1
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Choi J, Kim T, Cho EJ. HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Exp Mol Med 2024; 56:251-263. [PMID: 38297159 PMCID: PMC10907377 DOI: 10.1038/s12276-023-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024] Open
Abstract
H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.
Collapse
Affiliation(s)
- Jinmi Choi
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taewan Kim
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Eun-Jung Cho
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
3
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Zhang Y, Liu X, Gao H, He R, Zhao Y. Identifying of 22q11.2 variations in Chinese patients with development delay. BMC Med Genomics 2021; 14:26. [PMID: 33482818 PMCID: PMC7821542 DOI: 10.1186/s12920-020-00849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 22q11.2 variation is a significant genetic factor relating to development delay and/or intellectual disability. However, the prevalence, genetic characteristics and clinical phenotype in Chinese patients are unknown. METHODS In total 6034 patients with development delay and/or intellectual disability were screened by multiplex ligation-dependent probe amplification (MLPA) P245 and G-band karyotyping. The positive patients with 22q11.2 imbalance were confirmed by MLPA P250 assay. RESULTS 52 (0.86%) patients were found to carry different levels of 22q11.2 variations, in which 37 cases (71.2%) had heterozygous deletions, whereas 15 (28.8%) had heterogeneous duplications. 34 cases (65.4%) carried typical imbalance from low copy repeat (LCR) 22 A to D. The other cases had atypical variations, relating to LCR22 A-B, LCR22 C-D, LCR22 B-D, LCR22 D-E, LCR22 E-F and LCR22 B-F region. The phenotypes of these 52 patients were variable, including development delay, language delay, facial anomalies, heart defects, psychiatric/behavior problems, epilepsy, periventricular leukomalacia, hearing impairment, growth delay etc. CONCLUSION: These data revealed the prevalence and variability of 22q11.2 genomic imbalance in Chinese patients with development delay and/or intellectual disability. It suggested that genetic detection of 22q11.2 is necessary, especially for the patients with mental retardation and development disorders, which deserves the attention of all pediatricians in their daily work.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Jiang M, Xu S, Bai M, Zhang A. The emerging role of MEIS1 in cell proliferation and differentiation. Am J Physiol Cell Physiol 2020; 320:C264-C269. [PMID: 33296285 DOI: 10.1152/ajpcell.00422.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell proliferation and differentiation are the foundation of reproduction and growth. Mistakes in these processes may affect cell survival, or cause cell cycle dysregulation, such as tumorigenesis, birth defects and degenerative diseases, or cell death. Myeloid ecotropic viral integration site 1 (MEIS1) was initially discovered in leukemic mice. Recent research identified MEIS1 as an important transcription factor that regulates cell proliferation and differentiation during cell fate commitment. MEIS1 has a pro-proliferative effect in leukemia cells; however, its overexpression in cardiomyocytes restrains neonatal and adult cardiomyocyte proliferation. In addition, MEIS1 has carcinogenic or tumor suppressive effects in different neoplasms. Thus, this uncertainty suggests that MEIS1 has a unique function in cell proliferation and differentiation. In this review, we summarize the primary findings of MEIS1 in regulating cell proliferation and differentiation. Correlations between MEIS1 and cell fate specification might suggest MEIS1 as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Paul S, Zhang X, He JQ. Homeobox gene Meis1 modulates cardiovascular regeneration. Semin Cell Dev Biol 2019; 100:52-61. [PMID: 31623926 DOI: 10.1016/j.semcdb.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Regeneration of cardiomyocytes, endothelial cells and vascular smooth muscle cells (three major lineages of cardiac tissues) following myocardial infarction is the critical step to recover the function of the damaged heart. Myeloid ecotropic viral integration site 1 (Meis1) was first discovered in leukemic mice in 1995 and its biological function has been extensively studied in leukemia, hematopoiesis, the embryonic pattering of body axis, eye development and various genetic diseases, such as restless leg syndrome. It was found that Meis1 is highly associated with Hox genes and their cofactors to exert its regulatory effects on multiple intracellular signaling pathways. Recently with the advent of bioinformatics, biochemical methods and advanced genetic engineering tools, new function of Meis1 has been found to be involved in the cell cycle regulation of cardiomyocytes and endothelial cells. For example, inhibition of Meis1 expression increases the proliferative capacity of neonatal mouse cardiomyocytes, whereas overexpression of Meis1 results in the reduction in the length of cardiomyocyte proliferative window. Interestingly, downregulation of one of the circular RNAs, which acts downstream of Meis1 in the cardiomyocytes, promotes angiogenesis and restores the myocardial blood supply, thus reinforcing better regeneration of the damaged heart. It appears that Meis1 may play double roles in modulating proliferation and regeneration of cardiomyocytes and endothelial cells post-myocardial infarction. In this review, we propose to summarize the major findings of Meis1 in modulating fetal development and adult abnormalities, especially focusing on the recent discoveries of Meis1 in controlling the fate of cardiomyocytes and endothelial cells.
Collapse
Affiliation(s)
- Swagatika Paul
- Department of Biomedical Sciences & Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Jia-Qiang He
- Department of Biomedical Sciences & Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|