1
|
Szałabska-Rąpała K, Zych M, Borymska W, Londzin P, Dudek S, Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed Pharmacother 2024; 172:116265. [PMID: 38364735 DOI: 10.1016/j.biopha.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
In diabetes hyperglycemia, excessive production of free radicals and present oxidative stress lead to many complications in the body, including male reproductive system disorders. To prevent the development of diabetic complications in the testes resulting from them, it seems beneficial to include compounds considered as natural antioxidants. Honokiol and magnolol are neolignans obtained from magnolia bark, which possess proven antioxidant properties. The aim of this study was to evaluate the effect of honokiol and magnolol on the parameters of oxidative stress, polyol pathway and glycation products in the testes as well as on selected biochemical parameters in the blood serum of rats with type 2 diabetes. The study was conducted on mature male Wistar rats with high fat diet and streptozotocin-induced type 2 diabetes. Neolignans-treated rats received honokiol or magnolol orally at the doses of 5 or 25 mg/kg, respectively, for 4 weeks. Parameters related to glucose and lipid homeostasis, basic serological parameters and sex hormones level in the serum as well as polyol pathway parameters, antioxidant enzyme activity, endogenous antioxidants level, sumaric parameters for oxidative stress and oxidative damage in the testes were estimated. Oral administration of honokiol and magnolol turned out to be beneficial in combating the effects of oxidative stess in the testes, but showed no favorable effects on serum biochemical parameters. Additionally, magnolol compared to honokiol revealed more advantageous impact indicating the reversal of the effects of diabetic complications in the male reproductive system and counteracted oxidative stress damages and polyol pathway disorders in the testes.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| |
Collapse
|
2
|
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S, Pazhanivel N. Modulation of PPAR-γ, SREBP-1c and inflammatory mediators by luteolin ameliorates β-cell dysfunction and renal damage in a rat model of type-2 diabetes mellitus. Mol Biol Rep 2023; 50:9129-9142. [PMID: 37749346 DOI: 10.1007/s11033-023-08804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Natural products have been recommended as a complementary therapy for type 2 diabetes mellitus (T2DM) due to constraints of safety and tolerability of existing anti-diabetic agents. Luteolin exhibits anti-diabetic and anti-inflammatory effects. Hence, the impact of luteolin on glucose homoeostasis and organ damage was investigated in high-fat diet (HFD) and streptozotocin (STZ) induced T2DM in rats. METHODS AND RESULTS Male Wistar rats were maintained on HFD (provided 55% energy as fat) for 10 days. Subsequently, a single dose of 40 mg/kg STZ was injected intraperitoneally on the 11th day. Seventy-two hours after STZ administration, diabetic rats with established hyperglycemia (fasting serum glucose > 200 mg/dL) were randomized into different groups having six rats each and orally administered either 0.5% hydroxy propyl cellulose or pioglitazone (10 mg/kg) or luteolin (50 mg/kg or 100 mg/kg) once daily for 28 days, while continuing HFD for respective groups. Luteolin significantly reduced hyperglycaemia, homoeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) levels, and improved hypoinsulinemia and HOMA of b-cell function (HOMA-B) in a dose-dependent manner. Increased TNF-α, IL-6 and NFκB levels in diabetic rats were significantly regulated. Additionally, luteolin significantly augmented PPAR-γ expression while attenuating sterol regulatory element binding protein-1c (SREBP-1c) expression. Histopathological scrutiny validated that luteolin effectively attenuated HFD-STZ-induced injury in pancreatic β-cells and kidneys to near normalcy. CONCLUSION Our study showed that luteolin ameliorated hyperglycemia and improved hypoinsulinemia, β-cell dysfunction, and renal impairment in HFD-STZ-induced diabetic rats by attenuating inflammation and dysregulated cytokine secretion through modulation of PPAR-γ, TNF-α, IL-6 and NF-kB expression and down-regulation of SREBP-1c.
Collapse
Affiliation(s)
- Syed Ilyas Shehnaz
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Anitha Roy
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Department of Biosciences, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Natesan Pazhanivel
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, Tamil Nadu, 600 007, India
| |
Collapse
|
3
|
Al-Tawalbeh D, Bdeir R, Al-Momani J. The Use of Medicinal Herbs to Treat Male Infertility in Jordan: Evidence-Based Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/42rwhfit62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Rakhshandeh H, Rajabi Khasevan H, Saviano A, Mahdinezhad MR, Baradaran Rahimi V, Ehtiati S, Etemad L, Ebrahimzadeh-bideskan A, Maione F, Askari VR. Protective Effect of Portulaca oleracea on Streptozotocin-Induced Type I Diabetes-Associated Reproductive System Dysfunction and Inflammation. Molecules 2022; 27:6075. [PMID: 36144807 PMCID: PMC9506021 DOI: 10.3390/molecules27186075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Type-one diabetes (T1D), a chronic autoimmune disease with marked inflammatory responses, is associated with infertility complications and implications. Based on the anti-diabetic, antioxidant, and anti-hyperlipidemic potential of Portulaca oleracea (PO), this study aimed to evaluate the protective effect of this plant extract on streptozotocin-induced type-I-diabetes-associated reproductive system dysfunction and inflammation. METHODS Male rats were randomly divided into four experimental groups: control, diabetic, and treatment/s (PO extract at 100 or 300 mg/kg/daily). Then food and water consumption, body, testis and epididymis weights, histopathological evaluation, seminiferous tubules diameter, sperm count and motility, glucose levels, sex hormones, and inflammatory and oxidative stress markers were evaluated. RESULTS Our results showed that streptozotocin-induced diabetes significantly increased food and water consumption; increased glucose, MDA, TGF-β1, and TNF-α levels; and decreased the seminiferous tubules diameter, sperm count and motility, levels of LH, testosterone, total thiol, VEGF, and SOD activity. Interestingly, PO extract (phytochemically characterized by using liquid chromatography-mass spectrometry to detect bioactive molecules) significantly ameliorated these parameters and histopathological indexes' damage in rats. CONCLUSION Even if more preclinical assessments are needed to better characterize the mechanism/s of action, the results of this study will pave the way for the rational use of PO on diabetic-associated clinical complications and implications.
Collapse
Affiliation(s)
- Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.R.); (H.R.K.); (S.E.)
| | - Hamed Rajabi Khasevan
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.R.); (H.R.K.); (S.E.)
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Sajjad Ehtiati
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.R.); (H.R.K.); (S.E.)
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Alireza Ebrahimzadeh-bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Mashhad 9177948564, Iran;
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Vahid Reza Askari
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|