1
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2024. [PMID: 38740968 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Nicholas D Kim
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Collette Bromhead
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Beth L Mallard
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| |
Collapse
|
2
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
3
|
Balci-Ozyurt A, Yirün A, Cakır DA, Zeybek ND, Oral D, Sabuncuoğlu S, Erkekoğlu P. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin. Toxicol Mech Methods 2024; 34:109-121. [PMID: 37794599 DOI: 10.1080/15376516.2023.2259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Bahçeşehir University School of Pharmacy, İstanbul, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Deniz Arca Cakır
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - N Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Didem Oral
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Düzce University Faculty of Pharmacy, Düzce, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
4
|
Li C, Tang M. The toxicological effects of nano titanium dioxide on target organs and mechanisms of toxicity. J Appl Toxicol 2024; 44:152-164. [PMID: 37655586 DOI: 10.1002/jat.4534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Nano-titanium dioxide (TiO2 NPs) is widely used for its extremely high stability, corrosion resistance, and photocatalytic properties and has penetrated into various fields of production and life. Assessing its toxicity to different organs should be a key part of preclinical toxicity assessment of TiO2 NPs, which is relatively incomprehensive yet. Therefore, this review focuses on the toxic effects of TiO2 NPs on various organs in mammals and biological mechanisms from different organs. The commonality of toxic effects on various target organs reflected in tissue structure damage and dysfunction, such as liver damage and dysfunction; pulmonary fibrosis; and renal impairment (including hematuria and nephritis); damage of brain tissue and neurons; alteration of intestinal villi; and weight loss. And effects on the reproductive system are affected by different sexes, including ovarian dysfunction, testicular development damage, and sperm viability reduction. We believe that the toxic mechanisms of TiO2 NPs in target organs have commonalities, such as oxidative stress, inflammatory responses, and organelle damage. However, different target organ toxicities also have their specificities. TiO2 NPs disturb the intestinal flora and cause undesirable changes in feces products. And in spleen are infiltration of neutrophils and lymphadenopathy and eventually immune deficiency. Although the toxic pathways are different, but there may be a close link between the different toxic pathways. In this article, the main manifestations of the toxic effects of titanium dioxide nanoparticles on major mammalian organs are reviewed, in order to provide basic data for their better application from a medical perspective.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Barroso PAA, Nascimento DR, Lima Neto MFD, De Assis EIT, Figueira CS, Silva JRV. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations. ZYGOTE 2023; 31:433-440. [PMID: 37537957 DOI: 10.1017/s0967199423000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.
Collapse
Affiliation(s)
- Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ernando Igo T De Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| |
Collapse
|
6
|
Bayat M, Daei S, Ziamajidi N, Abbasalipourkabir R, Nourian A. The protective effects of vitamins A, C, and E on zinc oxide nanoparticles (ZnO NPs)-induced liver oxidative stress in male Wistar rats. Drug Chem Toxicol 2023; 46:209-218. [PMID: 34915775 DOI: 10.1080/01480545.2021.2016809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ever-increasing use of zinc oxide nanoparticles (ZnO NPs) in industrial and consumer products leads to concerns about their safety. Liver is one of the most important target organs of nanoparticles after entering the body. As such, the aim of this study was to evaluate the protective effects of vitamins (Vit) A, C, and E on ZnO NPs-induced liver oxidative stress. For this task, 54 male Wistar rats were randomly divided into nine groups of six: control 1 (water), control 2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. The animals received ZnO for 2 weeks while treatment with Vit started one week before the ZnO administration. In order to specify oxidative stress status, total antioxidant capacity (TAC), total oxidative status and malondialdehyde were determined by colorimetric assay. In addition, the activity and gene expression of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were evaluated by colorimetric assay kit and qRT-PCR, respectively. Moreover, histological analysis was conducted to estimate the extent of liver damage. Our results indicate that the oxidative parameters are increased while the content of TAC, antioxidant enzymes activity, and gene expression of SOD, GPX, and CAT show a significant reduction in the liver of ZnO-treated rats compared to the control (p< 0.05). In contrast, the administration of Vit could significantly modulate the aforementioned changes. Overall, Vit A, E, and C can mitigate oxidative stress caused by ZnO NPs.
Collapse
Affiliation(s)
- Mojtaba Bayat
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Science, Hamedan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
7
|
Daei S, Abbasalipourkabir R, Khajvand-Abedini M, Ziamajidi N. The Alleviative Efficacy of Vitamins A, C, and E Against Zinc Oxide Nanoparticles-Induced Hepatic Damage by Reducing Apoptosis in Rats. Biol Trace Elem Res 2023; 201:1252-1260. [PMID: 35364806 DOI: 10.1007/s12011-022-03218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
8
|
Ameliorative Effects of Vitamins A, C, and E on Sperm Parameters, Testis Histopathology, and Oxidative Stress Status in Zinc Oxide Nanoparticle-Treated Rats. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4371611. [PMID: 36704721 PMCID: PMC9873442 DOI: 10.1155/2023/4371611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
One of the most often utilized nanoparticles (NPs) in several technologies is zinc oxide (ZnO) NPs. However, these NPs are said to have harmful effects on the reproductive system. Thus, we designed this study to specify the potential preventive activity of vitamins (Vits) A, C, and E, as antioxidants, against toxicity of ZnO NPs in the testes of rats. A total of 54 Wistar rats were arranged in 9 groups of 6 and then orally received water (control 1), olive oil (control 2), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO+Vit A, ZnO+Vit C, and ZnO+Vit E. To determine the amount of testicular injury, sperm analysis and histological evaluation were performed. In addition, oxidative stress status was examined using colorimetric and qRT-PCR methods. Our findings suggest that ZnO NPs cause adverse effects on sperm parameters and testicular histology. Furthermore, oxidative biomarkers (malondialdehyde and total oxidant capacity) were enhanced in the ZnO group. By contrast, the gene expression and activities of antioxidant enzymes (SOD, GPx, and CAT) noted a remarkable decrease in the ZnO group regarding control (p < 0.05). However, oxidative markers were remarkably mitigated after combined treatment of ZnO NPs and Vits A, C, or E compared to the rats given ZnO NPs (p < 0.05). Additionally, compared to the ZnO NP group, the rats receiving Vits+ZnO NPs exhibit increased antioxidant enzyme activity and mRNA expression (p < 0.05). The findings demonstrate the abovementioned Vits' ameliorative effects on toxicity incurred by ZnO NPs.
Collapse
|
9
|
Ziamajidi N, Daei S, Khajvand-Abedini M, Abbasalipourkabir R, Nourian A. Vitamins A, C, and E Exert Anti-apoptotic Function in the Testis of Rats After Exposure to Zinc Oxide Nanoparticles. Chonnam Med J 2023; 59:48-53. [PMID: 36794239 PMCID: PMC9900230 DOI: 10.4068/cmj.2023.59.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Some reports emphasize that zinc oxide nanoparticles (ZnO NPs) are detrimental to the reproductive organs of animals. As such, this research aimed at exploring the apoptotic potential of ZnO NPs on testis along with the beneficial role of Vitamins (V) A, C, and E against ZnO NP-induced damage. To this aim, a population of 54 healthy, male Wistar rats were used in this work and then assigned into nine groups of 6 rats as G1: Control 1 (Water); G2: Control 2 (Olive oil); G3: VA (1000 IU/kg), G4: VC (200 mg/kg), G5: VE (100 IU/kg), G6: ZnO NPs exposed animals (200 mg/kg); and G7, 8 and 9: ZnO NPs-exposed animals that were pre-treated with either VA, C, or E. Apoptosis rates were estimated by measuring the level of apoptotic regulatory markers including Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) using western blotting and qRT-PCR assays. The data indicated that ZnO NPs exposure elevates the level of Bax protein and gene expression, whereas the protein and gene expression of Bcl-2 was reduced. Further, the activation of caspase-3,7 occurred after exposure to ZnO NPs, while the above alterations were significantly alleviated in the rats that were co-treated with VA, C, or E and ZnO NPs relative to the rats in the ZnO NPs group. In summary, VA, C, and E exerted anti-apoptotic functions in the testis of rats following administration of ZnO NPs.
Collapse
Affiliation(s)
- Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Science, Hamedan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
10
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
11
|
Vitamin Supplementation Protects against Nanomaterial-Induced Oxidative Stress and Inflammation Damages: A Meta-Analysis of In Vitro and In Vivo Studies. Nutrients 2022; 14:nu14112214. [PMID: 35684016 PMCID: PMC9182933 DOI: 10.3390/nu14112214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022] Open
Abstract
The extensive applications of nanomaterials have increased their toxicities to human health. As a commonly recommended health care product, vitamins have been reported to exert protective roles against nanomaterial-induced oxidative stress and inflammatory responses. However, there have been some controversial conclusions in regards to this field of research. This meta-analysis aimed to comprehensively evaluate the roles and mechanisms of vitamins for cells and animals exposed to nanomaterials. Nineteen studies (seven in vitro, eleven in vivo and one in both) were enrolled by searching PubMed, EMBASE, and Cochrane Library databases. STATA 15.0 software analysis showed vitamin E treatment could significantly decrease the levels of oxidants [reactive oxygen species (ROS), total oxidant status (TOS), malondialdehyde (MDA)], increase anti-oxidant glutathione peroxidase (GPx), suppress inflammatory mediators (tumor necrosis factor-α, interleukin-6, C-reactive protein, IgE), improve cytotoxicity (manifested by an increase in cell viability and a decrease in pro-apoptotic caspase-3 activity), and genotoxicity (represented by a reduction in the tail length). These results were less changed after subgroup analyses. Pooled analysis of in vitro studies indicated vitamin C increased cell viability and decreased ROS levels, but its anti-oxidant potential was not observed in the meta-analysis of in vivo studies. Vitamin A could decrease MDA, TOS and increase GPx, but its effects on these indicators were weaker than vitamin E. Also, the combination of vitamin A with vitamin E did not provide greater anti-oxidant effects than vitamin E alone. In summary, we suggest vitamin E alone supplementation may be a cost-effective option to prevent nanomaterial-induced injuries.
Collapse
|
12
|
Jalili P, Krause BC, Lanceleur R, Burel A, Jungnickel H, Lampen A, Laux P, Luch A, Fessard V, Hogeveen K. Chronic effects of two rutile TiO 2 nanomaterials in human intestinal and hepatic cell lines. Part Fibre Toxicol 2022; 19:37. [PMID: 35578293 PMCID: PMC9112549 DOI: 10.1186/s12989-022-00470-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF–SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied.
Results Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. Conclusion These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00470-1.
Collapse
Affiliation(s)
- Pégah Jalili
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | | | - Rachelle Lanceleur
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, 2 avenue du Pr Léon Bernard - CS 34317, 35043, Rennes, France
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Kevin Hogeveen
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France.
| |
Collapse
|
13
|
Waseem M, Kaushik P, Dutta S, Chakraborty R, Hassan MI, Parvez S. Modulatory Role of Quercetin in Mitochondrial Dysfunction in Titanium Dioxide Nanoparticle-Induced Hepatotoxicity. ACS OMEGA 2022; 7:3192-3202. [PMID: 35128232 PMCID: PMC8811893 DOI: 10.1021/acsomega.1c04740] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Background : Titanium dioxide (TiO2) nanoparticles are among the largely manmade nanomaterials worldwide and are broadly used as both industrial and user products. The primary target site for several nanoparticles is the liver, including TiO2 nanoparticles (TNPs), exposed directly or indirectly through ingestion of contaminated water, food, or animals and elevated environmental contamination. Oxidative stress is a known facet of nanoparticle-induced toxicity, including TNPs. Mitochondria are potential targets for nanoparticles in several types of toxicity, such as hepatotoxicity. Nevertheless, its causal mechanism is still controversial due to scarcity of literature linking the role of mitochondria-mediated TNP-induced hepatotoxicity. Aim : The objective of the current study was to evaluate the relation of mitochondrial oxidative stress and respiratory chain mechanisms with TNP-induced mitochondrial dysfunction in vitro, and explore the hepatoprotective effect of quercetin (QR), which is a polyphenolic flavonoid abundant in fruits and vegetables with known antioxidant properties, on TNP-induced mitochondrial oxidative stress and disturbance in respiratory chain complex enzymes in the liver of rats. Results: Enzymatic and non-enzymatic antioxidant levels, oxidative stress markers, and mitochondrial complexes were assessed with regard to TNP-induced hepatotoxicity. The depleted lipid peroxidation levels and protein carbonyl content, in mitochondria, induced by TNPs were restored significantly by pretreatment with QR. QR modulated the altered non-enzymatic and enzymatic antioxidants and mitochondrial complex enzymes. Conclusion : Based on the findings, we conclude that QR, which mitigates oxidative stress caused by mitochondrial dysfunction, holds promising capability to potentially diminish TNP-induced adverse effects in the liver.
Collapse
Affiliation(s)
- Mohd Waseem
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shamita Dutta
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rohan Chakraborty
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
14
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, El-Messery TM, Roby MH, Abdel-Aziem SH, Hassan NS. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon 2021; 7:e08456. [PMID: 34901503 PMCID: PMC8640477 DOI: 10.1016/j.heliyon.2021.e08456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fish oil exhibited several beneficial effects on human health; however, its applications face several challenges such as its effects on the organoleptic properties of food and its susceptibility to oxidation. Titanium dioxide NPs (TiO2-NPs) are utilized widely in pharmaceutical and food applications although there are some reports about their oxidative damage to living organisms. The current work was undertaken to identify fatty acids content in mullet fish oil, encapsulation, and characterization of the oil, and to assess the protective efficiency of the encapsulated mullet fish oil (EMFO) against the oxidative damage and genotoxicity of TiO2-NPs in rats. Sixty female Sprague-Dawley rats were distributed to 6 groups and treated for 21 days included the control group; TiO2-NPs-treated group (50 mg/kg b.w); the groups treated with EMFO (50 or 100 mg/kg b.w) and the groups received TiO2-NPs plus EMFO at the low or high dose. Samples of blood, liver, and kidney were taken for different assays and histological studies. The GC-FID analysis showed that a total of 14 different fatty acids were found in Mullet fish oil included 41.4% polyunsaturated fatty acids (PUFAs), 31.1% monounsaturated fatty acids (MUFAs), and 25.1% saturated fatty acids (SFAs). The structure of EMFO was spherical with an average diameter of 234.5 nm and a zeta potential of -6.24 mV and was stable up to 10 days at 25 °C with EE of 81.08%. The PV of EMFO was decreased at 5 days then increased at 15 days; however, TBARS was increased throughout the storage time over 15 days. The biological evaluation showed that TiO2-NPs disturb the hepato-nephro functions, lipid profile, inflammatory cytokines, oxidative stress markers, antioxidant enzymes activity, and their corresponding gene expression along with severe pathological alterations in both hepatic and renal tissue. Co-administration of EMFO induced a strong antioxidant role, and the high level could normalize the majority of the parameters tested and the histological picture of the hepatic and renal tissues. These results pointed out that the encapsulation technology enhances the protective role of EMFO against oxidative stress and genotoxicity of TiO2-NPs through the prevention of ω-3 PUFAs oxidation and controlling their release.
Collapse
Affiliation(s)
- Mosaad A. Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author.
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E. Mohammed
- Zoology Department, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | | | - Mohamed H. Roby
- Food Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Nabila S. Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Ilani M, Sajedianfard J, Tarlan M, Nazifi S, Fathi M. The effect of maternal exposure to titanium dioxide nanoparticles on the pain response in offspring mice using formalin test. Toxicol Ind Health 2021; 37:776-781. [PMID: 34794364 DOI: 10.1177/07482337211059701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to evaluate the effect of maternal exposure to TiO2 nanoparticles on the pain response in offspring mice. 30 female mice with a mean ± SD weight of 30 ± 5 g were randomly divided into three groups: the control group (group 1) received only the basal diet; the sham group (group 2) received saline plus as a carrier (100 μL/mice) subcutaneously on days 3, 7, 10, and 14 post-mating; and the test group (group 3) received 100 μL/mice TNPs subcutaneously on days 3, 7, 10, and 14 post-mating. Offspring were divided into 6 groups 21 days after birth and underwent formalin test. Blood samples were taken to evaluate possible oxidative changes in total antioxidant capacity (TAC) and malondialdehyde (MDA). Exposure to TNPs significantly (p < 0.05) decreased pain perception. Except for a significant difference between the sham group and the control group, MDA and TAC were not significantly different among the studied groups. Injection of TNPs to pregnant mice would affect the pain perception in their offspring. This may be attributable to the ability of these particles to pass through the placenta to produce free radicals.
Collapse
Affiliation(s)
- Mojtaba Ilani
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Javad Sajedianfard
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Mitra Tarlan
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Mazyar Fathi
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| |
Collapse
|
16
|
Salman AS, Al-Shaikh TM, Hamza ZK, El-Nekeety AA, Bawazir SS, Hassan NS, Abdel-Wahhab MA. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39035-39051. [PMID: 33745051 DOI: 10.1007/s11356-021-13518-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, bio-nanofabrication becomes one of the widest methods for synthesizing nanoparticles (NPs); however, there is scanty literature exploring the toxicity of these green NPs against living organisms. This study aimed to evaluate the potential protective role of encapsulated cinnamon oil (ECO) against titanium oxide nanoparticle (TiO2NP)-induced oxidative stress, DNA damage, chromosomal aberration, and reproductive disturbances in male mice. Sixty male Balb/c mice were distributed into six groups treated orally for 3 weeks and included control group, TiO2NP-treated group (25 mg/kg b.w), ECO at low or high dose-treated groups (50 or 100 mg/kg b.w), and the groups that received TiO2NPs plus ECO at a low or high dose. The results of GC-MS revealed the isolation of 21 compounds and the majority was cinnamaldehyde. The average size zeta potential of TiO2NPs and ECO were 28.9 and 321 nm and -33.97 and -17.35 mV, respectively. TiO2NP administration induced significant changes in liver and kidney function, decreased antioxidant capacity, and increased oxidative stress markers in liver and kidney, DNA damage in the hepatocytes, the number of chromosomal aberrations in the bone marrow and germ cells, and sperm abnormalities along with histological changes in the liver, kidney, and testis. Co-administration of TiO2NPs and ECO could alleviate these disturbances in a dose-dependent manner. It could be concluded that ECO is a promising and safe candidate for the protection against the health hazards of TiO2NPs.
Collapse
Affiliation(s)
- Asmaa S Salman
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Turki M Al-Shaikh
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Zeinab K Hamza
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Salwa S Bawazir
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabila S Hassan
- Department of Medical Pathology, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
17
|
Nan W, Si H, Zhang H, Mu L, Li G, Lou Y. Effect of dietary vitamin A supplementation on growth performance, nutrient digestibility, serum parameters and liver histology of growing-furring male mink kits (Neovison vison). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Yao L, Chen L, Chen B, Tang Y, Zhao Y, Liu S, Xu H. Toxic effects of TiO 2 NPs in the blood-milk barrier of the maternal dams and growth of offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111762. [PMID: 33396082 DOI: 10.1016/j.ecoenv.2020.111762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are amongst the most frequently used nanomaterial in everyday consumer products, and their widespread applications have raised concerns of the consequent deleterious effects on human health, particularly to vulnerable populations, such as lactating females remains elusive. Therefore, this study was initiated to investigate the detrimental effects and toxic mechanisms induced by TiO2 NPs in maternal dams and offspring during the lactation period. Dams were randomly divided into three groups. The water (Control; Group I) and TiO2 NPs (100 mg/kg; Group II) were orally administered from postnatal day 1-20, respectively. The results indicated that TiO2 NPs could cause toxicity in the dams, such as pathological damages to mammary gland tissues. The excessive accumulation of TiO2 NPs could induce oxidative stress in the mammary gland, leading to the dysfunctional blood-milk barrier; besides, TiO2 NPs could also be transferred to offspring via breastfeeding, causing abnormal development of infant. We further accessed the possible underlying molecular mechanism; for this, we orally administered TiO2 NPs with vitamin E (100 mg/kg; Group III). The results revealed that toxicity induced by TiO2 NPs was rescued. Collectively, this study presented the deleterious pathological effects of oral exposure to TiO2 NPs in the mammary gland tissues and blood-milk barrier via the production of reactive oxygen species (ROS) in dams and developmental concerns in offspring. However, the administration of VE could mitigate the toxic effects induced by the TiO2 NPs.
Collapse
Affiliation(s)
- Liyang Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
19
|
Bischoff NS, de Kok TM, Sijm DT, van Breda SG, Briedé JJ, Castenmiller JJ, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020; 22:ijms22010207. [PMID: 33379217 PMCID: PMC7795714 DOI: 10.3390/ijms22010207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Correspondence:
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Dick T.H.M. Sijm
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacqueline J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Antoon Opperhuizen
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonóma de México, Mexico City 54090, Mexico;
| | - Hubert Dirven
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - David Gott
- Food Standard Agency, London SW1H9EX, UK;
| | - Eric Houdeau
- French National Research Institute for Agriculture, Food and Environment (INRAE), 75338 Paris, France;
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Morten Poulsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Henk van Loveren
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| |
Collapse
|
20
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
21
|
Salehzadeh A, Salehzadeh A, Maghsood AH, Heidarisasan S, Taheri-Azandaryan M, Ghafourikhosroshahi A, Abbasalipourkabir R. Effects of vitamin A and vitamin E on attenuation of amphotericin B-induced side effects on kidney and liver of male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32594-32602. [PMID: 32514920 DOI: 10.1007/s11356-020-09547-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Despite the fact that amphotericin B (AmB) is currently considered as the first choice for treatment of visceral leishmaniasis, it is associated with some side effects. This study was designed to investigate the protective effects of vitamins A and E against amphotericin B-induced adverse effects in the kidney and liver of rat. Thirty male Wistar rats aged 7-8 weeks and weighing around 200 g were randomly divided into five groups, each one containing six rats. The first to fifth groups received olive oil as the control groups, AmB, AmB + vitamin A, AmB + vitamin E, and AmB + vitamins A + E, respectively. Rats received vitamins by gavage (vitamin A, 1000 IU/kg and vitamin E, 100 IU/kg) and amphotericin B by injections (5.5 mg/kg body weight). The treatment was constantly continued for 5 days and days 7 and 21. At the end of the study, serum level of TAC, TOS, MDA, liver enzyme activity (ALT, AST, ALP, LDH), renal factors (urea, uric acid, and creatinine), lipid profile as well as histopathological changes of the liver and kidney were investigated. AmB significantly increased serum level of creatinine, urea, uric acid, ALP, TOS, MDA, and kidney and renal tissue damage (p < 0.05). Supplementation AmB with vitamins A and E alone or combination improved oxidative stress status, liver and renal tissue structure, and functional parameters and serum lipid profile. This study highlighted the effects of vitamin A and vitamin E on attenuation of amphotericin B-induced side effects on the kidney and liver of male Wistar rats. Combination of the two vitamins is more effective than either alone improving the oxidative stress status, serum lipid profile, or liver and renal tissue structure and functional parameters.
Collapse
Affiliation(s)
- Aref Salehzadeh
- Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Salehzadeh
- Medical student of Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir-Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Heidarisasan
- Department of Medical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | | | | | - Roghayeh Abbasalipourkabir
- Department of Medical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran.
| |
Collapse
|
22
|
Hussein MMA, Gad E, Ahmed MM, Arisha AH, Mahdy HF, Swelum AAA, Tukur HA, Saadeldin IM. Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29074-29084. [PMID: 31392614 DOI: 10.1007/s11356-019-06091-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The present study aimed to examine the ameliorative effects of morin and rutin on the reproductive toxicity induced by titanium dioxide nanoparticles (TiO2NPs) in male rats. A total of seventy adult male Sprague-Dawley rats were randomly divided into seven groups, each comprising ten rats. Nanoreprotoxicity was induced by treating rats with TiO2NPs at a dosage of 300 mg/kg body weight for 30 days. Morin (30 mg/kg body weight) and rutin (100 mg/kg body weight) were co-administered with or without TiO2NPs to rats either individually or combined. Only distilled water was administered to the control group. The results showed that TiO2NPs enhanced oxidative stress, indicated by reduced levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in testicular tissues, and increased levels of the lipid peroxidation marker malondialdehyde (MDA). TiO2NPs significantly reduced the levels of sex hormones (testosterone, FSH, and LH), reduced sperm motility, viability, and sperm cell count, and increased sperm abnormalities, in addition to damaging the testicular histological architecture. TiO2NPs resulted in the downregulation of 17β-HSD and the upregulation of proapoptotic gene (Bax) transcripts in the testicular tissues. Conversely, morin and/or rutin had a protective effect on testicular tissue. They effectively counteracted TiO2NP-induced oxidative damage and morphological injury in the testis by conserving the endogenous antioxidant mechanisms and scavenging free radicals. Thus, we suggest that morin and rutin could be used to alleviate the toxicity and oxidative damage associated with TiO2NP intake.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Gad
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hasnaa F Mahdy
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|