1
|
Wada J. Noncoding RNAs and diabetic kidney disease. J Diabetes Investig 2024. [PMID: 39361944 DOI: 10.1111/jdi.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
In both human clinical and animal experimental studies, the altered expression of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs are reported in diabetes and its complications by investigating various samples of serum, plasma, whole blood, and tissues. These identified ncRNAs are candidates for the disease diagnostic markers, prognostic markers, and also therapeutic targets. In the updates, the recently published ncRNAs involved in the onset and progression of DKD are discussed.
Collapse
Affiliation(s)
- Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
2
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
3
|
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, Xiong Y, Qian L. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother 2023; 168:115744. [PMID: 37862970 DOI: 10.1016/j.biopha.2023.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of single-stranded noncoding RNAs with a covalently closed loop structure, are generated in a circular conformation via non-canonical splicing or back-splicing events. Functionally, circRNAs have been elucidated to soak up microRNAs (miRNAs) and RNA binding proteins (RBPs), serve as protein scaffolds, maintain mRNA stability, and regulate gene transcription and translation. Notably, circRNAs are strongly implicated in the regulation of β-cell functions, insulin resistance, adipocyte functions, inflammation as well as oxidative stress via acting as miRNA sponges and RBP sponges. Basic and clinical studies have demonstrated that aberrant alterations of circRNAs expressions are strongly associated with the initiation and progression of diabetes mellitus (DM) and its complications. Here in this review, we present a summary of the biogenesis, transportation, degradation and functions of circRNAs, and highlight the recent findings on circRNAs and their action mechanisms in DM and its complications. Overall, this review should contribute greatly to our understanding of circRNAs in DM pathogenesis, offering insights into the further perspectives of circRNAs for DM diagnosis and therapy.
Collapse
Affiliation(s)
- Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Man Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yujia Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China.
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol Rep 2023; 75:189-198. [PMID: 36334247 DOI: 10.1007/s43440-022-00427-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND It has been suggested that the anti-hyperglycemic effect of metformin could be associated with its impact on long non-coding RNA (lncRNA) expression levels. Accordingly, in the current study, we evaluated the effect of metformin on the expression of H19, MEG3, MALAT1, and GAS5 in in vitro and in vivo situations. METHODS The effect of hyperglycemia and metformin treatment on the lncRNAs expression level was evaluated in HepG2 cells. A total of 179 age- and sex-matched subjects, including 88 newly diagnosed patients with type 2 diabetes (T2D) and 91 healthy volunteers, were included in the case-control phase of the study. Moreover, 40 newly diagnosed patients participated in the study's open-labeled non-controlled clinical trial phase. The expression levels of lncRNA in HepG2 cells and whole blood samples were determined using QRT-PCR. RESULTS In vitro results showed that hyperglycemia induced H19 and MALAT1 and decreased GAS5 expression levels. Moreover, metformin decreased H19 and increased GAS5 expression in high glucose-treated cells. Case-control study findings revealed that the circulating levels of H19, MALAT1, and MEG3 were significantly elevated in T2D patients compared to the control subjects. Finally, results showed that the level of circulating H19 levels decreased while GAS5 increased in T2D patients after taking metformin for 2 months. CONCLUSION The results of the current study provided evidence that metformin could exert its effect in the treatment of T2D by altering the expression levels of H19 and GAS5.
Collapse
|
6
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
7
|
Circulating expression levels of CircHIPK3 and CDR1as circular-RNAs in type 2 diabetes patients. Mol Biol Rep 2021; 49:131-138. [PMID: 34731367 DOI: 10.1007/s11033-021-06850-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recent investigations suggested that deregulated levels of Circular RNAs (circRNAs) could be associated with type 2 diabetes mellitus (T2DM) pathogenesis. Accordingly, this study aimed to determine the expression levels of circulating CircHIPK3, CDR1as and their correlation with biochemical parameters in patients with T2DM, pre-diabetes and control subjects. METHODS AND RESULTS The expression of circRNAs in peripheral blood was determined using QRT-PCR in 70 patients with T2DM, 60 pre-diabetes and in 69 age and sex matched healthy controls. Moreover, bioinformatics tools were applied to explore and predict the potential interactions between circRNAs and other non-coding RNAs (ncRNAs). Our analysis revealed that the expression level of CircHIPK3 was significantly elevated in T2DM patients compared to healthy participants (P < 0.001) and pre-diabetes subjects (P = 0.018). In addition, ROC analysis suggested that at the cutoff value of 0.24 and the sensitivity and specificity of 50% and 88.4%, respectively, CircHIPK3 could distinguish between T2DM patients and control subjects. Furthermore, it was observed that the expression level of CDR1as is higher in pre-diabetic individuals than healthy individuals (P = 0.004). Finally, Spearman correlation analysis showed that there was a significant correlation between CircHIPK3 and CDR1as expression levels and clinical and anthropometrical parameters such as BMI, systolic and diastolic blood pressure, HbA1c and fasting blood glucose (P < 0.005). CONCLUSIONS The data of this study provided evidence that the expression levels of CircHIPK3, CDR1as increased in T2DM and pre-diabetes subjects, respectively.
Collapse
|
8
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
9
|
Chantsalnyam T, Siraj A, Tayara H, Chong KT. ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning. Genomics 2021; 113:3030-3038. [PMID: 34242708 DOI: 10.1016/j.ygeno.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
With the rapidly growing importance of biological research, non-coding RNAs (ncRNA) attract more attention in biology and bioinformatics. They play vital roles in biological processes such as transcription and translation. Classification of ncRNAs is essential to our understanding of disease mechanisms and treatment design. Many approaches to ncRNA classification have been developed, several of which use machine learning and deep learning. In this paper, we construct a novel deep learning-based architecture, ncRDense, to effectively classify and distinguish ncRNA families. In a comparative study, our model produces comparable results with existing state-of-the-art methods. Finally, we built a freely accessible web server for the ncRDense tool, which is available at http://nsclbio.jbnu.ac.kr/tools/ncRDense/.
Collapse
Affiliation(s)
- Tuvshinbayar Chantsalnyam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Arslan Siraj
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
10
|
Zeng Y, Zheng Z, Liu F, Yi G. Circular RNAs in metabolism and metabolic disorders. Obes Rev 2021; 22:e13220. [PMID: 33580638 DOI: 10.1111/obr.13220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is a serious health condition triggered by hyperglycemia, dyslipidemia, and abnormal adipose deposition. Recently, circular RNAs (circRNAs) have been proposed as key molecular players in metabolic homeostasis due to their regulatory effects on genes linked to the modulation of multiple aspects of metabolism, including glucose and lipid homeostasis. Dysregulation of circRNAs can lead to metabolic disorders, indicating that circRNAs represent plausible potential targets to alleviate metabolic abnormalities. More recently, a series of circulating circRNAs have been identified to act as both essential regulatory molecules and biomarkers for the progression of metabolism-related disorders, including type 2 diabetes mellitus (T2DM or T2D) and cardiovascular disease (CVD). The findings of this study highlight the function of circRNAs in signaling pathways implicated in metabolic diseases and their potential as future therapeutics and disease biomarkers.
Collapse
Affiliation(s)
- Yongzhi Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Fengtao Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
11
|
Sun R, Xue W, Zhao J. Hsa_circ_0054633 mediates apoptosis and insulin secretion in human pancreatic β cells through miR-409-3p/caspase-8 axis. Diabetes Res Clin Pract 2021; 176:108837. [PMID: 33901624 DOI: 10.1016/j.diabres.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND CircRNAs are reported to be aberrantly expressed and perform biological functions in diverse processes. This study aimed to investigate the potential involvement of hsa_circ_0054633 in high glucose (HG)‑induced diabetic model and its potential mechanism. METHODS The expression of hsa_circ_0054633, miR-409-3p and caspase-8 was detected by real-time PCR and western blotting. Cell viability, apoptosis and the protein levels of apoptosis-related factors were revealed by CCK-8 colorimetry, flow cytometry and western blotting, respectively. Insulin secretion was determined by enzyme-linked immunosorbent assay (ELISA) and the measurement of insulin-related transcription factors. The target association between miR-409-3p and hsa_circ_0054633 or caspase-8 was confirmed by dual-luciferase reporter assays and biotin-based pulldown assay. RESULTS Hsa_circ_0054633 was highly expressed and the expression of miR-409-3p was downregulated in serum of DM patients and HG-treated human pancreatic β cell line NES2Y. Further investigation indicated that hsa_circ_0054633 suppression promoted cell proliferation, inhibited apoptosis and facilitated insulin secretion in HG-treated NES2Y cells. Mechanical analysis revealed that hsa_circ_0054633 regulated caspase-8 expression via sponging miR-409-3p. Rescue experiments demonstrated that miR-409-3p knockdown or caspase-8 overexpression reversed the effects of hsa_circ_0054633 in HG-stimulated NES2Y cells. CONCLUSION Inhibition of hsa_circ_0054633 protected against HG-induced NES2Y cell apoptosis and impairment of insulin secretion by regulating miR-409-3p/caspase-8 axis.
Collapse
Affiliation(s)
- Rui Sun
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo 454000, China
| | - Wanli Xue
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China.
| | - Juzhen Zhao
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo 454000, China
| |
Collapse
|
12
|
Chantsalnyam T, Lim DY, Tayara H, Chong KT. ncRDeep: Non-coding RNA classification with convolutional neural network. Comput Biol Chem 2020; 88:107364. [DOI: 10.1016/j.compbiolchem.2020.107364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
|
13
|
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene 2020; 763:145066. [PMID: 32827686 DOI: 10.1016/j.gene.2020.145066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by changed homeostasis of blood glucose levels, which is associated with various complications, including cardiomyopathy, atherosclerosis, endothelial dysfunction, nephropathy, retinopathy and neuropathy. In recent years, accumulative evidence has demonstrated that circular RNAs are identified as a novel type of noncoding RNAs (ncRNAs) involving in the regulation of various physiological processes and pathologic conditions. Specifically, the emergence of complications response to diabetes is finely controlled by a complex gene regulatory network in which circular RNAs play a critical role. Recently, circular RNAs are emerging as messengers that could influence cellular functions under diabetic conditions. Dysregulation of circular RNAs has been closely linked to the pathophysiology of diabetes-related complications. In this review, we aimed to summarize the current progression and underlying mechanisms of circular RNA in the development of diabetes-related complications. We will also provide an overview of circular RNA-regulated cell communications in different types of cells that have been linked to diabetic complications. We anticipated that the completion of this review will provide potential clues for developing novel circular RNAs-based biomarkers or therapeutic targets for diabetes and its associated complications.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|