1
|
Augusto J, Atehnkeng J, Ortega-Beltran A, Cotty PJ, Bandyopadhyay R. Keeping toxigenic Aspergillus section Flavi and aflatoxin contamination at bay by deploying atoxigenic-based biocontrol products during production of groundnut and maize in Mozambique. Front Microbiol 2024; 15:1501924. [PMID: 39633814 PMCID: PMC11615066 DOI: 10.3389/fmicb.2024.1501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Aflatoxins, produced by aflatoxigenic Aspergillus section Flavi fungi, commonly occur in groundnut and maize grown in Mozambique and have long been associated with high prevalence of liver cancer, stunting, and restricted access to lucrative international markets. Effective aflatoxin control options in the country are limited and not adequately explored. Biocontrol products based on atoxigenic strains of A. flavus provide viable aflatoxin mitigation measures but require development for Mozambique. Four hundred and sixty-eight (468) and 558 groundnut and maize farmers, respectively, voluntarily evaluated the effectiveness of two biocontrol products (Aflasafe MWMZ01 and Aflasafe MZ02), each containing as active ingredients four distinct atoxigenic isolates of A. flavus belonging to native vegetative compatibility groups (VCGs), at preventing aflatoxin contamination and displacement of aflatoxigenic fungi for 2 years in various agro-ecologies. Most groundnut and maize treated with the biocontrol products were below maximum levels for food in the European Union (EU; 85%; p < 0.01) and the United States (US; 99%; p < 0.01). In contrast, most non-treated maize and groundnut (ranging from 38 to 70%; p = 0.05) were above the EU and US maximum allowable levels for food. Aflatoxin reductions ranged from 78 to 98% (p < 0.01) in treated groundnut, and from 61 to 93% (p < 0.01) in treated maize. Toxigenic fungi were almost completely displaced from soils and crops by the applied atoxigenic active ingredients. This study revealed that the atoxigenic based biocontrol technology is effective in Mozambique at displacing aflatoxigenic fungi and reducing aflatoxin accumulation in both groundnut and maize but a combination with other management tools is encouraged for better retention of crop quality along the value chain.
Collapse
Affiliation(s)
- Joao Augusto
- Plant Health and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Nampula, Mozambique
| | | | | | - Peter J. Cotty
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Tucson, AZ, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | |
Collapse
|
2
|
Mboup M, Aduramigba-Modupe A, Maazou ARS, Olasanmi B, Mengesha W, Meseka S, Dieng I, Bandyopadhyay R, Menkir A, Ortega-Beltran A. Performance of testers with contrasting provitamin A content to evaluate provitamin A maize for resistance to Aspergillus flavus infection and aflatoxin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1167628. [PMID: 37235022 PMCID: PMC10206313 DOI: 10.3389/fpls.2023.1167628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023]
Abstract
In sub-Saharan Africa (SSA), millions of people depend on maize as a primary staple. However, maize consumers in SSA may be exposed to malnutrition due to vitamin A deficiency (VAD) and unsafe aflatoxin levels, which can lead to serious economic and public health problems. Provitamin A (PVA) biofortified maize has been developed to alleviate VAD and may have additional benefits such as reduced aflatoxin contamination. In this study, maize inbred testers with contrasting PVA content in grain were used to identify inbred lines with desirable combining ability for breeding to enhance their level of resistance to aflatoxin. Kernels of 120 PVA hybrids generated by crossing 60 PVA inbreds with varying levels of PVA (5.4 to 51.7 µg/g) and two testers (low and high PVA, 14.4 and 25.0 µg/g, respectively) were inoculated with a highly toxigenic strain of Aspergillus flavus. Aflatoxin had a negative genetic correlation with β-carotene (r = -0.29, p < 0.0001) and PVA (r = -0.23, p < 0.0001), indicating that hybrids with high PVA content accumulated less aflatoxin than those with low to medium PVA. Both general combining ability (GCA) and specific combining ability (SCA) effects of lines and testers were significant for aflatoxin accumulation, number of spores, PVA, and other carotenoids, with additive gene actions playing a prominent role in regulating the mode of inheritance (GCA/SCA ratio >0.5). Eight inbreds had combined significant negative GCA effects for aflatoxin accumulation and spore count with significant positive GCA effects for PVA. Five testcrosses had combined significant negative SCA effects for aflatoxin with significant positive SCA effects for PVA. The high PVA tester had significant negative GCA effects for aflatoxin, lutein, β-carotene, and PVA. The study identified lines that can be used as parents to develop superior hybrids with high PVA and reduced aflatoxin accumulation. Overall, the results point out the importance of testers in maize breeding programs to develop materials that can contribute to controlling aflatoxin contamination and reducing VAD.
Collapse
Affiliation(s)
- M. Mboup
- Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, Ibadan, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - A.O. Aduramigba-Modupe
- Department of Crop Protection and Environmental Biology, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - A.-R. S. Maazou
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - B. Olasanmi
- Department of Crop and Horticultural Sciences, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - W. Mengesha
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - S. Meseka
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - I. Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - R. Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - A. Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - A. Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
3
|
Massomo SM. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Ortega-Beltran A, Cotty PJ. Influence of Wounding and Temperature on Resistance of Maize Landraces From Mexico to Aflatoxin Contamination. FRONTIERS IN PLANT SCIENCE 2020; 11:572264. [PMID: 33072148 PMCID: PMC7541827 DOI: 10.3389/fpls.2020.572264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/04/2020] [Indexed: 05/11/2023]
Abstract
Maize is a staple for billions across the globe. However, in tropical and sub-tropical regions, maize is frequently contaminated with aflatoxins by Aspergillus section Flavi fungi. There is an ongoing search for sources of aflatoxin resistance in maize to reduce continuous exposures of human populations to those dangerous mycotoxins. Large variability in susceptibility to aflatoxin contamination exists within maize germplasm. In Mexico, several maize landrace (MLR) accessions possess superior resistance to both Aspergillus infection and aflatoxin contamination but their mechanisms of resistance have not been reported. Influences of kernel integrity on resistance of four resistant and four susceptible MLR accessions were evaluated in laboratory assays. Wounds significantly (P < 0.05) increased susceptibility to aflatoxin contamination even when kernel viability was unaffected. Treatments supporting greater A. flavus reproduction did not (P > 0.05) proportionally support higher aflatoxin accumulation suggesting differential influences by some resistance factors between sporulation and aflatoxin biosynthesis. Physical barriers (i.e., wax and cuticle) prevented both aflatoxin accumulation and A. flavus sporulation in a highly resistant MLR accession. In addition, influence of temperature on aflatoxin contamination was evaluated in both viable and non-viable kernels of a resistant and a susceptible MLR accession, and a commercial hybrid. Both temperature and living embryo status influenced (P < 0.05) resistance to both aflatoxin accumulation and A. flavus sporulation. Lower sporulation on MLR accessions suggests their utilization would result in reduced speed of propagation and associated epidemic increases in disease both in the field and throughout storage. Results from the current study should encourage researchers across the globe to exploit the large potential that MLRs offer to breed for aflatoxin resistant maize. Furthermore, the studies provide support to the importance of resistance based on the living host and maintaining living status to reducing episodes of post-harvest contamination.
Collapse
Affiliation(s)
| | - Peter J. Cotty
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
6
|
Hruska Z, Yao H, Kincaid R, Tao F, Brown RL, Cleveland TE, Rajasekaran K, Bhatnagar D. Spectral-Based Screening Approach Evaluating Two Specific Maize Lines With Divergent Resistance to Invasion by Aflatoxigenic Fungi. Front Microbiol 2020; 10:3152. [PMID: 32038584 PMCID: PMC6988685 DOI: 10.3389/fmicb.2019.03152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/29/2019] [Indexed: 11/13/2022] Open
Abstract
In an effort to control aflatoxin contamination in food and/or feed grains, a segment of research has focused on host resistance to eliminate aflatoxin from susceptible crops, including maize. To this end, screening tools are key to identifying resistant maize genotypes. The traditional field screening techniques, the kernel screening laboratory assay (KSA), and analytical methods (e.g., ELISA) used for evaluating corn lines for resistance to fungal invasion, all ultimately require sample destruction. A technological advancement on the basic BGYF presumptive screening test, fluorescence hyperspectral imaging offers an option for non-destructive and rapid image-based screening. The present study aimed to differentiate fluorescence spectral signatures of representative resistant and susceptible corn hybrids infected by a toxigenic (SRRC-AF13) and an atoxigenic (SRRC-AF36) strain of Aspergillus flavus, at several time points (5, 7, 10, and 14 days), in order to evaluate fluorescence hyperspectral imaging as a viable technique for early, non-invasive aflatoxin screening in resistant and susceptible corn lines. The study utilized the KSA to promote fungal growth and aflatoxin production in corn kernels inoculated under laboratory conditions and to provide actual aflatoxin values to relate with the imaging data. Each time point consisted of 78 kernels divided into four groups (30-susceptible, 30-resistant, 9-susceptible control, and 9-resistant control), per inoculum. On specified days, kernels were removed from the incubator and dried at 60°C to terminate fungal growth. Dry kernels were imaged with a VNIR hyperspectral sensor (image spectral range of 400–1000 nm), under UV excitation centered at 365 nm. Following imaging, kernels were submitted for the chemical AflaTest assay (VICAM). Fluorescence emissions were compared for all samples over 14 days. Analysis of strain differences separating the fluorescence emission peaks of resistant from the susceptible strain indicated that the emission peaks of the resistant strain and the susceptible strains differed significantly (p < 0.01) from each other, and there was a significant difference in fluorescence intensity between the treated and control kernels of both strains. These results indicate a viable role of fluorescence hyperspectral imaging for non-invasive screening of maize lines with divergent resistance to invasion by aflatoxigenic fungi.
Collapse
Affiliation(s)
- Zuzana Hruska
- Geosystems Research Institute, Mississippi State University, MSU Science and Technology, Stennis Space Center, Starkville, MS, United States
| | - Haibo Yao
- Geosystems Research Institute, Mississippi State University, MSU Science and Technology, Stennis Space Center, Starkville, MS, United States
| | - Russell Kincaid
- Geosystems Research Institute, Mississippi State University, MSU Science and Technology, Stennis Space Center, Starkville, MS, United States
| | - Feifei Tao
- Geosystems Research Institute, Mississippi State University, MSU Science and Technology, Stennis Space Center, Starkville, MS, United States
| | - Robert L Brown
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Thomas E Cleveland
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | | | - Deepak Bhatnagar
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| |
Collapse
|
7
|
Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 65:90-96. [PMID: 30594067 DOI: 10.1016/j.etap.2018.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Although most countries regulate the aflatoxin levels in food by legislations, high amounts of aflatoxin B1 (AFB1)-DNA adducts can still be detected in normal and tumorous tissue obtained from cancer patients. AFB1 cannot directly interact with DNA unless it is biotransformed to AFB1-8, 9-epoxide via cytochrome p450 enzymes. This metabolite spontaneously and irreversibly attaches to guanine residues to generate highly mutagenic DNA adducts. AFB1-induced mutation of ATM kinase results in the deterioration of the cell cycle checkpoint activation at the G2/M checkpoint site. Genomic instability and increased cancer risk due to A-T mutation is the result of diminished repair of DNA double strand breaks. The major point mutation caused by AFB1 is G-to-T transversion that is related with the high frequency of p53 mutation. Majority of AFB1 associated hepatocellular cancer cases carry TP53 mutant DNA, which is an indicator of AFB1 exposure, as well as hepatocellular cancer risk.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
8
|
Evaluation of African-Bred Maize Germplasm Lines for Resistance to Aflatoxin Accumulation. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6020024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
|
10
|
Williams W, Krakowsky M, Scully B, Brown R, Menkir A, Warburton M, Windham G. Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efforts to identify maize germplasm with resistance to Aspergillus flavus infection and subsequent accumulation of aflatoxins were initiated by the US Department of Agriculture, Agricultural Research Service at several locations in the late 1970s and early 1980s. Research units at four locations in the south-eastern USA are currently engaged in identification and development of maize germplasm with resistance to A. flavus infection and accumulation of aflatoxins. The Corn Host Plant Resistance Research Unit, Mississippi State, MS, developed procedures for screening germplasm for resistance to A. flavus infection and accumulation of aflatoxins. Mp313E, released in 1990, was the first line released as a source of resistance to A. flavus infection. Subsequently, germplasm lines Mp420, Mp715, Mp717, Mp718, and Mp719 were released as additional sources of resistance. Quantitative trait loci associated with resistance have also been identified in four bi-parental populations. The Crop Protection and Management Research Unit and Crop Genetics and Breeding Research Unit, Tifton, GA, created a breeding population GT-MAS:gk. GT601, GT602, and GT603 were developed from GT-MAS:gk. The Food and Feed Safety Research Unit, New Orleans, LA, in collaboration with the International Institute for Tropical Agriculture used a kernel screening assay to screen germplasm and develop six germplasm lines with resistance to aflatoxins. The Plant Science Research Unit, Raleigh, NC, through the Germplasm Enhancement of Maize (GEM) Project provides to co-operators diverse germplasm that is a valuable source of resistance to A. flavus infection and accumulation of aflatoxins in maize.
Collapse
Affiliation(s)
- W.P. Williams
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| | - M.D. Krakowsky
- USDA-ARS, Plant Science Research Unit, North Carolina State University, 1236 Williams Hall, Raleigh, NC 27695-7620, USA
| | - B.T. Scully
- USDA-ARS, Corn Protection and Management Research Unit, 2747 Davis Rd., Tifton, GA 31793, USA
| | - R.L. Brown
- USDA-ARS, Food and Feed Safety Research Unit, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - A. Menkir
- International Institute of Tropical Agriculture, Oyo Rd., PMB 5320, Ibadan, Nigeria
| | - M.L. Warburton
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| | - G.L. Windham
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| |
Collapse
|
11
|
Chen ZY, Rajasekaran K, Brown RL, Sayler RJ, Bhatnagar D. Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maize (Zea mays L.) is one of the major crops susceptible to Aspergillus flavus infection and subsequent aflatoxin contamination. Many earlier studies indicated the roles of kernel proteins, especially constitutively expressed proteins, in maize resistance to A. flavus infection and aflatoxin production. In this review, we examined the past and current efforts in identifying maize genes and proteins from kernel, rachis, and silk tissues that may play an important role in resistance to A. flavus infection and aflatoxin contamination, as well as the efforts in determining the importance or involvement of them in maize resistance through biochemical, molecular and genetics studies. Through these studies, we gained a better understanding of host resistance mechanism: resistant lines appear to either express some stress-related and antifungal proteins at higher levels in endosperm, embryo, rachis and silk tissues before A. flavus infection or induce the expression of these proteins much faster compared to susceptible maize lines. In addition, we summarised several recent efforts in enhancing maize resistance to aflatoxin contamination using native genes from maize or heterologous and synthetic genes from other sources as well as from A. flavus. These efforts to either suppress A. flavus growth or aflatoxin production, have all shown some promising preliminary success. For example, maize plants transformed with an ?-amylase inhibitor protein from Lablab purpurea showed reduced aflatoxin levels by 56% in kernel screening assays. The antifungal potentials of transgenic maize plants expressing synthetic lytic peptides, such as cecropin-based D4E1 or tachyplesin-based AGM peptides with demonstrated anti-flavus activity (IC50 = 2.5 to 10 ?M), are yet to be assayed. Further investigation in these areas may provide a more cost-effective alternative to biocontrol in managing aflatoxin contamination in maize and other susceptible crops.
Collapse
Affiliation(s)
- Z.-Y. Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - K. Rajasekaran
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - R. L. Brown
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - R. J. Sayler
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - D. Bhatnagar
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
12
|
Brown RL, Menkir A, Chen ZY, Bhatnagar D, Yu J, Yao H, Cleveland TE. Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1382-91. [PMID: 23859902 DOI: 10.1080/19440049.2013.812808] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.
Collapse
Affiliation(s)
- Robert L Brown
- Southern Regional Research Center, ARS, USDA, New Orleans, LA , USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Luo M, Brown RL, Chen ZY, Menkir A, Yu J, Bhatnagar D. Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels. Toxins (Basel) 2011; 3:766-86. [PMID: 22069739 PMCID: PMC3202853 DOI: 10.3390/toxins3070766] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus' infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels. In this study, maize oligonucleotide arrays and a pair of closely-related maize lines varying in aflatoxin accumulation were used to reveal the gene expression network in imbibed mature kernels in response to A. flavus' challenge. Inoculated kernels were incubated 72 h via the laboratory-based Kernel Screening Assay (KSA), which highlights kernel responses to fungal challenge. Gene expression profiling detected 6955 genes in resistant and 6565 genes in susceptible controls; 214 genes induced in resistant and 2159 genes induced in susceptible inoculated kernels. Defense related and regulation related genes were identified in both treatments. Comparisons between the resistant and susceptible lines indicate differences in the gene expression network which may enhance our understanding of the maize-A. flavus interaction.
Collapse
Affiliation(s)
- Meng Luo
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (M.L.); (Z.-Y.C.)
| | - Robert L. Brown
- Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124, USA; (J.Y.); (D.B.)
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (M.L.); (Z.-Y.C.)
| | - Abebe Menkir
- International Institute of Tropical Agriculture, Oyo Road, PMB 5320, Ibadan, Nigeria;
| | - Jiujiang Yu
- Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124, USA; (J.Y.); (D.B.)
| | - Deepak Bhatnagar
- Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124, USA; (J.Y.); (D.B.)
| |
Collapse
|
14
|
Cary JW, Rajasekaran K, Brown RL, Luo M, Chen ZY, Bhatnagar D. Developing resistance to aflatoxin in maize and cottonseed. Toxins (Basel) 2011; 3:678-96. [PMID: 22069734 PMCID: PMC3202838 DOI: 10.3390/toxins3060678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022] Open
Abstract
At this time, no "magic bullet" for solving the aflatoxin contamination problem in maize and cottonseed has been identified, so several strategies must be utilized simultaneously to ensure a healthy crop, free of aflatoxins. The most widely explored strategy for the control of aflatoxin contamination is the development of preharvest host resistance. This is because A. flavus infects and produces aflatoxins in susceptible crops prior to harvest. In maize production, the host resistance strategy has gained prominence because of advances in the identification of natural resistance traits. However, native resistance in maize to aflatoxin contamination is polygenic and complex and, therefore, markers need to be identified to facilitate the transfer of resistance traits into agronomically viable genetic backgrounds while limiting the transfer of undesirable traits. Unlike maize, there are no known cotton varieties that demonstrate enhanced resistance to A. flavus infection and aflatoxin contamination. For this reason, transgenic approaches are being undertaken in cotton that utilize genes encoding antifungal/anti-aflatoxin factors from maize and other sources to counter fungal infection and toxin production. This review will present information on preharvest control strategies that utilize both breeding and native resistance identification approaches in maize as well as transgenic approaches in cotton.
Collapse
Affiliation(s)
- Jeffrey W. Cary
- United States Department of Agriculture-Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (K.R.); (R.L.B.); (M.L.); (D.B.)
| | - Kanniah Rajasekaran
- United States Department of Agriculture-Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (K.R.); (R.L.B.); (M.L.); (D.B.)
| | - Robert L. Brown
- United States Department of Agriculture-Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (K.R.); (R.L.B.); (M.L.); (D.B.)
| | - Meng Luo
- United States Department of Agriculture-Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (K.R.); (R.L.B.); (M.L.); (D.B.)
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Deepak Bhatnagar
- United States Department of Agriculture-Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (K.R.); (R.L.B.); (M.L.); (D.B.)
| |
Collapse
|
15
|
Wogan GN, Kensler TW, Groopman JD. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 29:249-57. [PMID: 21623489 PMCID: PMC4659374 DOI: 10.1080/19440049.2011.563370] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental animals indicating the carcinogenicity of naturally occurring mixtures of aflatoxins, aflatoxin B(1), G(1) and M(1). Aflatoxin biomarkers have also been used to show that primary prevention to reduce aflatoxin exposure can be achieved by low-technology approaches at the subsistence farm level in sub-Saharan Africa. Also, in residents of Qidong, China, oral dosing with chlorophyllin, a chlorophyll derivative, prior to each meal led to significant reduction in aflatoxin-DNA biomarker excretion, supporting the feasibility of preventive measures to reduce HCC risk in populations experiencing unavoidable aflatoxin exposure. The systematic, comprehensive approach used to create the total aflatoxin database justifies optimism for potential success of preventive interventions to ameliorate cancer risk attributable to aflatoxin exposure. This strategy could serve as a template for the development, validation and application of molecular and biochemical markers for other carcinogens and cancers as well as other chronic diseases resulting from environmental exposures.
Collapse
Affiliation(s)
- Gerald N Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
16
|
Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci 2011; 120 Suppl 1:S28-48. [PMID: 20881231 PMCID: PMC3043084 DOI: 10.1093/toxsci/kfq283] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022] Open
Abstract
Since their discovery 50 years ago, the aflatoxins have become recognized as ubiquitous contaminants of the human food supply throughout the economically developing world. The adverse toxicological consequences of these compounds in populations are quite varied because of a wide range of exposures leading to acute effects, including rapid death, and chronic outcomes such as hepatocellular carcinoma. Furthermore, emerging studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Aflatoxin exposures have also been demonstrated to multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV) illustrating the deleterious impact that even low toxin levels in the diet can pose for human health. The public health impact of aflatoxin exposure is pervasive. Aflatoxin biomarkers of internal and biologically effective doses have been integral to the establishment of the etiologic role of this toxin in human disease through better estimates of exposure, expanded knowledge of the mechanisms of disease pathogenesis, and as tools for implementing and evaluating preventive interventions.
Collapse
Affiliation(s)
- Thomas W Kensler
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
17
|
Khlangwiset P, Wu F. Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:998-1014. [PMID: 20419532 PMCID: PMC2885555 DOI: 10.1080/19440041003677475] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study reviews available information on the economics and efficacy of aflatoxin risk-reduction interventions, and it provides an approach for analysis of the cost-effectiveness of public health interventions to reduce aflatoxin-induced human disease. Many strategies have been developed to reduce aflatoxin or its adverse effects in the body. However, a question that has been under-addressed is how likely these strategies will be adopted in the countries that need them most to improve public health. This study evaluates two aspects crucial to the adoption of new technologies and methods: the costs and the efficacy of different strategies. First, different aflatoxin risk-reduction strategies are described and categorized into pre-harvest, post-harvest, dietary, and clinical settings. Relevant data on the costs and efficacy of each strategy, in reducing either aflatoxin in food or its metabolites in the body are then compiled and discussed. In addition, we describe which crops are affected by each intervention, who is likely to pay for the control strategy, and who is likely to benefit. A framework is described for how to evaluate cost-effectiveness of strategies according to World Health Organization (WHO) standards. Finally, it is discussed which strategies are likely to be cost-effective and helpful under different conditions worldwide of regulations, local produce and soil ecology, and potential health emergencies.
Collapse
Affiliation(s)
- Pornsri Khlangwiset
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Felicia Wu
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
18
|
Palumbo JD, O'Keeffe TL, Kattan A, Abbas HK, Johnson BJ. Inhibition of Aspergillus flavus in soil by antagonistic Pseudomonas strains reduces the potential for airborne spore dispersal. PHYTOPATHOLOGY 2010; 100:532-538. [PMID: 20465408 DOI: 10.1094/phyto-100-6-0532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Pseudomonas chlororaphis strain JP1015 and P. fluorescens strain JP2175 were previously isolated from Mississippi cornfield soil samples and selected for their growth inhibition of Aspergillus flavus in laboratory culture. In this study, the antifungal activity of these bacterial strains against A. flavus in soil coculture was determined. Growth of A. flavus was inhibited up to 100-fold by P. chlororaphis strain JP1015 and up to 58-fold by P. fluorescens strain JP2175 within 3 days following soil coinoculation. A. flavus propagule densities after 16 days remained 7- to 20-fold lower in soil treated with either bacterial strain. Using a bench-scale wind chamber, we demonstrated that treatments of soil with P. chlororaphis strain JP1015 and P. fluorescens strain JP2175 reduced airborne spores dispersed across a 1 m distance by 75- to 1,000-fold and 10- to 50-fold, respectively, depending on soil type and inoculum level. These results suggest that application of these bacterial strains may be effective in reducing soil populations of mycotoxigenic fungi, thereby reducing fungal spore formation, and ultimately reducing the potential for crop plant infection via airborne transmission.
Collapse
Affiliation(s)
- Jeffrey D Palumbo
- U.S. Department of Agriculture-Agricultural Research Services, Albany, CA, USA.
| | | | | | | | | |
Collapse
|
19
|
Brown RL, Chen ZY, Warburton M, Luo M, Menkir A, Fakhoury A, Bhatnagar D. Discovery and characterization of proteins associated with aflatoxin-resistance: evaluating their potential as breeding markers. Toxins (Basel) 2010; 2:919-33. [PMID: 22069617 PMCID: PMC3153200 DOI: 10.3390/toxins2040919] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022] Open
Abstract
Host resistance has become a viable approach to eliminating aflatoxin contamination of maize since the discovery of several maize lines with natural resistance. However, to derive commercial benefit from this resistance and develop lines that can aid growers, markers need to be identified to facilitate the transfer of resistance into commercially useful genetic backgrounds without transfer of unwanted traits. To accomplish this, research efforts have focused on the identification of kernel resistance-associated proteins (RAPs) including the employment of comparative proteomics to investigate closely-related maize lines that vary in aflatoxin accumulation. RAPs have been identified and several further characterized through physiological and biochemical investigations to determine their causal role in resistance and, therefore, their suitability as breeding markers. Three RAPs, a 14 kDa trypsin inhibitor, pathogenesis-related protein 10 and glyoxalase I are being investigated using RNAi gene silencing and plant transformation. Several resistant lines have been subjected to QTL mapping to identify loci associated with the aflatoxin-resistance phenotype. Results of proteome and characterization studies are discussed.
Collapse
Affiliation(s)
- Robert L. Brown
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA;
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Z.-Y.C.); (M.L.)
| | | | - Meng Luo
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Z.-Y.C.); (M.L.)
| | - Abebe Menkir
- International Institute of Tropical Agriculture, Ibadan, Nigeria;
| | - Ahmad Fakhoury
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Deepak Bhatnagar
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA;
| |
Collapse
|
20
|
Luo M, Brown RL, Chen ZY, Cleveland TE. Host genes involved in the interaction betweenAspergillus flavusand maize. TOXIN REV 2009. [DOI: 10.1080/15569540903089197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Chen ZY, Brown RL, Guo BZ, Menkir A, Cleveland TE. Identifying Aflatoxin Resistance-related Proteins/Genes through Proteomics and RNAi Gene Silencing1. ACTA ACUST UNITED AC 2009. [DOI: 10.3146/at07-005.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Aflatoxins are carcinogenic secondary metabolites produced mainly by Aspergillus flavus Link ex. Fries, and A. prarasiticus Speare during infection of susceptible crops, such as maize, cottonseed, peanuts and tree nuts. This paper will review research efforts in identifying aflatoxin resistance-related proteins/genes in maize. Similar strategies may be useful in peanut. For maize, although genotypes resistant to A. flavus infection or aflatoxin production have been identified, the incorporation of resistance into commercial lines has been slow due to the lack of selectable markers and poor understanding of host resistance mechanisms. Recently, resistance-associated proteins (RAPs) were identified through proteomic comparison of constitutive protein profiles between resistant and susceptible maize genotypes. These proteins belong to three major groups based on their peptide sequence homologies: storage proteins, stress-related proteins, and antifungal proteins. Preliminary characterization of some of these RAPs suggest that they play a direct role in host resistance, such as pathogenesis-related protein 10 (PR10), or an indirect role, such as glyoxalase I (GLX I), through enhancing the host stress tolerance. To verify whether these RAPs play a role in host resistance, RNA interference (RNAi) gene silencing technique was used to silence the expression of these genes in maize. RNAi vectors (glx I RNAi and pr10 RNAi) were constructed using Gateway technology, and then transformed into immature maize embryos using both bombardment and Agrobacterium infection. The extent of gene silencing in transgenic callus tissues ranged from 20% to over 99%. The RNAi silenced transgenic maize seeds have also been obtained from plants regenerated from Agrobacterium transformed callus lines. Kernel screen assay of the transgenic maize kernels demonstrated a significant increase in susceptibility to A. flavus colonization and aflatoxin production in some of the silenced transgenic lines compared with non-silenced control kernels, suggesting the direct involvement of these two proteins in aflatoxin resistance in maize.
Collapse
|
22
|
Guo B, Chen ZY, Lee RD, Scully BT. Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1281-1291. [PMID: 19017115 DOI: 10.1111/j.1744-7909.2008.00739.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently in different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are in agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses.
Collapse
Affiliation(s)
- Baozhu Guo
- Crop Protection and Management Research Unit, Agricultural Research Service, US Department of Agriculture, Tifton, Georgia 31793, USA.
| | | | | | | |
Collapse
|
23
|
Groopman JD, Kensler TW, Wild CP. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu Rev Public Health 2008; 29:187-203. [PMID: 17914931 DOI: 10.1146/annurev.publhealth.29.020907.090859] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The public health impact of aflatoxin exposure is pervasive in economically developing countries; consequently, we need to design intervention strategies for prevention that are practicable for these high-risk populations. The adverse health consequences of aflatoxins in populations are quite varied, eliciting acute effects, such as rapid death, and chronic outcomes, such as hepatocellular carcinoma. Furthermore, a number of epidemiological studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Thus, the magnitude of the problem is disseminated across the entire spectrum of age, gender, and health status in the population. The aflatoxins multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV), which illustrates the deleterious impact that even low toxin levels in the diet can pose for human health. Thus other aflatoxin interactions, which likely contribute to the disease burden, still remain to be identified. Therefore, many diverse and appropriate strategies for disease prevention are needed to decrease the incidence of aflatoxin carcinogenesis in developing countries.
Collapse
Affiliation(s)
- John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
24
|
Afolabi CG, Ojiambo PS, Ekpo EJA, Menkir A, Bandyopadhyay R. Novel Sources of Resistance to Fusarium Stalk Rot of Maize in Tropical Africa. PLANT DISEASE 2008; 92:772-780. [PMID: 30769599 DOI: 10.1094/pdis-92-5-0772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fusarium stalk rot is one of the most widespread and destructive diseases of maize, and deployment of resistant genotypes is one of the most effective strategies for controlling the disease. Fifty inbred lines and four checks from the breeding program of the International Institute of Tropical Agriculture were evaluated in field trials at Ikenne and Ibadan, Nigeria in 2003 and 2004 to identify new sources of resistance to stalk rot caused by Fusarium verticillioides. Evaluations were conducted under artificial inoculation and natural infection at Ibadan and Ikenne, respectively. Disease severity was recorded using a severity scale (SS) and direct estimation of stalk discoloration (SD). The two methods of disease assessment were compared and combined to classify genotypes into resistance groups using results from rank-sum analysis. In 2003, disease severity ranged from SS = 1 to 5 and SD = 1.3 to 33.8% at both locations. Both SS and SD were significantly (P < 0.01) higher in 2003 than in 2004 at the two locations. In both years, inbred lines significantly differed in SS (P < 0.02) and SD (P < 0.04) at Ibadan. Similarly, inbred lines significantly differed in SS (P < 0.04) and SD (P < 0.04) when genotypes were evaluated at Ikenne. Disease assessments based on SS and SD were significantly correlated (0.68 < r < 0.95, P < 0.01) in both years. Based on the results from rank-sum analysis, inbred lines were separated into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible groups. At Ibadan, 6 (11.1%) and 8 (14.8%) were identified as highly resistant and resistant, respectively, whereas 11 (20.4%) were identified as resistant at Ikenne. Inbred lines 02C14609, 02C14643, 02C14654, and 02C14678 were consistently classified as either highly resistant or resistant to stalk rot across locations and years while the check genotypes were classified either as susceptible or moderately susceptible to stalk rot. These four inbred lines identified to have high levels of disease resistance may be used for breeding maize with resistance to Fusarium stalk rot.
Collapse
Affiliation(s)
- C G Afolabi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria and Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - P S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - E J A Ekpo
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | | | | |
Collapse
|
25
|
Abstract
UNLABELLED SUMMARY Aspergillus flavus is an opportunistic pathogen of crops. It is important because it produces aflatoxin as a secondary metabolite in the seeds of a number of crops both before and after harvest. Aflatoxin is a potent carcinogen that is highly regulated in most countries. In the field, aflatoxin is associated with drought-stressed oilseed crops including maize, peanut, cottonseed and tree nuts. Under the right conditions, the fungus will grow and produce aflatoxin in almost any stored crop seed. In storage, aflatoxin can be controlled by maintaining available moisture at levels below that which will support growth of A. flavus. A number of field control measures are being utilized or explored, including: modification of cultural practices; development of resistant crops through molecular and proteomic techniques; competitive exclusion using strains that do not produce aflatoxin; and development of field treatments that would block aflatoxin production. TAXONOMY Aspergillus flavus Link (teleomorph unknown) kingdom Fungi, phyllum Ascomycota, order Eurotiales, class Eurotiomycetes, family Trichocomaceae, genus Aspergillus, species flavus. HOST RANGE Aspergillus flavus has a broad host range as an opportunistic pathogen/saprobe. It is an extremely common soil fungus. The major concern with this fungus in agriculture is that it produces highly carcinogenic toxins called aflatoxins which are a health hazard to animals. In the field, A. flavus is predominantly a problem in the oilseed crops maize, peanuts, cottonseed and tree nuts. Under improper storage conditions, A. flavus is capable of growing and forming aflatoxin in almost any crop seed. It also is a pathogen of animals and insects. In humans it is predominantly an opportunistic pathogen of immunosuppressed patients. USEFUL WEBSITES http://www.aspergillusflavus.org, http://www.aflatoxin.info/health.asp, plantpathology.tamu.edu/aflatoxin, http://www.aspergillus.org.uk.
Collapse
Affiliation(s)
- Maren A Klich
- USDA/ARS/Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| |
Collapse
|
26
|
Palumbo JD, O'Keeffe TL, Abbas HK. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides. J Food Prot 2007; 70:1615-21. [PMID: 17685333 DOI: 10.4315/0362-028x-70.7.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid coculture against A. flavus and on agar media against A. flavus and F. verticillioides. We identified 221 strains that inhibited growth of both fungi. These bacteria were further differentiated by their production of extracellular enzymes that hydrolyzed chitin and yeast cell walls and by production of antifungal metabolites. Based on molecular and nutritional identification of the bacterial strains, the most prevalent genera isolated from rhizosphere samples were Burkholderia and Pseudomonas, and the most prevalent genera isolated from nonrhizosphere soil were Pseudomonas and Bacillus. Less prevalent genera included Stenotrophomonas, Agrobacterium, Variovorax, Wautersia, and several genera of coryneform and enteric bacteria. In quantitative coculture assays, strains of P. chlororaphis and P. fluorescens consistently inhibited growth of A. flavus and F. verticillioides in different media. These results demonstrate the potential for developing individual biocontrol agents for simultaneous control of the mycotoxigenic A. flavus and F. verticillioides.
Collapse
Affiliation(s)
- Jeffrey D Palumbo
- Plant Mycotoxin Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, California 94710, USA.
| | | | | |
Collapse
|
27
|
Afolabi CG, Ojiambo PS, Ekpo EJA, Menkir A, Bandyopadhyay R. Evaluation of Maize Inbred Lines for Resistance to Fusarium Ear Rot and Fumonisin Accumulation in Grain in Tropical Africa. PLANT DISEASE 2007; 91:279-286. [PMID: 30780561 DOI: 10.1094/pdis-91-3-0279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium ear rot and fumonisin contamination is a major problem facing maize growers worldwide, and host resistance is the most effective strategy to control the disease, but resistant genotypes have not been identified. In 2003, a total of 103 maize inbred lines were evaluated for Fusarium ear rot caused by Fusarium verticillioides in field trials in Ikenne and Ibadan, Nigeria. Disease was initiated from natural infection in the Ikenne trial and from artificial inoculation in the Ibadan trial. Ear rot severity ranged from 1.0 to 6.0 in both locations in 2003. Fifty-two inbred lines with disease severity ≤3 (i.e., ≤ 10% visible symptoms on ears) were selected and reevaluated in 2004 for ear rot resistance, incidence of discolored kernels, and fumonisin contamination in grain. At both locations, ear rot severity on the selected lines was significantly (P < 0.0020) higher in 2004 than in 2003. The effects of selected inbred lines on disease severity were highly significant at Ikenne (P = 0.0072) and Ibadan (P < 0.0001) in 2004. Inbred lines did not affect incidence of discolored kernels at both locations and across years except at Ikenne (P = 0.0002) in 2004. Similarly, significant effects of inbred lines on fumonisin concentration were observed only at Ikenne (P = 0.0201) in 2004. However, inbred lines 02C14585, 02C14593, 02C14603, 02C14606, 02C14624, and 02C14683 had consistently low disease severity across years and locations. Fumonisin concentration was significantly correlated with ear rot only at Ikenne (R = 0.42, P < 0.0001). Correlation between fumonisin concentration and incidence of discolored kernels was also significant at Ikenne (R = 0.39, P < 0.0001) and Ibadan (R = 0.35, P = 0.0007). At both locations, no significant inbred × year interaction was observed for fumonisin concentration. Five inbred lines, namely 02C14585, 02C14603, 02C14606, 02C14624, and 02C14683, consistently had the lowest fumonisin concentration in both trials. Two of these inbred lines, 02C14624 and 02C14585, had fumonisin levels <5.0 μg/g across years in trials where disease was initiated from both natural infection and artificial inoculation. These lines that had consistently low disease severity are useful for breeding programs to develop fumonisin resistant lines.
Collapse
Affiliation(s)
- C G Afolabi
- International Institute of Tropical Agriculture (IITA), P.M.B. 5320, Ibadan, Nigeria and Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | | | - E J A Ekpo
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - A Menkir
- IITA, P.M.B. 5320, Ibadan, Nigeria
| | | |
Collapse
|