik Rexim, Ham, France
- Evonik Nutrition and Care GmbH, Hanau, Germany
| | - Tracy Pioche
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Nicolas Ory
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Panserat S, Marandel L, Seiliez I, Skiba-Cassy S. New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annu Rev Anim Biosci 2019; 7:195-220. [DOI: 10.1146/annurev-animal-020518-115250] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid development of aquaculture production throughout the world over the past few decades has led to the emergence of new scientific challenges to improve fish nutrition. The diet formulations used for farmed fish have been largely modified in the past few years. However, bottlenecks still exist in being able to suppress totally marine resources (fish meal and fish oil) in diets without negatively affecting growth performance and flesh quality. A better understanding of fish metabolism and its regulation by nutrients is thus mandatory. In this review, we discuss four fields of research that are highly important for improving fish nutrition in the future: ( a) fish genome complexity and subsequent consequences for metabolism, ( b) microRNAs (miRNAs) as new actors in regulation of fish metabolism, ( c) the role of autophagy in regulation of fish metabolism, and ( d) the nutritional programming of metabolism linked to the early life of fish.
Collapse
Affiliation(s)
- S. Panserat
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - L. Marandel
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - I. Seiliez
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - S. Skiba-Cassy
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
7
|
Song X, Marandel L, Skiba-Cassy S, Corraze G, Dupont-Nivet M, Quillet E, Geurden I, Panserat S. Regulation by Dietary Carbohydrates of Intermediary Metabolism in Liver and Muscle of Two Isogenic Lines of Rainbow Trout. Front Physiol 2018; 9:1579. [PMID: 30483148 PMCID: PMC6243097 DOI: 10.3389/fphys.2018.01579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/22/2018] [Indexed: 01/28/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is recognized as a typical "glucose-intolerant" fish, and the limits of dietary carbohydrate utilization have been investigated for many years. In this study, the objective was to test the molecular effects of dietary carbohydrates on intermediary metabolism in two major metabolic tissues, liver and muscle. Another objective was also to study if the response to carbohydrate intake depended on the genetic background. We fed two isogenic lines of rainbow trout (named A22h and N38h) with high carbohydrate diet (carbohydrate, 22.9%) or low carbohydrate diet (carbohydrate, 3.6%) for 12 weeks. Carbohydrates were associated with higher feed utilization owned by the well-known protein-sparing effect, with better fish growth performance. However, atypical regulation of glycolysis and gluconeogenesis in liver and absence of hk and glut4 induction in muscle, were also observed. Regarding the effects of carbohydrates on other metabolism, we observed an increased, at a molecular level, of hepatic cholesterol biosynthesis, fatty acid oxidation and mitochondrial energy metabolism. Genetic variability (revealed by the differences between the two isogenic lines) was observed for some metabolic genes especially for those involved in the EPA and DHA biosynthetic capacity. Finally, our study demonstrates that dietary carbohydrate not only affect glucose metabolism but also strongly impact the lipid and energy metabolism in liver and muscle of trout.
Collapse
Affiliation(s)
- Xuerong Song
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lucie Marandel
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| | | | - Edwige Quillet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Inge Geurden
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, E2S UPPA, INRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
8
|
Song X, Marandel L, Dupont-Nivet M, Quillet E, Geurden I, Panserat S. Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout. Biol Open 2018; 7:bio.032896. [PMID: 29716943 PMCID: PMC6031338 DOI: 10.1242/bio.032896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) was recognized as a typical ‘glucose-intolerant’ fish and poor dietary carbohydrate user. Our first objective was to test the effect of dietary carbohydrates themselves (without modification of dietary protein intake) on hepatic glucose gene expression (taking into account the paralogs). The second aim was to research if two isogenic trout lines had different responses to carbohydrate intake, showing one with a better use dietary carbohydrates. Thus, we used two isogenic lines of rainbow trout (named A32h and AB1h) fed with either a high carbohydrate diet or a low carbohydrate diet for 12 weeks. We analysed the zootechnical parameters, the plasma metabolites, the hepatic glucose metabolism at the molecular level and the hormonal-nutrient sensing pathway. Globally, dietary carbohydrate intake was associated with hyperglycaemia and down regulation of the energy sensor Ampk, but also with atypical regulation of glycolysis and gluconeogenesis in the liver. Indeed, the first steps of glycolysis and gluconeogenesis catalysed by the glucokinase and the phospenolpyruvate carboxykinase are regulated at the molecular level by dietary carbohydrates as expected (i.e. induction of the glycolytic gck and repression of the gluconeogenic pck); by contrast, and surprisingly, for two other key glycolytic enzymes (phosphofructokinase enzyme – pfkl and pyruvate kinase – pk) some of the paralogs (pfklb and pklr) are inhibited by carbohydrates whereas some of the genes coding gluconeogenic enzymes (the glucose-6-phosphatase enzyme g6pcb1b and g6pcb2a gene and the fructose1-6 biphosphatase paralog fbp1a) are induced. On the other hand, some differences for the zootechnical parameters and metabolic genes were also found between the two isogenic lines, confirming the existence of genetic polymorphisms for nutritional regulation of intermediary metabolism in rainbow trout. In conclusion, our study determines some new and unexpected molecular regulations of the glucose metabolism in rainbow trout which may partly lead to the poor utilization of dietary carbohydrates and it underlines the existence of differences in molecular regulation of glucose metabolism between two isogenic lines which provides arguments for future selection of rainbow trout. Summary: Using isogenic lines, this study determines some new, unexpected molecular regulation of the glucose metabolism in rainbow trout, which may partly lead to the poor utilization of dietary carbohydrates.
Collapse
Affiliation(s)
- Xuerong Song
- INRA, Univ Pau & Pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lucie Marandel
- INRA, Univ Pau & Pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | | | - Edwige Quillet
- GABI, INRA, AgroParisTech, Université de Saclay, 78350 Jouy-en-Josas, France
| | - Inge Geurden
- INRA, Univ Pau & Pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, Univ Pau & Pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
9
|
Marandel L, Gaudin P, Guéraud F, Glise S, Herman A, Plagnes-Juan E, Véron V, Panserat S, Labonne J. A reassessment of the carnivorous status of salmonids: Hepatic glucokinase is expressed in wild fish in Kerguelen Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:276-285. [PMID: 28850848 DOI: 10.1016/j.scitotenv.2017.08.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Salmonids belong to a high trophic level and are thus considered as strictly carnivorous species, metabolically adapted for high catabolism of proteins and low utilisation of dietary carbohydrates. However they conserved a "mammalian-type" nutritional regulation of glucokinase encoding gene and its enzymatic activity by dietary carbohydrates which remains puzzling regarding their dietary regime. The present study investigates the hypothesis that this conservation could be linked to a real consumption by trout of this nutrient in their natural habitat. To do so, brown trout were sampled in the sub-Antarctic Kerguelen Islands, a site presenting oligotrophic hydrosystems and no local freshwater fish fauna prior the introduction of salmonids fifty years ago. Qualitative and quantitative analysis of carbohydrate content within Kerguelen trout stomachs demonstrate that these animals are fed on food resources containing digestible carbohydrates. Additionally, glycaemia and more particularly gck mRNA level and gck enzymatic activity prove that Kerguelen trout digest and metabolise dietary carbohydrates. Physiological and molecular analyses performed in the present study thus strongly evidence for consumption of dietary carbohydrates by wild trout in natural environments. Investigating differences between Kerguelen individuals, we found that smaller individuals presented higher glycaemia, as well as higher carbohydrates contents in stomach. However no relationship between scaled mass index and any physiological indicator was found. Thus it appears that Kerguelen trout do not turn to carbohydrate diet because of a different condition index, or that the consumption of carbohydrates does not lead to a generally degraded physiological status. As a conclusion, our findings may explain the evolutionary conservation of a "mammalian-type" nutritional regulation of gck by dietary carbohydrates in these carnivorous fish.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, Univ Pau & Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle F-64310, France.
| | - Philippe Gaudin
- INRA, Univ Pau & Pays Adour, UMR 1224, ECOBIOP, Saint-Pée sur Nivelle F-64310, France'.
| | - François Guéraud
- INRA, Univ Pau & Pays Adour, UMR 1224, ECOBIOP, Saint-Pée sur Nivelle F-64310, France'.
| | - Stéphane Glise
- INRA, Univ Pau & Pays Adour, UMR 1224, ECOBIOP, Saint-Pée sur Nivelle F-64310, France'.
| | - Alexandre Herman
- INRA, Univ Pau & Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle F-64310, France.
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle F-64310, France.
| | - Vincent Véron
- INRA, Univ Pau & Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle F-64310, France.
| | - Stéphane Panserat
- INRA, Univ Pau & Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle F-64310, France.
| | - Jacques Labonne
- INRA, Univ Pau & Pays Adour, UMR 1224, ECOBIOP, Saint-Pée sur Nivelle F-64310, France'.
| |
Collapse
|
10
|
Marandel L, Panserat S, Plagnes-Juan E, Arbenoits E, Soengas JL, Bobe J. Evolutionary history of glucose-6-phosphatase encoding genes in vertebrate lineages: towards a better understanding of the functions of multiple duplicates. BMC Genomics 2017; 18:342. [PMID: 28464795 PMCID: PMC5414149 DOI: 10.1186/s12864-017-3727-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Glucose-6-phosphate (G6pc) is a key enzyme involved in the regulation of the glucose homeostasis. The present study aims at revisiting and clarifying the evolutionary history of g6pc genes in vertebrates. Results g6pc duplications happened by successive rounds of whole genome duplication that occurred during vertebrate evolution. g6pc duplicated before or around Osteichthyes/Chondrichthyes radiation, giving rise to g6pca and g6pcb as a consequence of the second vertebrate whole genome duplication. g6pca was lost after this duplication in Sarcopterygii whereas both g6pca and g6pcb then duplicated as a consequence of the teleost-specific whole genome duplication. One g6pca duplicate was lost after this duplication in teleosts. Similarly one g6pcb2 duplicate was lost at least in the ancestor of percomorpha. The analysis of the evolution of spatial expression patterns of g6pc genes in vertebrates showed that all g6pc were mainly expressed in intestine and liver whereas teleost-specific g6pcb2 genes were mainly and surprisingly expressed in brain and heart. g6pcb2b, one gene previously hypothesised to be involved in the glucose intolerant phenotype in trout, was unexpectedly up-regulated (as it was in liver) by carbohydrates in trout telencephalon without showing significant changes in other brain regions. This up-regulation is in striking contrast with expected glucosensing mechanisms suggesting that its positive response to glucose relates to specific unknown processes in this brain area. Conclusions Our results suggested that the fixation and the divergence of g6pc duplicated genes during vertebrates’ evolution may lead to adaptive novelty and probably to the emergence of novel phenotypes related to glucose homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3727-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, UPPA, UMR 1419 Nutrition, Metabolism, Aquaculture, F-64310, Saint Pée sur Nivelle, France.
| | - Stéphane Panserat
- INRA, UPPA, UMR 1419 Nutrition, Metabolism, Aquaculture, F-64310, Saint Pée sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, UPPA, UMR 1419 Nutrition, Metabolism, Aquaculture, F-64310, Saint Pée sur Nivelle, France
| | - Eva Arbenoits
- INRA, UPPA, UMR 1419 Nutrition, Metabolism, Aquaculture, F-64310, Saint Pée sur Nivelle, France
| | - José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, E-36310, Vigo, Spain
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France
| |
Collapse
|
11
|
Al-Daghri NM, Pontremoli C, Cagliani R, Forni D, Alokail MS, Al-Attas OS, Sabico S, Riva S, Clerici M, Sironi M. Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection. BMC Evol Biol 2017; 17:43. [PMID: 28173748 PMCID: PMC5297017 DOI: 10.1186/s12862-017-0897-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the common terminal reaction in the gluconeogenic/glycogenolytic pathways and plays a central role in glucose homeostasis. In most mammals, different G6PC subunits are encoded by three paralogous genes (G6PC, G6PC2, and G6PC3). Mutations in G6PC and G6PC3 are responsible for human mendelian diseases, whereas variants in G6PC2 are associated with fasting glucose (FG) levels. RESULTS We analyzed the evolutionary history of G6Pase genes. Results indicated that the three paralogs originated during early vertebrate evolution and that negative selection was the major force shaping diversity at these genes in mammals. Nonetheless, site-wise estimation of evolutionary rates at corresponding sites revealed weak correlations, suggesting that mammalian G6Pases have evolved different structural features over time. We also detected pervasive positive selection at mammalian G6PC2. Most selected residues localize in the C-terminal protein region, where several human variants associated with FG levels also map. This region was re-sequenced in ~560 subjects from Saudi Arabia, 185 of whom suffering from type 2 diabetes (T2D). The frequency of rare missense and nonsense variants was not significantly different in T2D and controls. Association analysis with two common missense variants (V219L and S342C) revealed a weak but significant association for both SNPs when analyses were conditioned on rs560887, previously identified in a GWAS for FG. Two haplotypes were significantly associated with T2D with an opposite effect direction. CONCLUSIONS We detected pervasive positive selection at mammalian G6PC2 genes and we suggest that distinct haplotypes at the G6PC2 locus modulate susceptibility to T2D.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Majed S Alokail
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Omar S Al-Attas
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Shaun Sabico
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Stefania Riva
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via F.lli Cervi 93, Segrate, 20090, Milan, Italy. .,Don Gnocchi Foundation, ONLUS, Milan, 20148, Italy.
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| |
Collapse
|
12
|
Marandel L, Lepais O, Arbenoits E, Véron V, Dias K, Zion M, Panserat S. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci Rep 2016; 6:32187. [PMID: 27561320 PMCID: PMC4999891 DOI: 10.1038/srep32187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
The rainbow trout, a carnivorous fish, displays a 'glucose-intolerant' phenotype revealed by persistent hyperglycaemia when fed a high carbohydrate diet (HighCHO). Epigenetics refers to heritable changes in gene activity and is closely related to environmental changes and thus to metabolism adjustments governed by nutrition. In this study we first assessed in the trout liver whether and how nutritional status affects global epigenome modifications by targeting DNA methylation and histone marks previously reported to be affected in metabolic diseases. We then examined whether dietary carbohydrates could affect the epigenetic landscape of duplicated gluconeogenic genes previously reported to display changes in mRNA levels in trout fed a high carbohydrate diet. We specifically highlighted global hypomethylation of DNA and hypoacetylation of H3K9 in trout fed a HighCHO diet, a well-described phenotype in diabetes. g6pcb2 ohnologs were also hypomethylated at specific CpG sites in these animals according to their up-regulation. Our findings demonstrated that the hepatic epigenetic landscape can be affected by both nutritional status and dietary carbohydrates in trout. The mechanism underlying the setting up of these epigenetic modifications has now to be explored in order to improve understanding of its impact on the glucose intolerant phenotype in carnivorous teleosts.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Olivier Lepais
- INRA, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, Saint Pée sur Nivelle, F-64310, France.,Univ Pau &Pays Adour, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, UFR Sciences et Techniques de la Côte Basque, Anglet, F-64600, France, Anglet, F-64600, France
| | - Eva Arbenoits
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Vincent Véron
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Karine Dias
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Marie Zion
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|