1
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
2
|
Ceylan FD, Günal-Köroğlu D, Saricaoglu B, Ozkan G, Capanoglu E, Calina D, Sharifi-Rad J. Anticancer potential of hydroxycinnamic acids: mechanisms, bioavailability, and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03396-x. [PMID: 39212736 DOI: 10.1007/s00210-024-03396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hydroxycinnamic acids (HCAs) are plant compounds with anticancer potential due to their antioxidant, anti-inflammatory, apoptosis-inducing, and proliferation-inhibiting effects. This review aims to consolidate and analyze current knowledge on the anticancer effects of HCAs, exploring their mechanisms of action, bioavailability challenges, and potential therapeutic applications. A comprehensive literature search on PubMed/MedLine, Scopus, Web of Science, and Google Scholar focused on the anticancer properties, mechanisms, bioavailability, and safety profiles of HCAs. Studies have shown that HCAs, such as caffeic acid, ferulic acid, and sinapic acid, inhibit the growth of cancer cells in vitro and in vivo and sensitize cancer cells to chemotherapy and radiation therapy. These effects are mediated by mechanisms including the inhibition of cell survival pathways, modulation of gene expression, and induction of oxidative stress and DNA damage. Additionally, several studies have demonstrated that HCAs exhibit selective toxicity, with a higher propensity to induce cell death in cancerous cells compared to normal cells. However, the toxicity profile of HCAs can vary depending on the specific compound, dosage, and experimental conditions. The anticancer properties of HCAs suggest potential applications in cancer prevention and treatment. However, it is essential to distinguish between their use as dietary supplements and therapeutic agents, as the dosage and formulation suitable for dietary supplements may be insufficient for therapeutic purposes. The regulatory and practical implications of using HCAs in these different contexts require careful consideration. Further research is needed to determine appropriate dosages, formulations, long-term effects, and regulatory frameworks for HCAs as both dietary supplements and therapeutic agents.
Collapse
Affiliation(s)
- Fatma Duygu Ceylan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| |
Collapse
|
3
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
4
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
5
|
Noor S, Choudhury A, Raza A, Ashraf A, Islam KU, Hussain A, Imtiyaz K, Islam A, Hassan MI. Probing Baicalin as potential inhibitor of Aurora kinase B: A step towards lung cancer therapy. Int J Biol Macromol 2024; 258:128813. [PMID: 38123032 DOI: 10.1016/j.ijbiomac.2023.128813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Cell cycle regulators play pivotal roles as their dysregulation, leads to atypical proliferation and intrinsic genomic instability in cancer cells. Abnormal expression and functioning of Aurora kinase B (AURKB) are associated with cancer pathogenesis and thus exploited as a potential therapeutic target for the development of anti-cancer therapeutics. To identify effective AURKB inhibitors, a series of polyphenols was investigated to check their potential to inhibit recombinant AURKB. Their binding affinities were experimentally validated through fluorescence binding studies. Enzyme inhibition assay revealed that Mangiferin and Baicalin significantly inhibited AURKB activity with an IC50 values of 20.0 μM and 31.1 μM, respectively. To get atomistic insights into the binding mechanism, molecular docking and MD simulations of 100 ns were performed. Both compounds formed many non-covalent interactions with the residues of the active site pocket of AURKB. In addition, minimal conformational changes in the structure and formation of stable AURKB-ligand complex were observed during MD simulation analysis. Finally, cell-based studies suggested that Baicalin exhibited in-vitro cytotoxicity and anti-proliferative effects on lung cancer cell lines. Conclusively, Baicalin may be considered a promising therapeutic molecule against AURKB, adding an additional novel lead to the anti-cancer repertoire.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khadija Imtiyaz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Abdel-Hamid NM, ElNakeeb NA, El-Senduny FF. Efficient chemosensitizing and antimetastatic combinations of a naturally occurring trans-ferulic acid with different chemotherapies on an in vitro hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1741-1747. [PMID: 36811666 DOI: 10.1007/s00210-023-02431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Trans-ferulic acid (TFA) is a polyphenolic compound present in many dietary supplements. The aim of this study was to get better chemotherapeutic outcomes through treatment protocols for human hepatocellular carcinoma (HCC). This study focused on the exploration of the in vitro influence of a combination of TFA with 5-fluorouracil (5-FU), doxorubicin (DOXO), and cisplatin (CIS) on HepG2 cell line. Treatment with 5-FU, DOXO, and CIS alone down-regulated oxidative stress and alpha-fetoprotein (AFP), and decreased cell migration through the depression of metalloproteinases (MMP-3, MMP-9, and MMP-12) expression. Co-treatment with TFA synergized the effects of these chemotherapies by decreased MMP-3, MMP-9, and MMP-12 expression, and gelatinolytic activity of both MMP-9 and MMP-2 in cancer cells. TFA significantly reduced the elevated levels of AFP and NO, and depressed cell migration ability (metastasis) in HepG2 groups. Co-treatment with TFA elevated the chemotherapeutic potency of 5-FU, DOXO, and CIS in managing HCC.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Nadia A ElNakeeb
- Department of Chemistry, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Pressete CG, Viegas FPD, Campos TG, Caixeta ES, Hanemann JAC, Ferreira-Silva GÁ, Zavan B, Aissa AF, Miyazawa M, Viegas-Jr C, Ionta M. Piperine-Chlorogenic Acid Hybrid Inhibits the Proliferation of the SK-MEL-147 Melanoma Cells by Modulating Mitotic Kinases. Pharmaceuticals (Basel) 2023; 16:145. [PMID: 37259298 PMCID: PMC9965075 DOI: 10.3390/ph16020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
| | - Flávia Pereira Dias Viegas
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Thâmara Gaspar Campos
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | | | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Claudio Viegas-Jr
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| |
Collapse
|
9
|
Lai HC, Lin HJ, Jeng LB, Huang ST. Roles of conventional and complementary therapies in recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:19-35. [PMID: 36684056 PMCID: PMC9850766 DOI: 10.4251/wjgo.v15.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the fourth leading cause of cancer-related deaths in the world. HCC has a reported recurrence rate of 70%-80% after 5 years of follow-up. Controlling tumor recurrence is the most critical factor associated with HCC mortality. Conventional salvage therapies for recurrent HCC include re-hepatectomy or liver transplantation, transcatheter arterial chemoembolization, Y-90, target therapy, and immunotherapy; however, these conventional treatment modalities have yet to achieve consistently favorable outcomes. Meanwhile, previous studies have demonstrated that conventional therapies in combination with traditional Chinese medicine (TCM), acupuncture, moxibustion or dietary supplements could notably benefit patients with HCC recurrence by strengthening and augmenting the overall management strategy. However, systemic reviews related to the interactions between complementary therapies and conventional therapy in recurrent HCC are limited. In this review, we discuss the molecular mechanisms underlying the functions of complementary therapies for recurrent HCC, which include augmenting the local control to improve the congestion status of primary tumors and reducing multicentric tumor occurrence via inducing autophagy, apoptosis or cell cycle arrest. TCM and its derivatives may play important roles in helping to control HCC recurrence by inhibiting epithelial-mesenchymal transition, migration, invasion, and metastasis, inhibiting cancer stem cells, and ameliorating drug resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709204, Taiwan
| |
Collapse
|
10
|
Effect of chlorogenic acid on lipid metabolism in 3T3-L1 cells induced by oxidative stress. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
12
|
Gupta A, Atanasov AG, Li Y, Kumar N, Bishayee A. Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol Res 2022; 186:106505. [DOI: 10.1016/j.phrs.2022.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
13
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today’s scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| |
Collapse
|
14
|
OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer. Cancers (Basel) 2022; 14:cancers14163967. [PMID: 36010962 PMCID: PMC9406419 DOI: 10.3390/cancers14163967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Arginase 1 and 2 are drivers of multiple immunosuppressive mechanisms and tumour-specific metabolic adaptations. Pharmacological inhibition of extracellular ARG1 has shown antitumour efficacy in various syngeneic tumour models, however, the importance of ARG2 as a therapeutic target has only been demonstrated by genetic deletion studies. This is the first study validating the benefits of pharmacological inhibition of ARG2 in cancer. Our work describes OATD-02 as a potent dual ARG1/ARG2 inhibitor with a cellular activity (necessary for targeting ARG2) exhibiting immunomodulatory and direct antitumour efficacy in animal models. Our results present OATD-02 as an attractive option for combination with other immunotherapeutics, such as PD-1/PD-L1 antibodies or IDO1 inhibitors, especially in the therapy of particularly resistant hypoxic tumours. The presented findings provided the rationale for planning first-in-human clinical trials for OATD-02 in cancer patients. Abstract Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with malignant phenotype and poor prognosis. These observations unveil arginases, and specifically ARG2, as well-validated and promising therapeutic targets. OATD-02, a new boronic acid derivative, is the only dual inhibitor, which can address the benefits of pharmacological inhibition of arginase 1 and 2 in cancer. Methods: The inhibitory activity of OATD-02 was determined using recombinant ARG1 and ARG2, as well as in a cellular system using primary hepatocytes and macrophages. In vivo antitumor activity was determined in syngeneic models of colorectal and kidney carcinomas (CT26 and Renca, respectively), as well as in an ARG2-dependent xenograft model of leukaemia (K562). Results: OATD-02 was shown to be a potent dual (ARG1/ARG2) arginase inhibitor with a cellular activity necessary for targeting ARG2. Compared to a reference inhibitor with predominant extracellular activity towards ARG1, we have shown improved and statistically significant antitumor efficacy in the CT26 model and an immunomodulatory effect reflected by Treg inhibition in the Renca model. Importantly, OATD-02 had a superior activity when combined with other immunotherapeutics. Finally, OATD-02 effectively inhibited the proliferation of human K562 leukemic cells both in vitro and in vivo. Conclusions: OATD-02 is a potent small-molecule arginase inhibitor with optimal drug-like properties, including PK/PD profile. Excellent activity against intracellular ARG2 significantly distinguishes OATD-02 from other arginase inhibitors. OATD-02 represents a very promising drug candidate for the combined treatment of tumours, and is the only pharmacological tool that can effectively address the benefits of ARG1/ARG2 inhibition. OATD-02 will enter clinical trials in cancer patients in 2022.
Collapse
|
15
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
16
|
Rho SB, Byun HJ, Kim BR, Lee CH. Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3. Biomol Ther (Seoul) 2022; 30:380-388. [PMID: 35711139 PMCID: PMC9252879 DOI: 10.4062/biomolther.2022.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
Abstract
Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyun-Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| | - Boh-Ram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| |
Collapse
|
17
|
Xu W, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Material basis research for Echinacea purpurea (L.) Moench against hepatocellular carcinoma in a mouse model through integration of metabonomics and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153948. [PMID: 35152087 DOI: 10.1016/j.phymed.2022.153948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Echinacea purpurea (L.) Moench (EP), a well-known "immunostimulant" in the West, is one of the most popular botanicals for patients with cancer. It has been proved to be effective against hepatocellular carcinoma (HCC), while the active ingredients remains unclear. PURPOSE This study aimed to investigate the inhibitory effect and interpret the material basis of EP against HCC through metabolomics and molecular docking. METHODS Tumor growth, biochemical analysis and pathological changes were detected in HCC-induced mice to evaluate the efficacy of EP. An integrative method combining molecular docking and LC-MS-based metabolomics was performed to evaluate the inhibitory role and screen the material basis of EP against HCC. RESULTS EP significantly suppressed tumor growth and decreased the levels of AFP. Histological analysis showed that wide areas of necrosis in the EP-treated tumors that were almost absent in those in model group. Serum metabolomics results revealed EP could significantly improve 12 serum different metabolites induced by HCC, which were involved into phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism. Then, 5 related genes were selected out to be the key targets of EP against HCC based on Metscape. 22 identified compounds were docked through Sybyl-X. The herb-compound-gene-metabolic pathways network (HCGMN) was constructed to reveal the associations between EP and HCC. Finally, 19 compounds were screened as promising active ingredients of EP against HCC. CONCLUSION The results showed that the approach integrating of metabonomics and molecular docking is a powerful strategy to obtain the active ingredients from plants.
Collapse
Affiliation(s)
- Wenqian Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave,, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bin Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave,, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave,, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave,, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave,, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
LAN-FANG C, DAN X, JUN S, FU-YONG Q, XIAO-WAN W, LIANG X. Anti-inflammatory effect of Eucommia Chlorogenic Acid (ECA) on adjuvant-induced arthritis rats and its effect on autophagy related pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.74521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chen LAN-FANG
- The First Affiliated Hospital of Wannan Medical College, China
| | - Xuan DAN
- The First Affiliated Hospital of Wannan Medical College, China
| | - Sheng JUN
- The First Affiliated Hospital of Wannan Medical College, China
| | - Qiang FU-YONG
- The First Affiliated Hospital of Wannan Medical College, China
| | - Wang XIAO-WAN
- The First Affiliated Hospital of Wannan Medical College, China
| | - Xu LIANG
- The First Affiliated Hospital of Wannan Medical College, China
| |
Collapse
|
19
|
Chlorogenic Acid Enhances Doxorubicin-Mediated Cytotoxic Effect in Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22168586. [PMID: 34445291 PMCID: PMC8395331 DOI: 10.3390/ijms22168586] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the recurring outbreak of resistance mechanisms and adverse reactions, doxorubicin (Doxo) still remains the standard-of-care for several cancers, including osteosarcoma (OS). As an appealing source of phytochemical compounds, naturally occurring molecules have extensively been reported to overcome Doxo limitations in preclinical models. Unlike other dietary polyphenols, only few studies recognize chlorogenic acid (CGA) as a potential partner in combination therapy, while, conversely, its anticancer evidence is steadily growing, ultimately in OS. On this basis, herein we examine the cooperating effects between CGA and Doxo in U2OS and MG-63 human OS cells. With respect to Doxo alone, the concomitant administration of CGA further decreased cell viability and growth, promoting cell death potentially via apoptosis induction. Furthermore, a longer-lasting reduction in clonogenic potential deeply supported the CGA ability to improve Doxo efficacy in those cells. Remarkably, CGA treatment ameliorated Doxo-induced cytotoxicity in H9c2 rat cardiomyocyte cells instead. Although inactivation of p44/42 MAPK was detected in response to CGA plus Doxo, PD98059-mediated p44/42 MAPK impairment enhanced the combination outcome in OS cells. These findings firstly propose CGA as a promising chemosensitizer and cardioprotective agent in OS therapy, suggesting the p44/42 MAPK pathway as relevantly involved in CGA-mediated Doxo susceptibility.
Collapse
|
20
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods 2021; 10:foods10061432. [PMID: 34205582 PMCID: PMC8234544 DOI: 10.3390/foods10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Akebia trifoliata is a fruit with rich nutritional properties, and its peel is produced as a by-product. In this research, we investigated the influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels, and the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) as well as total phenolic contents (TPC) were used to optimize extraction parameters. The influences of ethanol concentration, microwave power and solvent-to-material ratio, as well as extraction temperature and time on TPC, FRAP and TEAC values, were assessed using single-factor tests. Three parameters with obvious effects on antioxidant capacity were selected to further investigate their interactions by response surface methodology. The optimal extraction parameters of natural antioxidants from Akebia trifoliata peels were ethanol concentration, 49.61% (v/v); solvent-to-material ratio, 32.59:1 mL/g; extraction time, 39.31 min; microwave power, 500 W; and extraction temperature, 50 °C. Under optimal conditions, the FRAP, TEAC and TPC values of Akebia trifoliata peel extracts were 351.86 ± 9.47 µM Fe(II)/g dry weight (DW), 191.12 ± 3.53 µM Trolox/g DW and 32.67 ± 0.90 mg gallic acid equivalent (GAE)/g DW, respectively. Furthermore, the main bioactive compounds (chlorogenic acid, rutin and ellagic acid) in the extract were determined by high-performance liquid chromatography. The results are useful for the full utilization of the by-product from Akebia trifoliate fruit.
Collapse
Affiliation(s)
- Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|