1
|
Song BH, Frank JC, Yun SI, Julander JG, Mason JB, Polejaeva IA, Davies CJ, White KL, Dai X, Lee YM. Comparison of Three Chimeric Zika Vaccine Prototypes Developed on the Genetic Background of the Clinically Proven Live-Attenuated Japanese Encephalitis Vaccine SA 14-14-2. Int J Mol Sci 2024; 26:195. [PMID: 39796052 PMCID: PMC11720029 DOI: 10.3390/ijms26010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKVMR-766, rJEV/ZIKVP6-740, and rJEV/ZIKVPRVABC-59), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA14-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKVP6-740 exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKVMR-766 and rJEV/ZIKVPRVABC-59, as well as their vector, rJEV. In IFNAR-/- mice, an animal model of ZIKV infection, subcutaneous inoculation of rJEV/ZIKVP6-740 caused a low-level localized infection limited to the spleen, with no clinical signs of infection, weight loss, or mortality; in contrast, the other two chimeric viruses and their vector caused high-level systemic infections involving multiple organs, consistently leading to clear clinical signs of infection, rapid weight loss, and 100% mortality. Subsequently, subcutaneous immunization with rJEV/ZIKVP6-740 proved highly effective, offering complete protection against a lethal intramuscular ZIKV challenge 28 days after a single-dose immunization. This protection was specific to ZIKV prM/E and likely mediated by neutralizing antibodies targeting ZIKV prM/E. Therefore, our data indicate that the chimeric virus rJEV/ZIKVP6-740 is a highly promising vaccine prototype for developing a safe and effective vaccine for inducing neutralizing antibody-mediated protective immunity against ZIKV.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Jordan C. Frank
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Sang-Im Yun
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Justin G. Julander
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Jeffrey B. Mason
- Department of Veterinary Clinical and Life Sciences, College of Veterinary Medicine, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA;
| | - Irina A. Polejaeva
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Christopher J. Davies
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Kenneth L. White
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| | - Xin Dai
- Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322, USA;
| | - Young-Min Lee
- Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (B.-H.S.); (J.C.F.); (S.-I.Y.); (J.G.J.); (I.A.P.); (C.J.D.); (K.L.W.)
| |
Collapse
|
2
|
Dos Santos AS, da Costa MG, Faustino AM, de Almeida W, Danilevicz CK, Peres AM, de Castro Saturnino BC, Varela APM, Teixeira TF, Roehe PM, Krolow R, Dalmaz C, Pereira LO. Neuroinflammation, blood-brain barrier dysfunction, hippocampal atrophy and delayed neurodevelopment: Contributions for a rat model of congenital Zika syndrome. Exp Neurol 2024; 374:114699. [PMID: 38301864 DOI: 10.1016/j.expneurol.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Meirylanne Gomes da Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Chris Krebs Danilevicz
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariadni Mesquita Peres
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Carolina de Castro Saturnino
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rachel Krolow
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Gomes JA, Sgarioni E, Kowalski TW, Giudicelli GC, Recamonde-Mendoza M, Fraga LR, Schüler-Faccini L, Vianna FSL. Downregulation of Microcephaly-Causing Genes as a Mechanism for ZIKV Teratogenesis: A Meta-analysis of RNA-Seq Studies. J Mol Neurosci 2023; 73:566-577. [PMID: 37428363 DOI: 10.1007/s12031-023-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023]
Abstract
Zika virus (ZIKV) is a neurotropic teratogen that causes congenital Zika syndrome (CZS), characterized by brain and eye anomalies. Impaired gene expression in neural cells after ZIKV infection has been demonstrated; however, there is a gap in the literature of studies comparing whether the differentially expressed genes in such cells are similar and how it can cause CZS. Therefore, the aim of this study was to compare the differential gene expression (DGE) after ZIKV infection in neural cells through a meta-analysis approach. Through the GEO database, studies that evaluated DGE in cells exposed to the Asian lineage of ZIKV versus cells, of the same type, not exposed were searched. From the 119 studies found, five meet our inclusion criteria. Raw data of them were retrieved, pre-processed, and evaluated. The meta-analysis was carried out by comparing seven datasets, from these five studies. We found 125 upregulated genes in neural cells, mainly interferon-stimulated genes, such as IFI6, ISG15, and OAS2, involved in the antiviral response. Furthermore, 167 downregulated, involved with cellular division. Among these downregulated genes, classic microcephaly-causing genes stood out, such as CENPJ, ASPM, CENPE, and CEP152, demonstrating a possible mechanism by which ZIKV impairs brain development and causes CZS.
Collapse
Affiliation(s)
- Julia A Gomes
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
| | - Eduarda Sgarioni
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne W Kowalski
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- CESUCA - Centro Universitário, Cachoeirinha, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Giovanna C Giudicelli
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas R Fraga
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
4
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
5
|
Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RRDS, Beys-da-Silva WO, Santi L, Rosa RL, Capra D, Coelho-Aguiar JM, DosSantos MF, Heringer M, Cirne-Lima EO, Guimarães JA, Schuler-Faccini L, Gonçalves CA, Moura-Neto V, Souza DO. The role of glial cells in Zika virus-induced neurodegeneration. Glia 2023. [PMID: 36866453 DOI: 10.1002/glia.24353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Capra
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoela Heringer
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Santos Pereira R, Vasconcelos Costa V, Luiz Menezes Gomes G, Rodrigues Valadares Campana P, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F. Anti-Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCL-81 and Human Neuroblastoma SH-SY5Y Cells. Chem Biodivers 2022; 19:e202100842. [PMID: 35285139 DOI: 10.1002/cbdv.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 μg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 μg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gabriel Luiz Menezes Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Milton Barbosa
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Yumi Oki
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gustavo Heiden
- Empresa Brasileira de Pesquisa Agropecuária Clima Temperado, CEP 96010-971, Pelotas, Brazil
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Reece MD, Taylor RR, Song C, Gavegnano C. Targeting Macrophage Dysregulation for Viral Infections: Novel Targets for Immunomodulators. Front Immunol 2021; 12:768695. [PMID: 34790202 PMCID: PMC8591232 DOI: 10.3389/fimmu.2021.768695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV-1) cure is the latent viral reservoir, which persists despite antiretroviral therapy (ART), including across the non-dividing myeloid reservoir which is found systemically in sanctuary sites across tissues and the central nervous system (CNS). Unlike activated CD4+ T cells that undergo rapid cell death during initial infection (due to rapid viral replication kinetics), viral replication kinetics are delayed in non-dividing myeloid cells, resulting in long-lived survival of infected macrophages and macrophage-like cells. Simultaneously, persistent inflammation in macrophages confers immune dysregulation that is a key driver of co-morbidities including cardiovascular disease (CVD) and neurological deficits in people living with HIV-1 (PLWH). Macrophage activation and dysregulation is also a key driver of disease progression across other viral infections including SARS-CoV-2, influenza, and chikungunya viruses, underscoring the interplay between macrophages and disease progression, pathogenesis, and comorbidity in the viral infection setting. This review discusses the role of macrophages in persistence and pathogenesis of HIV-1 and related comorbidities, SARS-CoV-2 and other viruses. A special focus is given to novel immunomodulatory targets for key events driving myeloid cell dysregulation and reservoir maintenance across a diverse array of viral infections.
Collapse
Affiliation(s)
- Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Ruby R Taylor
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Colin Song
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Sherer ML, Lemanski EA, Patel RT, Wheeler SR, Parcells MS, Schwarz JM. A Rat Model of Prenatal Zika Virus Infection and Associated Long-Term Outcomes. Viruses 2021; 13:v13112298. [PMID: 34835104 PMCID: PMC8624604 DOI: 10.3390/v13112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.
Collapse
Affiliation(s)
- Morgan L. Sherer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Elise A. Lemanski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Rita T. Patel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Shannon R. Wheeler
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Jaclyn M. Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| |
Collapse
|
9
|
Sher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. Trends Analyt Chem 2021; 143:116374. [PMID: 34177011 PMCID: PMC8215883 DOI: 10.1016/j.trac.2021.116374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a growing interest in the development of portable, cost-effective, and easy-to-use biosensors for the rapid detection of diseases caused by infectious viruses: COVID-19 pandemic has highlighted the central role of diagnostics in response to global outbreaks. Among all the existing technologies, screen-printed electrodes (SPEs) represent a valuable technology for the detection of various viral pathogens. During the last five years, various nanomaterials have been utilized to modify SPEs to achieve convincing effects on the analytical performances of portable SPE-based diagnostics. Herein we would like to provide the readers a comprehensive investigation about the recent combination of SPEs and various nanomaterials for detecting viral pathogens. Manufacturing methods and features advances are critically discussed in the context of early-stage detection of diseases caused by HIV-1, HBV, HCV, Zika, Dengue, and Sars-CoV-2. A detailed table is reported to easily guide readers toward the "right" choice depending on the virus of interest.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055 Naples, Italy
| |
Collapse
|
10
|
Auriti C, De Rose DU, Santisi A, Martini L, Piersigilli F, Bersani I, Ronchetti MP, Caforio L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166198. [PMID: 34118406 PMCID: PMC8883330 DOI: 10.1016/j.bbadis.2021.166198] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1–2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal‑neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Ludovica Martini
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Fiammetta Piersigilli
- Department of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Maria Paola Ronchetti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Leonardo Caforio
- Fetal and Perinatal Medicine and Surgery Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
12
|
Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 2020; 10:21604. [PMID: 33303883 PMCID: PMC7729948 DOI: 10.1038/s41598-020-78735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.
Collapse
|
13
|
Campbell VL, Nguyen L, Snoey E, McClurkan CL, Laing KJ, Dong L, Sette A, Lindestam Arlehamn CS, Altmann DM, Boyton RJ, Roby JA, Gale M, Stone M, Busch MP, Norris PJ, Koelle DM. Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination. Immunohorizons 2020; 4:444-453. [PMID: 32753403 PMCID: PMC7839664 DOI: 10.4049/immunohorizons.2000068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that caused an epidemic in 2015-2016. ZIKV-specific T cell responses are functional in animal infection models, and helper CD4 T cells promote avid Abs in the vaccine context. The small volumes of blood available from field research limit the determination of T cell epitopes for complex microbes such as ZIKV. The goal of this project was efficient determination of human ZIKV CD4 T cell epitopes at the whole proteome scale, including validation of reactivity to whole pathogen, using small blood samples from convalescent time points when T cell response magnitude may have waned. Polyclonal enrichment of candidate ZIKV-specific CD4 T cells used cell-associated virus, documenting that T cells in downstream peptide analyses also recognize whole virus after Ag processing. Sequential query of bulk ZIKV-reactive CD4 T cells with pooled/single ZIKV peptides and molecularly defined APC allowed precision epitope and HLA restriction assignments across the ZIKV proteome and enabled discovery of numerous novel ZIKV CD4 T cell epitopes. The research workflow is useful for the study of emerging infectious diseases with a very limited human blood sample availability.
Collapse
Affiliation(s)
| | - LeAnn Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elise Snoey
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Danny M. Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Justin A. Roby
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Phillip J. Norris
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Benaroya Research Institute, Seattle, WA, USA,Department of Laboratory Medicine, Seattle, WA, USA,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Corresponding author: David Koelle MD, 750 Republican Street, Room E651, Seattle, WA, 981109, phone 206 616 1940, fax 206 616 4898,
| |
Collapse
|