1
|
Madrid-Carbajal CJ, de la Rasilla TPG, Iscar-Urrutia M, Solís-García M, Fernández-Álvarez R, Pérez-Martínez L, Zapico-González MS, Garcia-Clemente M. Influence of Fungal Colonization on Exacerbations in Patients with Cystic Fibrosis. J Fungi (Basel) 2024; 10:875. [PMID: 39728371 DOI: 10.3390/jof10120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The importance of fungal pathogens in cystic fibrosis (CF) patients and their diagnosis remains a challenge, so our aim was to analyze the influence of the detection of fungi in sputum by using conventional culture and molecular techniques, polymerase chain reaction (PCR), lateral flow devices (LFDs), and galactomannan (GM) on exacerbations in patients with cystic fibrosis. A prospective study was conducted in patients via follow-up in the CF Unit of the Central University Hospital of Asturias from January 2021 to April 2022. Adult patients with at least one documented exacerbation were included. A complete fungal analysis of sputum samples was performed both in a period of clinical stability and in the exacerbation period. The microbiological study included conventional cultures for fungi, qPCR (polymerase chain reaction), LFDs (lateral flow devices), and galactomannan (GM) in sputum. We found that there were changes in their detection according to whether the patient is in a period of clinical stability or exacerbation; the positivity of the molecular tests and biomarkers in the period of exacerbation increased by 14%, 25%, and 21% for the analysis by qPCR, GM, and LFDs for Aspergillus and by 15% for the sputum culture for Aspergillus, which may mean that fungal isolates may play a role in the exacerbations of these patients.
Collapse
Affiliation(s)
| | | | - Marta Iscar-Urrutia
- Pneumology Department, Central Universitary Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Marta Solís-García
- Pneumology Department, Central Universitary Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ramón Fernández-Álvarez
- Pneumology Department, Central Universitary Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Liliana Pérez-Martínez
- Pneumology Department, Central Universitary Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | | | - Marta Garcia-Clemente
- Pneumology Department, Central Universitary Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| |
Collapse
|
2
|
Rizik S, Bentur L, Bar-Yoseph R, Szwarcwort M, Pollak D, Gur M, Meir M. Clinical Significance of Mucor in Airway Culture of Immunocompetent Patients With Chronic Lung Disease. Pediatr Infect Dis J 2024; 43:987-990. [PMID: 38865559 DOI: 10.1097/inf.0000000000004427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Mucor within the airways of immunocompromised patients often signifies an invasive life-threatening infection. However, its significance in immunocompetent patients with chronic lung diseases is less clear. We aimed to assess the clinical implication of mucor in airway-secretion cultures of these patients. METHODS A single-center retrospective cohort study was performed. Patients with cystic fibrosis (CF), primary ciliary dyskinesia (PCD) or non-CF/non-PCD bronchiectasis followed in our Pediatric Pulmonary Institute, with sputum or bronchoalveolar lavage cultures growing Mucorales molds in the years 2010-2022, were included. Demographic and clinical parameters such as body mass index and spirometry values (forced expiratory volume at 1 second) were collected and compared with values up to 12 months prior to and following the index (positive culture) visit. RESULTS A total of 27 patients of whom 22 (82%) patients were with CF, 3 with PCD (11%) and 2 (7%) with non-CF/non-PCD bronchiectasis were included. Median age was 21.8 (14.9-32.1) years, with forced expiratory volume at 1 second of 62.8% ± 21.9% at the index visit. None of the patients developed disseminated disease, none had clinical or radiological evidence of fungal disease and none required antifungal therapy. Throughout the 12 months prior to and following the positive cultures, no significant changes were noted in body mass index, forced expiratory volume at 1 second, frequency of pulmonary exacerbations, days of hospitalization or days of antibiotic treatment. CONCLUSIONS Evidence of mucor in airway cultures of immunocompetent patients with chronic lung disease does not necessarily signify clinical deterioration nor suggests invasive fungal disease. Larger, long-term prospective studies are required to obviate the need for a thorough evaluation in these patients.
Collapse
Affiliation(s)
- Suha Rizik
- From the Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus
| | - Lea Bentur
- From the Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
| | - Ronen Bar-Yoseph
- From the Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
| | | | - Dina Pollak
- Clinical Microbiology Laboratory, Rambam Health Care Campus
| | - Michal Gur
- From the Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
| | - Michal Meir
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
- Pediatric Infectious Diseases Unit, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
3
|
Angebault C, Botterel F. Metagenomics Applied to the Respiratory Mycobiome in Cystic Fibrosis. Mycopathologia 2024; 189:82. [PMID: 39264513 PMCID: PMC11392981 DOI: 10.1007/s11046-024-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by chronic microbial colonization and inflammation of the respiratory tract (RT), leading to pulmonary exacerbation (PEx) and lung damage. Although the lung bacterial microbiota has been extensively studied, the mycobiome remains understudied. However, its importance as a contributor to CF pathophysiology has been highlighted. The objective of this review is to provide an overview of the current state of knowledge regarding the mycobiome, as described through NGS-based studies, in patients with CF (pwCF).Several studies have demonstrated that the mycobiome in CF lungs is a dynamic entity, exhibiting a lower diversity and abundance than the bacterial microbiome. Nevertheless, the progression of lung damage is associated with a decrease in fungal and bacterial diversity. The core mycobiome of the RT in pwCFs is mainly composed of yeasts (Candida spp., Malassezia spp.) and molds with lower abundance. Some fungi (Aspergillus, Scedosporium/Pseudallescheria) have been demonstrated to play a role in PEx, while the involvement of others (Candida, Pneumocystis) remains uncertain. The "climax attack" ecological model has been proposed to explain the complexity and interplay of microbial populations in the RT, leading to PEx and lung damage. NGS-based studies also enable the detection of intra- and interkingdom correlations between fungi and bacteria. Further studies are required to ascertain the biological and pathophysiological relevance of these correlations. Finally, with the recent advent of CFTR modulators, our understanding of the pulmonary microbiome and mycobiome in pwCFs is about to change.
Collapse
Affiliation(s)
- Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France.
- Dynamyc UR 7380, USC Anses, Ecole Nationale Vétérinaire d'Alfort (ENVA), Faculté de Santé, Univ. Paris-Est Créteil (UPEC), Créteil, France.
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
- Dynamyc UR 7380, USC Anses, Ecole Nationale Vétérinaire d'Alfort (ENVA), Faculté de Santé, Univ. Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
4
|
Weiser R, Ronchetti K, Tame JD, Hoehn S, Jurkowski TP, Mahenthiralingam E, Forton JT. The fungal diversity in the lungs of children with cystic fibrosis captured by sputum-induction and bronchoalveolar lavage. J Cyst Fibros 2024:S1569-1993(24)00797-5. [PMID: 39095260 DOI: 10.1016/j.jcf.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The prevalence of fungi in cystic fibrosis (CF) lung infections is poorly understood and studies have focused on adult patients. We investigated the fungal diversity in children with CF using bronchoalveolar lavage (BAL) and induced sputum (IS) samples to capture multiple lung niches. METHODS Sequencing of the fungal ITS2 region and molecular mycobiota diversity analysis was performed on 25 matched sets of BAL-IS samples from 23 children collected as part of the CF-SpIT study (UKCRN14615; ISRCTNR12473810). RESULTS Aspergillus and Candida were detected in all samples and were the most abundant and prevalent genera, followed by Dipodascus, Lecanicillium and Simplicillium. The presumptive CF pathogens Exophiala, Lomentospora and Scedosporium were identified at variable abundances in 100 %, 64 %, and 24 % of sample sets, respectively. Fungal pathogens observed at high relative abundance (≥40 %) were not accurately diagnosed by routine culture microbiology in over 50 % of the cohort. The fungal communities captured by BAL and IS samples were similar in diversity and composition, with exception to C. albicans being significantly increased in IS samples. The respiratory mycobiota varied greatly between individuals, with only 13 of 25 sample sets containing a dominant fungal taxon. In 11/25 BAL sample sets, airway compartmentalisation was observed with diverse mycobiota detected from different lobes of the lung. CONCLUSIONS The paediatric mycobiota is diverse, complex and inadequately diagnosed by conventional microbiology. Overlapping fungal communities were identified in BAL and IS samples, showing that IS can capture fungal genera associated with the lower airway. Compartmentalisation of the lower airway presents difficulties for consistent mycobiota sampling.
Collapse
Affiliation(s)
- Rebecca Weiser
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, UK
| | - Katherine Ronchetti
- Department of Paediatric Respiratory Medicine, Noah's Ark Children's Hospital for Wales, Cardiff, UK; Department of Paediatric Physiotherapy, Noah's Ark Children's Hospital for Wales, Cardiff, UK
| | - Jo-Dee Tame
- Department of Paediatric Respiratory Medicine, Noah's Ark Children's Hospital for Wales, Cardiff, UK; Department of Paediatric Physiotherapy, Noah's Ark Children's Hospital for Wales, Cardiff, UK; School of Healthcare Sciences, Cardiff University, UK
| | - Sven Hoehn
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, UK
| | - Tomasz P Jurkowski
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, UK
| | - Julian T Forton
- Department of Paediatric Respiratory Medicine, Noah's Ark Children's Hospital for Wales, Cardiff, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
5
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Schwarz C, Eschenhagen PN, Mainz JG, Schmidergall T, Schuette H, Romanowska E. Pulmonary Aspergillosis in People with Cystic Fibrosis. Semin Respir Crit Care Med 2024; 45:128-140. [PMID: 38286138 DOI: 10.1055/s-0043-1777267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In the last decade, fungal respiratory diseases have been increasingly investigated for their impact on the clinical course of people with cystic fibrosis (CF), with a particular focus on infections caused by Aspergillus spp. The most common organisms from this genus detected from respiratory cultures are Aspergillus fumigatus and Aspergillus terreus, followed by Aspergillus flavus, Aspergillus niger, and Aspergillus nidulans. These species have been identified to be both chronic colonizers and sources of active infection and may negatively impact lung function in people with CF. This review article discusses definitions of aspergillosis, challenges in clinical practice, and current literature available for laboratory findings, clinical diagnosis, and treatment options for pulmonary diseases caused by Aspergillus spp. in people with CF.
Collapse
Affiliation(s)
- C Schwarz
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - P N Eschenhagen
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - J G Mainz
- Department of Paediatric Pneumology, Allergology, Cystic Fibrosis Center, Klinikum Westbrandenburg, Brandenburg a. d. Havel, Germany
- University Hospital of the Brandenburg Medical School, Brandenburg a. d. Havel, Germany
| | - T Schmidergall
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - H Schuette
- Pneumology and Respiratory Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - E Romanowska
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| |
Collapse
|
7
|
Abstract
In cystic fibrosis, a new era has started with the approval and use of highly effective cystic fibrosis transport regulator (CFTR) modulator therapy. As pulmonary function is increasing and exacerbation rate significantly decreases, the current meaning of fungal pulmonary diseases is questioned. During the past couple of decades, several studies have been conducted regarding fungal colonization and infection of the airways in people with cystic fibrosis. Although Aspergillus fumigatus for filamentous fungi and Candida albicans for yeasts remain by far the most common fungal species in patients with cystic fibrosis, the pattern of fungal species associated with cystic fibrosis has considerably diversified recently. Fungi such as Scedosporium apiospermum or Exophiala dermatitidis are recognized as pathogenic in cystic fibrosis and therefore need attention in clinical settings. In this article, current definitions are stated. Important diagnostic steps are described, and their usefulness discussed. Furthermore, clinical treatment strategies and recommendations are named and evaluated. In cystic fibrosis, fungal entities can be divided into different subgroups. Besides colonization, allergic bronchopulmonary aspergillosis, bronchitis, sensitization, pneumonia, and aspergilloma can occur as a fungal disease entity. For allergic bronchopulmonary aspergillosis, bronchitis, pneumonia, and aspergilloma, clear indications for therapy exist but this is not the case for sensitization or colonization. Different pulmonary fungal disease entities in people with cystic fibrosis will continue to occur also in an era of highly effective CFTR modulator therapy. Whether the percentage will decrease or not will be the task of future evaluations in studies and registry analysis. Using the established definition for different categories of fungal diseases is recommended and should be taken into account if patients are deteriorating without responding to antibiotic treatment. Drug-drug interactions, in particular when using azoles, should be recognized and therapies need to be adjusted accordingly.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Education and Research, Health and Medical University-Health and Medical University Potsdam, Potsdam, Germany.,Division of Cystic Fibrosis, Cystic Fibrosis Center West Brandenburg, Postdam, Germany
| |
Collapse
|
8
|
Gileles-Hillel A, Yochi Harpaz L, Breuer O, Reiter J, Tsabari R, Kerem E, Cohen-Cymberknoh M, Stafler P, Mei-Zahav M, Toukan Y, Bentur L, Shoseyov D. The clinical yield of bronchoscopy in the management of cystic fibrosis: A retrospective multicenter study. Pediatr Pulmonol 2023; 58:500-506. [PMID: 36314650 PMCID: PMC10100270 DOI: 10.1002/ppul.26216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pulmonary disease is the leading cause of morbidity and mortality in people with cystic fibrosis (pwCF). Several studies have shown no benefit for bronchoscopy and bronchoalveolar lavage (BAL) over sputum to obtain microbiological cultures, hence the role of bronchoscopy in pwCF is unclear. AIM To analyze how bronchoscopy results affected clinical decision-making in pwCF and assess safety. METHODS A retrospective analysis of all charts of pwCF from three CF centers in Israel, between the years 2008 and 2019. We collected BAL culture results as well as sputum cultures obtained within 1 month of the BAL sample. A meaningful yield was defined as a decision to start antibiotics, change the antibiotic regimen, hospitalize the patient for treatment, or the resolution of the problem that led to bronchoscopy (e.g., atelectasis or hemoptysis). RESULTS During the study years, of the 428 consecutive patient charts screened, 72 patients had 154 bronchoscopies (2.14 bronchoscopies/patient). Forty-five percent of the bronchoscopies had a meaningful clinical yield. The finding of copious sputum on bronchoscopy was strongly associated with a change in treatment (OR: 5.25, 95%CI: 2.1-13.07, p < 0.001). BAL culture results were strongly associated with a meaningful yield, specifically isolation of Aspergillus spp. (p = 0.003), Haemophilus influenza (p = 0.001). Eight minor adverse events following bronchoscopy were recorded. CONCLUSIONS In this multicenter retrospective analysis of bronchoscopy procedures from three CF centers, we have shown that a significant proportion of bronchoscopies led to a change in treatment, with no serious adverse events. Our findings suggest that bronchoscopy is a safe procedure that may assist in guiding treatment in some pwCF. Future studies should evaluate whether BAL-guided decision-making may also lead to a change in clinical outcomes in pwCF.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Center for Translational Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Oded Breuer
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joel Reiter
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Tsabari
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Kerem
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Patrick Stafler
- Schneider Children's Medical Center of Israel, Petach Tikva, Israel and Sackler, Pulmonary Institute, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Meir Mei-Zahav
- Schneider Children's Medical Center of Israel, Petach Tikva, Israel and Sackler, Pulmonary Institute, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Yazeed Toukan
- Pediatric Pulmonology Unit, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Lea Bentur
- Pediatric Pulmonology Unit, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - David Shoseyov
- Pediatric Pulmonology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/ Lomentospora in Cystic Fibrosis Patients. J Fungi (Basel) 2023; 9:jof9020158. [PMID: 36836272 PMCID: PMC9959861 DOI: 10.3390/jof9020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF.
Collapse
|
10
|
Jayawardena-Thabrew H, Warris A, Ferreras-Antolin L, Demirjian A, Drysdale SB, Emonts M, McMaster P, Paulus S, Patel S, Kinsey S, Vergnano S, Whittaker E, Ferreras-Antolin L. Nystatin is commonly prescribed as prophylaxis in children beyond the neonatal age. Med Mycol 2022; 61:6969424. [PMID: 36610724 DOI: 10.1093/mmy/myac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The indications for nystatin as prophylaxis or treatment are limited. In the PASOAP (Pediatric Antifungal Stewardship Optimizing Antifungal Prescription) study, high use of nystatin in hospitalized children beyond the neonatal age was observed. In this report, we present the data on nystatin use in infants and children ≥ 3 months who participated in the PASOAP study. Nystatin was prescribed mainly for prophylaxis. Congenital heart disease, cystic fibrosis, and chronic renal disease were the most commonly reported conditions in children receiving prophylactic nystatin. There is sparse evidence supporting the use of nystatin prophylaxis beyond neonates; trials in specific pediatric patient groups are required.
Collapse
Affiliation(s)
| | - Adilia Warris
- Medical Research Council Center for Medical Mycology, University of Exeter, Exeter, United Kingdom.,Department of Pediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Laura Ferreras-Antolin
- Medical Research Council Center for Medical Mycology, University of Exeter, Exeter, United Kingdom.,Pediatric Infectious Diseases and Immunology Unit, St George's University Hospitals, NHS Foundation Trust, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Laura Ferreras-Antolin
- Medical Research Council Centre for Medical Mycology. University of Exeter , UK
- Paediatric Infectious Diseases and Immunology Unit. St George's University Hospitals NHS Foundation Trust , London , UK
| | | |
Collapse
|
11
|
Li Z, Tang J, Zhu J, Xie M, Huang S, Li S, Zhan Y, Zeng W, Xu T, Ye F. The convoluted process of diagnosing pulmonary mycosis caused by Exophiala dermatitidis: a case report. BMC Infect Dis 2022; 22:433. [PMID: 35509001 PMCID: PMC9069750 DOI: 10.1186/s12879-022-07399-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Background Etiological diagnosis is a key step in the treatment of patients with rare pulmonary mycosis, and the lack of understanding of this disease and lack of specific markers for the detection of rare species, such as Exophiala dermatitidis, add to the difficulty in diagnosing the condition. Therefore, improving the diagnostic strategies for this disease is very important. Case presentation A 52-year-old man presented with cough, sputum production and hemoptysis; chest computed tomography (CT) revealed multiple bilateral lesions. The pathogen was unable to be identified after three biopsies. Subsequently, we performed combined tissue metagenomic next-generation sequencing (mNGS). The results of mNGS and a good therapeutic response helped to identify the causative pathogen as Exophiala dermatitidis. Finally, the patient was diagnosed with Exophiala dermatitidis pneumonia. Conclusions Combining molecular techniques, such as mNGS, with clinical microbiological tests will improve the rate of positivity in the diagnosis of rare fungal infections, and the importance of follow-up should be emphasized. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07399-y.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Jianli Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Jinping Zhu
- Department of Respiratory and Critical Care Medicine, Songgang People's Hospital, Shenzhen, 518105, China
| | - Mingzhou Xie
- Vision Medicals Co. Ltd., Guangzhou, 510663, China
| | - Shaoqing Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Weiqi Zeng
- Vision Medicals Co. Ltd., Guangzhou, 510663, China
| | - Teng Xu
- Department of Respiratory and Critical Care Medicine, Songgang People's Hospital, Shenzhen, 518105, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
12
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
13
|
Einarsson GG, Vanaudenaerde BM, Spence CD, Lee AJ, Boon M, Verleden GM, Elborn JS, Dupont LJ, Van Raemdonck D, Gilpin DF, Vos R, Verleden SE, Tunney MM. Microbial Community Composition in Explanted Cystic Fibrosis and Control Donor Lungs. Front Cell Infect Microbiol 2022; 11:764585. [PMID: 35368453 PMCID: PMC8966769 DOI: 10.3389/fcimb.2021.764585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
To date, investigations of the microbiota in the lungs of people with Cystic Fibrosis (PWCF) have primarily focused on microbial community composition in luminal mucus, with fewer studies observing the microbiota in tissue samples from explanted lung tissue. Here, we analysed both tissue and airway luminal mucus samples extracted from whole explanted lungs of PWCF and unused donor lungs. We determined if the lung microbiota in end-stage CF varied within and between patients, was spatially heterogeneous and related to localized structural damage. Microbial community composition was determined by Illumina MiSeq sequencing and related to the CF-Computed Tomography (CT) score and features of end-stage lung disease on micro-CT. Ninety-eight CF tissue (n=11 patients), 20 CF luminal mucus (n=8 patients) and 33 donor tissue (n=4 patients) samples were analysed. Additionally, we compared 20 paired CF tissue and luminal mucus samples that enabled a direct “geographical” comparison of the microbiota in these two niches. Significant differences in microbial communities were apparent between the 3 groups. However, overlap between the three groups, particularly between CF and donor tissue and CF tissue and CF luminal mucus was also observed. Microbial diversity was lower in CF luminal mucus compared to CF tissue, with dominance higher in luminal mucus. For both CF and donor tissue, intra- and inter-patient variability in ecological parameters was observed. No relationships were observed between ecological parameters and CF-CT score, or features of end-stage lung disease. The end-stage CF lung is characterised by a low diversity microbiota, differing within and between individuals. No clear relationship was observed between regional microbiota variation and structural lung damage.
Collapse
Affiliation(s)
- Gisli G. Einarsson
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Gisli G. Einarsson,
| | - Bart M. Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Christopher D. Spence
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew J. Lee
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mieke Boon
- Department of Pediatics, Cystic Fibrosis Center, UZ Leuven, Leuven, Belgium
| | - Geert M. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - J. Stuart Elborn
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Lieven J. Dupont
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Deirdre F. Gilpin
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Stijn E. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp (UA), Wilrijk, Belgium
- Department of Thoracic & Vascular Surgery, University Hospital Antwerp (UZA), Edegem, Belgium
- Department of Pneumology, University Hospital Antwerp (UZA), Edegem, Belgium
| | - Michael M. Tunney
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Sass G, Scherpe L, Martinez M, Marsh JJ, Stevens DA. Metrics of Antifungal Effects of Ciprofloxacin on Aspergillus fumigatus Planktonic Growth and Biofilm Metabolism; Effects of Iron and Siderophores. J Fungi (Basel) 2022; 8:jof8030240. [PMID: 35330242 PMCID: PMC8950033 DOI: 10.3390/jof8030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus frequently coexist in the airways of immunocompromised patients or individuals with cystic fibrosis. Ciprofloxacin (CIP) is a synthetic quinolone antibiotic commonly used to treat bacterial infections, such as those produced by Pseudomonas aeruginosa. CIP binds iron, and it is unclear what effect this complex would have on the mycobiome. The effects of CIP on Aspergillus were dependent on the iron levels present, and on the presence of Aspergillus siderophores. We found that CIP alone stimulated wildtype planktonic growth, but not biofilm metabolism. At high concentrations, CIP antagonized a profungal effect of iron on wildtype Aspergillus metabolism, presumably owing to iron chelation. CIP interfered with the metabolism and growth of an Aspergillus siderophore mutant, with the effect on metabolism being antagonized by iron. CIP acted synergistically with iron on the growth of the mutant, and, to a lesser extent, the wildtype. In summary, CIP can increase fungal growth or affect fungal metabolism, depending on the local iron concentration and available siderophores. Therefore, high local CIP concentrations during treatment of Pseudomonas–Aspergillus co-infections may increase the fungal burden.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Correspondence: ; Tel.: +1-408-998-4557
| | - Lynn Scherpe
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Faculty of Science and Engineering, Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - Julianne J. Marsh
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
16
|
Magee LC, Louis M, Khan V, Micalo L, Chaudary N. Managing Fungal Infections in Cystic Fibrosis Patients: Challenges in Clinical Practice. Infect Drug Resist 2021; 14:1141-1153. [PMID: 33790585 PMCID: PMC7998013 DOI: 10.2147/idr.s267219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease characterized by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Impairment of the CFTR protein in the respiratory tract results in the formation of thick mucus, development of inflammation, destruction of bronchial tissue, and development of bacterial or fungal infections over time. CF patients are commonly colonized and/or infected with fungal organisms, Candida albicans or Aspergillus fumigatus, with prevalence rates ranging from 5% to 78% in the literature. Risk factors for acquiring fungal organisms include older age, coinfection with Pseudomonas aeruginosa, prolonged use of oral and inhaled antibiotics, and lower forced expiratory volume (FEV1). There are limited data available to differentiate between contamination, colonization, and active infection. Furthermore, the pathogenicity of colonization is variable in the literature as some studies report a decline in lung function associated with fungal colonization whereas others showed no difference. Limited data are available for the eradication of fungal colonization and the treatment of active invasive aspergillosis in adult CF patients. In this review article, we discuss the challenges in clinical practice and current literature available for laboratory findings, clinical diagnosis, and treatment options for fungal infections in adult CF patients.
Collapse
Affiliation(s)
- Lauren C Magee
- Department of Pharmacy, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Mariam Louis
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Vaneeza Khan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lavender Micalo
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
The Host Immune Response to Scedosporium/ Lomentospora. J Fungi (Basel) 2021; 7:jof7020075. [PMID: 33499053 PMCID: PMC7912657 DOI: 10.3390/jof7020075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Infections caused by the opportunistic pathogens Scedosporium/Lomentospora are on the rise. This causes problems in the clinic due to the difficulty in diagnosing and treating them. This review collates information published on immune response against these fungi, since an understanding of the mechanisms involved is of great interest in developing more effective strategies against them. Scedosporium/Lomentospora cell wall components, including peptidorhamnomannans (PRMs), α-glucans and glucosylceramides, are important immune response activators following their recognition by TLR2, TLR4 and Dectin-1 and through receptors that are yet unknown. After recognition, cytokine synthesis and antifungal activity of different phagocytes and epithelial cells is species-specific, highlighting the poor response by microglial cells against L. prolificans. Moreover, a great number of Scedosporium/Lomentospora antigens have been identified, most notably catalase, PRM and Hsp70 for their potential medical applicability. Against host immune response, these fungi contain evasion mechanisms, inducing host non-protective response, masking fungal molecular patterns, destructing host defense proteins and decreasing oxidative killing. In conclusion, although many advances have been made, many aspects remain to be elucidated and more research is necessary to shed light on the immune response to Scedosporium/Lomentospora.
Collapse
|
18
|
Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on Respiratory Fungal Infections in Cystic Fibrosis Lung Disease and after Lung Transplantation. J Fungi (Basel) 2020; 6:jof6040381. [PMID: 33371198 PMCID: PMC7766476 DOI: 10.3390/jof6040381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis is the most common autosomal-recessive metabolic disease in the Western world. Impaired trans-membrane chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes thickened body fluids. In the respiratory system, this leads to chronic suppurative cough and recurrent pulmonary infective exacerbations, resulting in progressive lung damage and respiratory failure. Whilst the impact of bacterial infections on CF lung disease has long been recognized, our understanding of pulmonary mycosis is less clear. The range and detection rates of fungal taxa isolated from CF airway samples are expanding, however, in the absence of consensus criteria and univocal treatment protocols for most respiratory fungal conditions, interpretation of laboratory reports and the decision to treat remain challenging. In this review, we give an overview on fungal airway infections in CF and CF-lung transplant recipients and focus on the most common fungal taxa detected in CF, Aspergillus fumigatus, Candida spp., Scedosporium apiospermum complex, Lomentospora species, and Exophiala dermatitidis, their clinical presentations, common treatments and prophylactic strategies, and clinical challenges from a physician’s point of view.
Collapse
Affiliation(s)
- Sabine Renner
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Edith Nachbaur
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
- Correspondence:
| |
Collapse
|
19
|
Mello TP, Lackner M, Branquinha MH, Santos ALS. Impact of biofilm formation and azoles' susceptibility in Scedosporium/Lomentospora species using an in vitro model that mimics the cystic fibrosis patients' airway environment. J Cyst Fibros 2020; 20:303-309. [PMID: 33334714 DOI: 10.1016/j.jcf.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Scedosporium species are the second most isolated filamentous fungi from cystic fibrosis (CF) patients; however, little is known about their virulence aspects in a CF environment. In this context, the current study aimed to evaluate the (i) antifungal susceptibility profiles, (ii) ability to form biofilm and (iii) impact of biofilm formation on the susceptibility to azoles in 21 clinical isolates of Scedosporium recovered from CF patients. METHODS Scedosporium apiospermum (n=6), S. aurantiacum (n=6), S. minutisporum (n=3) and Lomentospora prolificans (n=6) were firstly used to compare the antifungal susceptibility profile using a standard culture broth (RPMI-1640) and a mucin (M)-containing synthetic CF sputum medium (SCFM). The ability to form biofilms was investigated in polystyrene microtiter plates containing Sabouraud-dextrose (a classical medium), SCFM and SCFM+M. Mature biofilms were tested for their susceptibility to azoles by microdilution assay. RESULTS Our results showed that the minimum inhibitory concentrations (MICs) for planktonic conidia ranged from 0.25 to >16.0 mg/L for voriconazole and 1.0 to >16.0 mg/L for posaconazole. Overall, the MICs for azoles increased from 2- to 8-folds when the susceptibility tests were performed using SCFM+M compared to RPMI-1640. All fungi formed robust biofilms on polystyrene surface at 72 h, with a significant increase in the MICs (ranging from 128- to 1024-times) against both azoles compared to the planktonic cells. CONCLUSION These findings confirm the challenge of antifungal treatment of CF patients infected with Scedosporium/Lomentospora and also demonstrated a strong biofilm formation, with extensive increase in antifungal resistance, triggered underconditions mimicking the CF patient airway.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michaela Lackner
- Medical University of Innsbruck, Institute for Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Risk factors for respiratory Aspergillus fumigatus in German Cystic Fibrosis patients and impact on lung function. Sci Rep 2020; 10:18999. [PMID: 33149181 PMCID: PMC7643137 DOI: 10.1038/s41598-020-75886-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Airway inflammation and chronic lung infections in cystic fibrosis (CF) patients are mostly caused by bacteria, e.g. Pseudomonas aeruginosa (PA). The role of fungi in the CF lung is still not well elucidated, but evidence for a harmful and complex role is getting stronger. The most common filamentous fungus in CF is Aspergillus fumigatus (AF). Age and continuous antibiotic treatment have been discussed as risk factors for AF colonisation but did not differentiate between transient and persistent AF colonisation. Also, the impact of co-colonisation of PA and AF on lung function is still under investigation. Data from patients with CF registered in the German Cystic Fibrosis Registry database in 2016 and 2017 were retrospectively analysed, involving descriptive and multivariate analysis to assess risk factors for transient or persistent AF colonisation. Age represented an independent risk factor for persistent AF colonisation. Prevalence was low in children less than ten years, highest in the middle age and getting lower in higher age (≥ 50 years). Continuous antibiotic lung treatment was significantly associated with AF prevalence in all age groups. CF patients with chronic PA infection had a lower lung function (FEV1%predicted), which was not influenced by an additional AF colonisation. AF colonisation without chronic PA infection, however, was significantly associated with a lower function, too. Older age up to 49 years and continuous antibiotic use were found to be the main risk factors for AF permanent colonisation. AF might be associated with decrease of lung function if not disguised by chronic PA infection.
Collapse
|
21
|
Svedberg M, Gustafsson P, Tiddens H, Imberg H, Pivodic A, Lindblad A. Risk factors for progression of structural lung disease in school-age children with cystic fibrosis. J Cyst Fibros 2020; 19:910-916. [DOI: 10.1016/j.jcf.2019.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
|
22
|
Brito Devoto T, Hermida‐Alva K, Posse G, Finquelievich JL, García‐Effrón G, Cuestas ML. High prevalence of triazole‐resistant
Aspergillus fumigatus sensu stricto
in an Argentinean cohort of patients with cystic fibrosis. Mycoses 2020; 63:937-941. [DOI: 10.1111/myc.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Tomás Brito Devoto
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) Universidad de Buenos AiresCONICET Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas Argentina
| | - Katherine Hermida‐Alva
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) Universidad de Buenos AiresCONICET Buenos Aires Argentina
| | - Gladys Posse
- Laboratorio de Micología Hospital Nacional Profesor Alejandro Posadas Buenos Aires Argentina
| | - Jorge L. Finquelievich
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) Universidad de Buenos AiresCONICET Buenos Aires Argentina
| | - Guillermo García‐Effrón
- Consejo Nacional de Investigaciones Científicas y Tecnológicas Argentina
- Laboratorio de Micología y Diagnóstico Molecular Cátedra de Parasitología y Micología Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral Santa Fe Argentina
| | - María L. Cuestas
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) Universidad de Buenos AiresCONICET Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas Argentina
| |
Collapse
|
23
|
Evaluation of a New Culture Protocol for Enhancing Fungal Detection Rates in Respiratory Samples of Cystic Fibrosis Patients. J Fungi (Basel) 2020; 6:jof6020082. [PMID: 32526938 PMCID: PMC7345163 DOI: 10.3390/jof6020082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis (CF) can be complicated by fungal infection of the respiratory tract. Fungal detection rates in CF sputa are highly dependent on the culture protocol and incubation conditions and thus may lead to an underestimation of the true prevalence of fungal colonization. We conducted a prospective study to evaluate the additional value of mucolytic pre-treatment, increased inoculum (100 µL), additional fungal culture media (Sabouraud agar; SAB, Medium B+, Scedosporium selective agar; SceSel+ and Dichloran-Glycerol agar; DG18) and longer incubation time (3 weeks) compared with our current protocol. Using the new protocol, we prospectively analyzed 216 expectorated sputum samples from adult and pediatric CF patients (n = 77) and compared the culture yield to a three year retrospective cohort that used direct 10 µL loop inoculation on SAB with 5 days incubation (867 sputum samples/103 patients). Detection rates for molds increased from 42% to 76% (p < 0.0001). Twenty-six percent of cultures were polymicrobial in the prospective cohort as opposed to 4.7% in the retrospective cohort (p < 0.0001). Colonization rate with A. fumigatus increased from 36% to 57%. SAB and DG18 showed the highest detection rates for all molds (SAB 58.6%; DG18 56.9%) and DG18 had the best performance for molds other than A. fumigatus. The larger sample volume and longer incubation also contributed to the increased recovery of molds. The introduction of a modified fungal culture protocol leads to a major increase in detection rate and the diversity of molds, which influences fungal epidemiology and may have implications for treatment decisions.
Collapse
|
24
|
Oral prevalence and antifungal susceptibility of Candida species in cystic fibrosis patients. Arch Oral Biol 2020; 116:104772. [PMID: 32474212 DOI: 10.1016/j.archoralbio.2020.104772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed at assessing the oral prevalence ofCandida species in cystic fibrosis patients and the antifungal susceptibility of the isolates. DESIGN One hundred patients aged 3-20 years old were included in the study and were divided into three groups: G1 (low severity disease): 25 cystic fibrosis patients with Shwachman-Kulczycki score (SK) between 100 and 71; G2 (high severity disease): 25 cystic fibrosis patients with SK score under 40; and G3 (control): 50 healthy patients age- and gender-matched to cystic fibrosis patients. Stimulated saliva samples were collected and the oral fungal concentrations were assessed. Isolates were identified by phenotypic and genotypic tests. Antifungal susceptibilities to amphotericin B, flucytosine and fluconazole were determined by CLSI methodology. Fungal counts were compared by Kruskal Wallis and Dunn's test (5%). RESULTS A total of 68 % of Group 1, 80 % of Group 2, and 44 % of controls yielded positive Candida cultures. Oral concentrations of fungi were significantly higher in cystic fibrosis patients in relation to the control group (p < 0.0005). No significant difference was observed between low and high severity cystic fibrosis groups (p > 0.05). C. albicans was most frequently isolated species in all groups. Higher variability of Candida species was observed in the control group. C. dubliniensis and C. tropicalis were only detected among cystic fibrosis groups. All the isolates were susceptible to flucytosine and fluconazole. CONCLUSIONS Patients with cystic fibrosis were more frequently colonized by Candida species and showed higher oral fungal burden. No antifungal resistant isolates were detected.
Collapse
|
25
|
Leiter H, Toepfer S, Messner P, Rabensteiner M, Gostner JM, Lackner M, Hermann M, Nagl M. Microbicidal activity of N-chlorotaurine can be enhanced in the presence of lung epithelial cells. J Cyst Fibros 2020; 19:1011-1017. [PMID: 32201161 DOI: 10.1016/j.jcf.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND N-chlorotaurine (NCT) is an endogenous active chlorine compound that can be used as an antiseptic and anti-infective in different body regions. Recently, tolerability of inhaled NCT has been demonstrated in humans so that it is of interest for future treatment of cystic fibrosis. In the present study, we tested the bactericidal and fungicidal activity of NCT in different lung cell culture models. METHODS Bacteria (Staphylococcus aureus, Pseudomonas aeruginosa) and fungi (Candida albicans, Exophiala dermatitidis) were co-incubated with lung epithelial cell cultures, and after 4 h NCT was added. After different incubation times, aliquots were removed and quantitative cultures were performed. RESULTS NCT at the therapeutically applied concentration of 1% (55 mM) completely killed the test pathogens within 15 - 30 min at 20 °C and at 37 °C. Killing by 0.3% NCT lasted up to 4 h dependent on the pathogen at 20 °C and up to 1 h at 37 °C. 0.1% NCT was the threshold concentration for killing since this amount of oxidation capacity was consumed by reactions with the organic compounds of the medium within 3 h (20 °C) and 0.5 h (37 °C). CONCLUSIONS NCT in therapeutic concentration demonstrated its microbicidal activity in the presence of lung epithelial cells. Remarkably, particularly the fungicidal activity was higher under these conditions than in phosphate buffer. This can be explained by formation of the stronger microbicidal monochloramine in equilibrium by transchlorination. The results suggest the suitability of NCT as inhalation medication in the lung.
Collapse
Affiliation(s)
- Hannes Leiter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Stephanie Toepfer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria; Division of Medical Biochemistry, Medical University of Innsbruck, Austria
| | - Petra Messner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Marion Rabensteiner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Johanna M Gostner
- Division of Medical Biochemistry, Medical University of Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Martín-Gómez MT. Taking a look on fungi in cystic fibrosis: More questions than answers. Rev Iberoam Micol 2020; 37:17-23. [PMID: 31928888 DOI: 10.1016/j.riam.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most frequent recessive inherited diseases in western countries. Advances in medical care have led to a substantial increase in the life expectancy of CF patients. Survival beyond adolescence has permitted to see fungi not only as late colonizers, but also as potential pathogens responsible of allergic reactions and chronic infections related to lung function deterioration. The role of fungi, nevertheless, has been overlooked until recently. As a result, a number of questions on their epidemiology, clinical significance, or diagnosis, among others, remain unanswered. Besides more in depth studies about the extent of the deleterious effect of fungi on the CF host, new technologies may provide the key to understand its pathogenic role, its interaction with other microbial components of the respiratory microbiota, and should pave the way to define subsets of patients at risk who would benefit from specific therapy. This review is intended to provide a quick overview on what we know about the presence of fungi in the CF airway and its repercussion in the host, and to point out some of the many knowledge gaps needed to understand and advance in the management of fungi in the airway of CF subjects.
Collapse
|
27
|
Abstract
CFTR protein malfunction results in thick, copious mucus, causes poor mucociliary clearance and, ultimately, structural lung damage such as bronchiectasis. All of these manifestations of cystic fibrosis contribute to a rich milieu for lower respiratory pathogens in patients affected by the disease. CF patients are, therefore, highly susceptible to chronic colonization with many pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. They are also uniquely prone to acute infections with respiratory pathogens, which tend to persist longer and cause more impairment in lung function than in patients without CF. Tailored strategies for managing infectious complications of CF patients include chronic prophylactic antibiotics, use of systemic as well as inhaled antibiotics, mechanical assistance with mucus clearance, and scrupulous infection control measures.
Collapse
|
28
|
Stemler J, Salmanton-García J, Seidel D, Alexander BD, Bertz H, Hoenigl M, Herbrecht R, Meintker L, Meißner A, Mellinghoff SC, Sal E, Zarrouk M, Koehler P, Cornely OA. Risk factors and mortality in invasive Rasamsonia spp. infection: Analysis of cases in the FungiScope ® registry and from the literature. Mycoses 2019; 63:265-274. [PMID: 31769549 DOI: 10.1111/myc.13039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The new Rasamsonia spp. complex can develop invasive infection in immunosuppression or chronic pulmonary disease. It has potential to be misidentified as other genera due to morphological similarities. Nowadays, there is a gap of knowledge on this fungi. OBJECTIVES To provide knowledge base of risk factors and therapeutic decisions in invasive Rasamsonia spp. complex infection. PATIENTS/METHODS Cases of invasive infection due to Rasamsonia spp. (formerly Geosmithia/Penicillium spp.) from FungiScope® registry and all reported cases from a literature were included. RESULTS We identified 23 invasive infections due to Rasamsonia spp., six (26.1%) in the FungiScope® registry. Main risk factors were chronic granulomatous disease (n = 12, 52.2%), immunosuppressive treatment (n = 10, 43.5%), haematopoietic stem cell transplantation (n = 7, 30.4%), graft-versus-host disease and major surgery (n = 4, 17.4%, each). Predominantly affected organs were the lungs (n = 21, 91.3%), disease disseminated in seven cases (30.4%). Fungal misidentification occurred in 47.8% (n = 11), and sequencing was used in 69.6% of the patients (n = 16) to diagnose. Breakthrough infection occurred in 13 patients (56.5%). All patients received antifungal treatment, mostly posaconazole (n = 11), caspofungin (n = 10) or voriconazole (n = 9). Combination therapy was administered in 13 patients (56.5%). Susceptibility testing showed high minimum inhibitory concentrations for azoles and amphotericin B, but not for echinocandins. No preferable treatment influencing favourable outcome was identified. Overall mortality was 39% (n = 9). CONCLUSION Rasamsonia spp. are emerging fungi causing life-threatening infections, especially in immunocompromised and critically ill patients. Mortality is high. Treatment is challenging and clinicians dealing with this patient population should become aware of this infection constituting a medical emergency.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn - Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Danila Seidel
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Barbara D Alexander
- Infectious Diseases Division, Duke University Medical Center, Durham, NC, USA
| | - Hartmut Bertz
- Department of Internal Medicine I, Medical Center of Freiburg University, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA.,Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Raoul Herbrecht
- Department of Oncology and Hematology, Hôpitaux Universitaires de Strasbourg and Université de Strasbourg, Inserm, UMR-S1113/IRFAC, Strasbourg, France
| | - Lisa Meintker
- Department of Medicine 5 for Hematology and Oncology, Erlangen University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arne Meißner
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Department of Hospital Hygiene and Infection Control, University Hospital of Cologne, Cologne, Germany
| | - Sibylle C Mellinghoff
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn - Cologne, Cologne, Germany
| | - Ertan Sal
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marouan Zarrouk
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn - Cologne, Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn - Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
30
|
Delfino E, Del Puente F, Briano F, Sepulcri C, Giacobbe DR. Respiratory Fungal Diseases in Adult Patients With Cystic Fibrosis. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2019; 13:1179548419849939. [PMID: 31205434 PMCID: PMC6537484 DOI: 10.1177/1179548419849939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Clinical manifestations of respiratory fungal diseases in adult cystic fibrosis (CF) patients are very heterogeneous, ranging from asymptomatic colonization to chronic infections, allergic disorders, or invasive diseases in immunosuppressed CF patients after lung transplantation. In this narrative review, mainly addressed to clinicians without expertise in CF who may nonetheless encounter adult CF patients presenting with acute and chronic respiratory syndromes, we briefly summarize the most representative clinical aspects of respiratory fungal diseases in adult CF patients.
Collapse
Affiliation(s)
- Emanuele Delfino
- Clinica Malattie Infettive e Tropicali, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Filippo Del Puente
- Clinica Malattie Infettive e Tropicali, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Federica Briano
- Clinica Malattie Infettive e Tropicali, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Chiara Sepulcri
- Clinica Malattie Infettive e Tropicali, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive e Tropicali, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
31
|
Kirchhoff L, Olsowski M, Rath PM, Steinmann J. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence 2019; 10:984-998. [PMID: 30887863 PMCID: PMC8647849 DOI: 10.1080/21505594.2019.1596504] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The black yeast Exophiala dermatitidis is an opportunistic pathogen, causing phaeohyphomycosis in immunosuppressed patients, chromoblastomycosis and fatal infections of the central nervous system in otherwise healthy Asian patients. In addition, it is also regularly isolated from respiratory samples from cystic fibrosis patients, with rates varying between 1% and 19%.Melanin, as part of the cell wall of black yeasts, is one major factor known contributing to the pathogenicity of E. dermatitidis and increased resistance against host defense and anti-infective therapeutics. Further virulence factors, e.g. the capability to adhere to surfaces and to form biofilm were reported. A better understanding of the pathogenicity of E. dermatitidis is essential for the development of novel preventive and therapeutic strategies. In this review, the current knowledge of E. dermatitidis prevalence, clinical importance, diagnosis, microbiological characteristics, virulence attributes, susceptibility, and resistances as well as therapeutically strategies are discussed.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Olsowski
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). RECENT FINDINGS CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. SUMMARY Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.
Collapse
|
33
|
Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2019; 38:1071-1077. [PMID: 30739228 PMCID: PMC6520323 DOI: 10.1007/s10096-019-03493-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) patients become colonized by pathogenic bacteria as well as by Candida species. The interplay between different microorganisms may play a key role in the prognosis of CF. The aim of the study was to analyze the coexistence patterns of bacteria and Candida spp. in sputum samples of patients with CF and to compare these patterns with the results of patients with other respiratory disorders (ORD). Sputum samples from 130 patients with CF and 186 patients with ORD were cultured on six different agar plates promoting the growth of bacteria and yeasts. Bacterial and Candida species were identified with MALDI-TOF MS. Pathogenic bacteria were found in 69.2% of the sputum samples of the CF patients, and in 44.1% the patients with ORD. CF patients tended to have growth of Pseudomonas aeruginosa and Staphylococcus aureus in sputum more often than patients with ORD. Overall, there was no difference in the coexistence of pathogenic bacteria and Candida spp. in these patient groups. However, when analyzed at the species level, P. aeruginosa and S. aureus coexisted with Candida spp. more frequently in sputum samples of CF patients compared with patients with ORD. Also, when analyzed according to age, it was shown that the adult (≥ 18 years) CF patients had a higher rate of coexistence of any pathogenic bacteria and Candida spp. than the children with CF and the adult patients with ORD. The rate for colonization with Candida together with pathogenic bacteria is increased in adult patients with CF.
Collapse
|
34
|
Fungal Respiratory Infections in Cystic Fibrosis (CF): Recent Progress and Future Research Agenda. Mycopathologia 2019; 183:1-5. [PMID: 29349726 DOI: 10.1007/s11046-017-0241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
[Patients with cystic fibrosis become adults : Treatment hopes and disappointments]. Internist (Berl) 2019; 60:98-108. [PMID: 30627755 DOI: 10.1007/s00108-018-0536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mucoviscidosis or cystic fibrosis (CF) is one of the most frequent monogenetic diseases in middle Europe. It is inherited in an autosomal recessive manner. A defect in the cystic fibrosis transmembrane conductance regulator (CFTR) channel reduces chloride ion transport to the cell membrane, which leads to malfunctions in all exocrine glands. This results in a progressive multiorgan disease, which leads to chronic inflammation and infections of the lungs. The progressive destruction of lung tissue with respiratory insufficiency is the most common cause of death in CF. Progress in symptomatic treatment over the past decades has led to a dramatic improvement in life expectation and quality of life for those affected, so that nowadays in nearly all industrial countries the majority of patients are adults. In 2012 the era of causal therapy of the CFTR protein defects was opened with the approval of ivacaftor. Long-term data now confirm the benefits. There is reason to hope that the success story of CF treatment will be continued, particularly by further CFTR modulators with innovative modes of action and improved efficacy; however, so far these are not available for all mutation classes, so that not all patients can reap the benefits. Therefore, the further development of symptomatic treatment becomes of great importance due to the complications that have already occurred before the implementation of the CFTR modulators. The implementation of modulators in early childhood can attenuate or prevent early irreversible complications. Therefore, in this article special emphasis is placed on new developments in symptomatic treatment and on new treatment options.
Collapse
|
36
|
Borman AM, Szekely A, Palmer MD, Fraser M, Patterson Z, Johnson EM. The burden of serious fungal disease in the UK - infections with "rare" organisms. J Infect 2018; 77:561-571. [PMID: 30391548 DOI: 10.1016/j.jinf.2018.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022]
Affiliation(s)
- Andrew M Borman
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom.
| | - Adrien Szekely
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
| | - Michael D Palmer
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
| | - Mark Fraser
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
| | - Zoe Patterson
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
| | - Elizabeth M Johnson
- PHE UK National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
37
|
Tracy MC, Moss RB. The myriad challenges of respiratory fungal infection in cystic fibrosis. Pediatr Pulmonol 2018; 53:S75-S85. [PMID: 29992775 DOI: 10.1002/ppul.24126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Fungal infection in cystic fibrosis (CF) is a recognized challenge, with many areas requiring further investigation. Consensus definitions exist for allergic bronchopulmonary aspergillus in CF, but the full scope of clinically relevant non-allergic fungal disease in CF-asymptomatic colonization, transient or chronic infection localized to endobronchial mucus plugs or airway tissue, and invasive disease-is yet to be clearly defined. Recent advances in mycological culture and non-culture identification have expanded the list of both potential pathogens and community commensals in the lower respiratory tract. Here we aim to outline the current understanding of fungal presence in the CF respiratory tract, risk factors for acquiring fungi, host-pathogen interactions that influence the role of fungi from bystander to pathogen, advances in the diagnostic approaches to isolating and identifying fungi in CF respiratory samples, challenges of classifying clinical phenotypes of CF patients with fungi, and current treatment approaches. Development and validation of biomarkers characteristic of different fungal clinical phenotypes, and controlled trials of antifungal agents in well-characterized target populations, remain central challenges to surmount and goals to be achieved.
Collapse
Affiliation(s)
- Michael C Tracy
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| | - Richard B Moss
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| |
Collapse
|
38
|
Huang Q, Wang Y, Xia Y, Li L, Luo J, Xia S, Sun Y, Miao Y, Wang K, Chen Y. Testing the neutral theory of biodiversity with the microbiome dataset from cystic fibrosis patients. Medicine (Baltimore) 2018; 97:e12248. [PMID: 30212959 PMCID: PMC6156045 DOI: 10.1097/md.0000000000012248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease that is characterized by defective mucociliary clearance, airway obstruction, chronic infection, and persistent inflammation. Cystic fibrosis pulmonary exacerbation (CFPE) majorly causes the morbidity of CF patients. Although CF has been demonstrated to change the composition of lung microbial community, previous studies have not made efforts to study the differences in the mechanism of assembly and diversity maintenance of lung microbial community in CF patients. In this study, we applied the neutral theory of biodiversity to comparatively investigate the assembly and diversity maintenance of the lung microbial community before and after the antibiotic treatment by reanalyzing the dataset from Fodor et al's study. We found that no one sample in the lung microbial communities of the sputum samples of Exacerbation group, nor those of End-of-treatment group satisfied the predictions of neutral model, suggesting that the neutral-process does not dominate in CF patients before and after antibiotic treatments. By comparing the biodiversity parameter between Exacerbation and End-of-treatment group, we found that the former had the significantly higher biodiversity, but the change in diversity parameter is slight and the P value is close to.05 (P value = .41). Therefore, our second finding is that although CFPE may increase the biodiversity of lung microbial community, the change is not essential.
Collapse
Affiliation(s)
- Qi Huang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yaqiang Wang
- Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi
| | - Yao Xia
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Shuxian Xia
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of digestive disease, Kunming, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
39
|
Hong G, Psoter KJ, Jennings MT, Merlo CA, Boyle MP, Hadjiliadis D, Kawut SM, Lechtzin N. Risk factors for persistent Aspergillus respiratory isolation in cystic fibrosis. J Cyst Fibros 2018; 17:624-630. [PMID: 29444760 DOI: 10.1016/j.jcf.2018.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aspergillus species are increasingly detected in the respiratory tracts of individuals with cystic fibrosis (CF), and chronic Aspergillus fumigatus is associated with more frequent hospitalizations for pulmonary exacerbations. However, patient and clinical factors that may contribute to the acquisition of persistent Aspergillus infection have yet to be identified. The objective of this study was to identify risk factors for development of Aspergillus respiratory isolation in CF. METHODS A retrospective cohort study of participants in the CF Foundation Patient Registry between 2006 and 2012 was conducted. Generalized estimating equation models were used to evaluate the association between the development of persistent Aspergillus respiratory isolation and individual level demographic and clinical characteristics. RESULTS Among 16,095 individuals with CF followed from 2006 to 2012, 1541 (9.6%) subjects developed persistent Aspergillus isolation. White race (Odds Ratio [OR] 1.74, 95% confidence interval 1.23, 2.48, p<0.001) and pancreatic insufficiency (OR 1.50, 95% CI 1.09, 2.06, p<0.001) were found to be risk factors for persistent Aspergillus isolation. Chronic therapies, including inhaled antibiotics (OR 1.33; 95% CI 1.21, 1.46), macrolides (OR 1.23, 95% CI 1.14, 1.32, p<0.001), and inhaled corticosteroids (OR 1.13, 95% CI 1.04, 1.20, p<0.001) were also independently associated with an increased risk for persistent Aspergillus isolation. CONCLUSIONS We identified macrolides and inhaled antibiotics, which individually have been shown to improve CF outcomes, and inhaled corticosteroids as risk factors for developing persistent Aspergillus isolation. Further work is needed to determine whether these associations are causal or due to confounding by other factors.
Collapse
Affiliation(s)
- Gina Hong
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States.
| | - Kevin J Psoter
- Johns Hopkins School of Medicine, Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Baltimore, MD, United States
| | - Mark T Jennings
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Christian A Merlo
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Michael P Boyle
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States; Cystic Fibrosis Foundation, Bethesda, MD, United States
| | - Denis Hadjiliadis
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Steven M Kawut
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Noah Lechtzin
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Bergeron AC, Seman BG, Hammond JH, Archambault LS, Hogan DA, Wheeler RT. Candida albicans and Pseudomonas aeruginosa Interact To Enhance Virulence of Mucosal Infection in Transparent Zebrafish. Infect Immun 2017; 85:e00475-17. [PMID: 28847848 PMCID: PMC5649025 DOI: 10.1128/iai.00475-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023] Open
Abstract
Polymicrobial infections often include both fungi and bacteria and can complicate patient treatment and resolution of infection. Cross-kingdom interactions among bacteria, fungi, and/or the immune system during infection can enhance or block virulence mechanisms and influence disease progression. The fungus Candida albicans and the bacterium Pseudomonas aeruginosa are coisolated in the context of polymicrobial infection at a variety of sites throughout the body, including mucosal tissues such as the lung. In vitro, C. albicans and P. aeruginosa have a bidirectional and largely antagonistic relationship. Their interactions in vivo remain poorly understood, specifically regarding host responses in mediating infection. In this study, we examine trikingdom interactions using a transparent juvenile zebrafish to model mucosal lung infection and show that C. albicans and P. aeruginosa are synergistically virulent. We find that high C. albicans burden, fungal epithelial invasion, swimbladder edema, and epithelial extrusion events serve as predictive factors for mortality in our infection model. Longitudinal analyses of fungal, bacterial, and immune dynamics during coinfection suggest that enhanced morbidity is associated with exacerbated C. albicans pathogenesis and elevated inflammation. The P. aeruginosa quorum-sensing-deficient ΔlasR mutant also enhances C. albicans pathogenicity in coinfection and induces extrusion of the swimbladder. Together, these observations suggest that C. albicans-P. aeruginosa cross talk in vivo can benefit both organisms to the detriment of the host.
Collapse
Affiliation(s)
- Audrey C Bergeron
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Brittany G Seman
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Linda S Archambault
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|