1
|
Chadaeva IV, Filonov SV, Zolotareva KA, Khandaev BM, Ershov NI, Podkolodnyy NL, Kozhemyakina RV, Rasskazov DA, Bogomolov AG, Kondratyuk EY, Klimova NV, Shikhevich SG, Ryazanova MA, Fedoseeva LA, Redina ОЕ, Kozhevnikova OS, Stefanova NA, Kolosova NG, Markel AL, Ponomarenko MP, Oshchepkov DY. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research. Vavilovskii Zhurnal Genet Selektsii 2023; 27:794-806. [PMID: 38213701 PMCID: PMC10777291 DOI: 10.18699/vjgb-23-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
The animal models used in biomedical research cover virtually every human disease. RatDEGdb, a knowledge base of the differentially expressed genes (DEGs) of the rat as a model object in biomedical research is a collection of published data on gene expression in rat strains simulating arterial hypertension, age-related diseases, psychopathological conditions and other human afflictions. The current release contains information on 25,101 DEGs representing 14,320 unique rat genes that change transcription levels in 21 tissues of 10 genetic rat strains used as models of 11 human diseases based on 45 original scientific papers. RatDEGdb is novel in that, unlike any other biomedical database, it offers the manually curated annotations of DEGs in model rats with the use of independent clinical data on equal changes in the expression of homologous genes revealed in people with pathologies. The rat DEGs put in RatDEGdb were annotated with equal changes in the expression of their human homologs in affected people. In its current release, RatDEGdb contains 94,873 such annotations for 321 human genes in 836 diseases based on 959 original scientific papers found in the current PubMed. RatDEGdb may be interesting first of all to human geneticists, molecular biologists, clinical physicians, genetic advisors as well as experts in biopharmaceutics, bioinformatics and personalized genomics. RatDEGdb is publicly available at https://www.sysbio.ru/RatDEGdb.
Collapse
Affiliation(s)
- I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Filonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - K A Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B M Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N L Podkolodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Kondratyuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - N V Klimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Ryazanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Fedoseeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О Е Redina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Stefanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A L Markel
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M P Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D Yu Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Gouveia FV, Diwan M, Martinez RCR, Giacobbe P, Lipsman N, Hamani C. Reduction of aggressive behaviour following hypothalamic deep brain stimulation: Involvement of 5-HT 1A and testosterone. Neurobiol Dis 2023:106179. [PMID: 37276987 DOI: 10.1016/j.nbd.2023.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS Male mice were housed with females for two weeks. These resident animals tend to become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive days prior to daily encounters with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 days. RESULTS DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | - Mustansir Diwan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2021; 42:1671-1692. [PMID: 33651238 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rayment DJ, Peters RA, Marston LC, De Groef B. Relationships between serum serotonin, plasma cortisol, and behavioral factors in a mixed-breed, -sex, and -age group of pet dogs. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Huang X, Kuang S, Applegate TJ, Lin TL, Cheng HW. The development of the serotonergic and dopaminergic systems during chicken mid-late embryogenesis. Mol Cell Endocrinol 2019; 493:110472. [PMID: 31167113 DOI: 10.1016/j.mce.2019.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023]
Abstract
Serotonin (5-HT) acts as a morphogen influencing embryonic brain development, and as a neurotransmitter regulating multiple biological functions with lifelong effects on animal physical, physiological and mental health, especially during the rapid growth phase prior to birth when embryos face many challenges to reach structural and functional completion. In this study, the development of the serotoninergic (5-HTergic) system and its modulatory effect on the dopaminergic (DAergic) system and related neural circuits were investigated during the mid-late embryogenesis, embryonic day (E)12-E20, in the chicken's brain. During 5-HTergic neuronal maturation, a growth-related anatomical and functional remodeling was highlighted: the 5-HT neurons continuously grew during E12-E20 except for a remarkable regression during E14-E16. Correspondingly, there was a time-dependent change in the 5-HT synthetic capacity. Specifically, 5-HT concentrations in the raphe nuclei increased from E12 to E14, reaching a first plateau during E14-E16, then continuously increased up to E19, and reaching a second plateau between E19-E20. The second plateau of the 5-HT concentration was in correspondence with the establishment of the 5-HTergic autoregulatory loop during E19-E20 and the development of the DAergic system. The DA concentrations remained unchanged from E12 to E16, then started to increase at E16, reaching a maximum at E19, and diminished before hatching. The unique developing time sequence between the 5-HTergic and DAergic systems suggests that the 5-HTergic system may play a critical role in forming the 5-HT - DA neural circuit during chicken embryogenesis. These results provide new insights for understanding the functional organization of the 5-HTergic system during embryonic development and raise the possibility that prenatally modulating the 5-HTergic system may lead to long-lasting brain structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, 30602, Georgia
| | - Tsang-Long Lin
- Animal Disease Diagnostic Lab, Purdue University, West Lafayette, IN, 47907, USA
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Hu J, Chen H, Cheng HW. Effect of Direct-fed Microbials, Bacillus subtilis, on Production Performance, Serotonin Concentrations and Behavioral Parameters in a Selected Dominant Strain of White Leghorn Hens. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijps.2018.106.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Neurodevelopmental Effects of Serotonin on the Brainstem Respiratory Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:193-216. [DOI: 10.1007/978-3-319-62817-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Kulikov AV, Bazhenova EY, Kulikova EA, Fursenko DV, Trapezova LI, Terenina EE, Mormede P, Popova NK, Trapezov OV. Interplay between aggression, brain monoamines and fur color mutation in the American mink. GENES BRAIN AND BEHAVIOR 2016; 15:733-740. [PMID: 27489198 DOI: 10.1111/gbb.12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/01/2022]
Abstract
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (-2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild-type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (-1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (-2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.
Collapse
Affiliation(s)
- A V Kulikov
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Y Bazhenova
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Kulikova
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Fursenko
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L I Trapezova
- Department of Genetics and Selection of Fur and Farm Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Terenina
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - P Mormede
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - N K Popova
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Trapezov
- Department of Genetics and Selection of Fur and Farm Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Zapata I, Serpell JA, Alvarez CE. Genetic mapping of canine fear and aggression. BMC Genomics 2016; 17:572. [PMID: 27503363 PMCID: PMC4977763 DOI: 10.1186/s12864-016-2936-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Fear/anxiety and anger/aggression greatly influence health, quality of life and social interactions. They are a huge burden to wellbeing, and personal and public economics. However, while much is known about the physiology and neuroanatomy of such emotions, little is known about their genetics - most importantly, why some individuals are more susceptible to pathology under stress. RESULTS We conducted genomewide association (GWA) mapping of breed stereotypes for many fear and aggression traits across several hundred dogs from diverse breeds. We confirmed those findings using GWA in a second cohort of partially overlapping breeds. Lastly, we used the validated loci to create a model that effectively predicted fear and aggression stereotypes in a third group of dog breeds that were not involved in the mapping studies. We found that i) known IGF1 and HMGA2 loci variants for small body size are associated with separation anxiety, touch-sensitivity, owner directed aggression and dog rivalry; and ii) two loci, between GNAT3 and CD36 on chr18, and near IGSF1 on chrX, are associated with several traits, including touch-sensitivity, non-social fear, and fear and aggression that are directed toward unfamiliar dogs and humans. All four genome loci are among the most highly evolutionarily-selected in dogs, and each of those was previously shown to be associated with morphological traits. We propose that the IGF1 and HMGA2 loci are candidates for identical variation being associated with both behavior and morphology. In contrast, we show that the GNAT3-CD36 locus has distinct variants for behavior and morphology. The chrX region is a special case due to its extensive linkage disequilibrium (LD). Our evidence strongly suggests that sociability (which we propose is associated with HS6ST2) and fear/aggression are two distinct GWA loci within this LD block on chrX, but there is almost perfect LD between the peaks for fear/aggression and animal size. CONCLUSIONS We have mapped many canine fear and aggression traits to single haplotypes at the GNAT3-CD36 and IGSF1 loci. CD36 is widely expressed, but areas of the amygdala and hypothalamus are among the brain regions with highest enrichment; and CD36-knockout mice are known to have significantly increased anxiety and aggression. Both of the other genes have very high tissue-specificity and are very abundantly expressed in brain regions that comprise the core anatomy of fear and aggression - the amygdala to hypothalamic-pituitary-adrenal (HPA) axis. We propose that reduced-fear variants at these loci may have been involved in the domestication process.
Collapse
Affiliation(s)
- Isain Zapata
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - James A. Serpell
- Center for the Interaction of Animals and Society, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210 USA
| |
Collapse
|
11
|
Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert(-/-) mice. Transl Psychiatry 2016; 6:e836. [PMID: 27300262 PMCID: PMC4931604 DOI: 10.1038/tp.2016.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022] Open
Abstract
The role of telomerase reverse transcriptase (TERT) has been extensively investigated in the contexts of aging and cancer. Interestingly, Tert(-/-) mice exhibit additional but unexpected aggressive and depressive behaviors, implying the potential involvement of TERT function in mood control. Our conditional rescue experiments revealed that the depressive and aggressive behaviors of Tert(-/-) mice originate from Tert deficiency in two distinct brain structures. Reactivation of Tert in the hippocampus was sufficient to normalize the depressive but not the aggressive behaviors of Tert(-/-) mice. Conversely, re-expression of Tert in the medial prefrontal cortex (mPFC) reversed the aggressive but not the depressive behavior of Tert(-/-) mice. Mechanistically, decreased serotonergic signaling and increased nitric oxide (NO) transmission in the hippocampus transduced Tert deficiency into depression as evidenced by our observation that the infusion of a pharmacological agonist for serotonin receptor 1a (5-HTR1A) and a selective antagonist for neuronal NO synthase into the hippocampus successfully normalized the depressive behavior of Tert(-/-) mice. In addition, increased serotonergic transmission by the 5-HTR1A agonist in the mPFC was sufficient to rescue the aggressive behavior of Tert(-/-) mice. Thus, our studies revealed a novel function of TERT in the pathology of depression and aggression in a brain structure-specific manner, providing direct evidence for the contribution of TERT to emotional control.
Collapse
|
12
|
Abstract
Aggression and violence represent a significant public health concern and a clinical challenge for the mental healthcare provider. A great deal has been revealed regarding the neurobiology of violence and aggression, and an integration of this body of knowledge will ultimately serve to advance clinical diagnostics and therapeutic interventions. We will review here the latest findings regarding the neurobiology of aggression and violence. First, we will introduce the construct of aggression, with a focus on issues related to its heterogeneity, as well as the importance of refining the aggression phenotype in order to reduce pathophysiologic variability. Next we will examine the neuroanatomy of aggression and violence, focusing on regional volumes, functional studies, and interregional connectivity. Significant emphasis will be on the amygdala, as well as amygdala-frontal circuitry. Then we will turn our attention to the neurochemistry and molecular genetics of aggression and violence, examining the extensive findings on the serotonergic system, as well as the growing literature on the dopaminergic and vasopressinergic systems. We will also address the contribution of steroid hormones, namely, cortisol and testosterone. Finally, we will summarize these findings with a focus on reconciling inconsistencies and potential clinical implications; and, then we will suggest areas of focus for future directions in the field.
Collapse
|
13
|
Ilchibaeva TV, Kondaurova EM, Tsybko AS, Kozhemyakina RV, Popova NK, Naumenko VS. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav Brain Res 2015; 290:45-50. [PMID: 25934485 DOI: 10.1016/j.bbr.2015.04.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.
Collapse
Affiliation(s)
- Tatiana V Ilchibaeva
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Anton S Tsybko
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Rimma V Kozhemyakina
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Nina K Popova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
14
|
Morrison TR, Melloni RH. The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. Curr Top Behav Neurosci 2014; 17:189-228. [PMID: 24496652 DOI: 10.1007/7854_2014_283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aggression control has been investigated across species and is centrally mediated within various brain regions by several neural systems that interact at different levels. The debate over the degree to which any one system or region affects aggressive responding, or any behavior for that matter, in some senses is arbitrary considering the plastic and adaptive properties of the central nervous system. Nevertheless, from the reductionist point of view, the compartmentalization of evolutionarily maladaptive behaviors to specific regions and systems of the brain is necessary for the advancement of clinical treatments (e.g., pharmaceutical) and novel therapeutic methods (e.g., deep brain stimulation). The general purpose of this chapter is to examine the confluence of two such systems, and how their functional interaction affects aggressive behavior. Specifically, the influence of the serotonin (5HT) and arginine vasopressin (AVP) neural systems on the control of aggressive behavior will be examined individually and together to provide a context by which the understanding of aggression modulation can be expanded from seemingly parallel neuromodulatory mechanisms, to a single and highly interactive system of aggression control.
Collapse
Affiliation(s)
- Thomas R Morrison
- Program in Behavioral Neuroscience, Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave, Boston, MA, 02155, USA,
| | | |
Collapse
|
15
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
16
|
Takeda A, Iwaki H, Ide K, Tamano H, Oku N. Therapeutic effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Brain Res Bull 2012; 87:551-5. [PMID: 22373913 DOI: 10.1016/j.brainresbull.2012.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/30/2022]
Abstract
In patients with dementia including Alzheimer's disease, hallucinations, agitation/aggression and irritability are known to frequently occur and as distressing behavioral and psychological symptoms of dementia (BPSD). On the basis of the evidence on clinical efficacy and safety of Yokukansan, a traditional Japanese herbal medicine, on BPSD, in the present study, Yokukansan was examined in the therapeutic effects on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Yokukansan was p.o. administered for 7 days as a drinking water to isolated mice fed a zinc-deficient diet for 10 days, which exhibited aggressive behavior, and isolated pair-fed mice fed a control diet of the amount consumed by zinc-deficient mice for 10 days, which exhibited aggressive behavior. Aggressive behavior was evaluated by the resident-intruder test. Yokukansan (312 mg/kg/day) attenuated both aggressive behaviors of zinc-deficient and pair-fed mice. Because Yokukansan can suppress abnormal glutamatergic neuron activity, MK-801, an N-methyl-D-aspartate (NMDA) receptor blocker, and aminooxyacetic acid (AOAA), a γ-amino butyric acid (GABA) transaminase blocker, were also examined in the effects on social isolation-induced aggressive behavior. MK-801 (0.1 mg/kg) or AOAA (23 mg/kg) was i.p. injected into isolated aggressive mice. Thirty minutes later, the resident-intruder test was performed to evaluate the effect of the drugs. Both drugs attenuated aggressive behavior of zinc deficient mice, but not that of pair-fed mice. These results suggest that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice through the action against glutamatergic neurotransmitter system and other neurotransmitter systems.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
17
|
Lorenzi V, Grober MS. Immunohistochemical localization of serotonin in the brain during natural sex change in the hermaphroditic goby Lythrypnus dalli. Gen Comp Endocrinol 2012; 175:527-36. [PMID: 22214654 DOI: 10.1016/j.ygcen.2011.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 11/29/2022]
Abstract
The neurotransmitter serotonin (5-HT) may play a central role in the inhibition of socially regulated sex change in fish because of its known modulation of both aggressive and reproductive behavior. This is the first study to use immunohistochemical techniques to examine the morphometry of serotonergic neurons at different times during sex change. Using a model species wherein sex change is socially regulated via agonistic social interactions (the bluebanded goby, Lythrypnus dalli), we sampled brains of males and females with different social status, and of females at different times during sex change. Consistent with previous studies on other teleosts, immunoreactive neurons were found in the posterior periventricular nucleus (NPPv), the nucleus of the lateral recess (NRL), the nucleus of the posterior recess (NRP) and in the raphe nucleus. We measured the total area of NPPv, NRL, NRP, and the number and mean cell area of serotonergic neurons in the raphe nucleus. There was no significant difference in any of the brain regions between males, females or sex changing fish, but there was a slight increase in the number of dorsal raphe neurons in the brain of sex changers 2h after male removal. The results show that in L. dalli the serotonergic system does not present any morphological sex and status differences, nor any dramatic modifications during sex change. These data, together with previous results, do not support the hypothesis that serotonin inhibits socially regulated sex change.
Collapse
Affiliation(s)
- Varenka Lorenzi
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA.
| | | |
Collapse
|
18
|
Abstract
Various data from scientific research studies conducted over the past three decades suggest that central neurotransmitters play a key role in the modulation of aggression in all mammalian species, including humans. Specific neurotransmitter systems involved in mammalian aggression include serotonin, dopamine, norepinephrine, GABA, and neuropeptides such as vasopressin and oxytocin. Neurotransmitters not only help to execute basic behavioral components but also serve to modulate these preexisting behavioral states by amplifying or reducing their effects. This chapter reviews the currently available data to present a contemporary view of how central neurotransmitters influence the vulnerability for aggressive behavior and/or initiation of aggressive behavior in social situations. Data reviewed in this chapter include emoiric information from neurochemical, pharmaco-challenge, molecular genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Rachel Yanowitch
- Clinical Neuroscience Research Unit, Department of Psychiatry, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Benko A, Lazary J, Molnar E, Gonda X, Tothfalusi L, Pap D, Mirnics Z, Kurimay T, Chase D, Juhasz G, Anderson IM, Deakin JFW, Bagdy G. Significant association between the C(-1019)G functional polymorphism of the HTR1A gene and impulsivity. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:592-599. [PMID: 19725031 DOI: 10.1002/ajmg.b.31025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Serotonin-1A (5-HT(1A)) receptors are known to play a role in impulsivity-related behavior. The C(-1019)G functional polymorphism (rs6295) has been suggested to regulate the 5-HT(1A) receptor gene (HTR(1A)) expression in presynaptic raphe neurons, namely, increased receptor concentration and reduced neuronal firing could be associated with the G allele. Previous studies indicate that this polymorphism is associated with aggression, suicide, and several psychiatric disorders, yet its association with impulsivity has rarely been investigated. We studied the relationship between impulsivity and the C(-1019)G polymorphism of the HTR(1A) in a population sample of 725 volunteers using the Impulsiveness subscale (IVE-I) of the Eysenck Impulsiveness, Venturesomeness, and Empathy scale and also the Barratt Impulsiveness Scale (BIS-11). Data were analyzed using analysis of variance with age and gender as covariates and Tukey's HSD post-hoc test. Post-hoc analysis revealed that the study had 0.958 power to detect 0.15 effect size. Significant differences between the C(-1019)G genotype groups (GG vs. GC vs. CC) were found. Subjects carrying GG genotype showed significantly higher impulsiveness scores compared to GC or CC carriers for the IVE-I scale (P = 0.014), for the Motor (P = 0.021), Cognitive Impulsiveness (P = 0.002), and for the BIS total score (P = 0.008) but not for the Nonplanning Impulsiveness (P = 0.520) subscale of the BIS-11. Our results suggest the involvement of the HTR(1A) in the continuum phenotype of impulsivity.
Collapse
Affiliation(s)
- Anita Benko
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Lazary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Eszter Molnar
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,Department of Clinical and Theoretical Mental Health, Semmelweis University, Budapest, Hungary
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mirnics
- Faculty of Humanities, Department of Psychology, Karoli Gaspar University of the Reformed Church, Budapest, Hungary
| | - Tamas Kurimay
- Department of Psychiatry, Saint John's Hospital, Budapest, Hungary
| | - Diana Chase
- Faculty of Medical and Human Sciences, Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - Gabriella Juhasz
- Faculty of Medical and Human Sciences, Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - Ian M Anderson
- Faculty of Medical and Human Sciences, Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - John F W Deakin
- Faculty of Medical and Human Sciences, Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Group of Neurochemistry and Group of Neuropsychopharmacology, Hungarian Academy of Science and Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Terawaki K, Ikarashi Y, Sekiguchi K, Nakai Y, Kase Y. Partial agonistic effect of yokukansan on human recombinant serotonin 1A receptors expressed in the membranes of Chinese hamster ovary cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:306-312. [PMID: 19913081 DOI: 10.1016/j.jep.2009.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/21/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yokukansan (YKS) is a traditional Japanese medicine consisted of seven medicinal herbs and has been used for treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia (BPSD) in Japan. AIM OF THE STUDY The aim of the present study is to clarify the intrinsic activity of YKS on serotonin (5-HT)1A and 5-HT2A receptors and also to determine the constituent herbs which are responsible for the effect of YKS. MATERIALS AND METHODS The dry powdered extracts of YKS, seven constituent herbs, and YKS-analogues which were produced by eliminating one of the constituent herbs from YKS in the manufacturing process, were used for the evaluation. Competitive binding assays for 5-HT receptors and [(35)S]GTPgammaS binding assays for the evaluation of agonistic/antagonistic activity were performed using Chinese hamster ovary cell membranes stably expressing human recombinant 5-HT1A or 5-HT2A receptors. RESULTS YKS (6.25-400 microg/ml) concentration-dependently inhibited the binding of [(3)H]8-OH-DPAT to 5-HT1A receptors. The IC(50) value was estimated to be 61.2 microg/ml. In contrast, YKS failed to inhibit the binding of [(3)H]ketanserin to 5-HT2A receptors. Only Uncaria hook (3.13-50 microg/ml), of the seven constituent herbal extracts, inhibited the [(3)H]8-OH-DPAT binding to 5-HT1A receptors in a concentration-dependent manner, and the IC(50) value was estimated to be 7.42 microg/ml. The extracts of YKS or Uncaria hook increased [(35)S]GTPgammaS binding to 5-HT1A receptors to approximately 50% of that of a full agonist, 5-HT. Both the competitive binding and [(35)S]GTPgammaS binding of YKS to 5-HT1A receptors were remarkably attenuated by eliminating Uncaria hook from YKS, but it was almost unchanged when one of the other constituent herbs was eliminated from YKS. CONCLUSION These results suggest that YKS has a partial agonistic effect on 5-HT1A receptors, which is mainly attributed to Uncaria hook.
Collapse
Affiliation(s)
- Kiyoshi Terawaki
- Tsumura Research Laboratories, Tsumura & Co, 3586 Yoshiwara, Inashiki-gun, Ibaraki 300-1192, Japan
| | | | | | | | | |
Collapse
|
21
|
Shen Z, Siva Ramamoorthy P, Hatzenbuhler NT, Evrard DA, Childers W, Harrison BL, Chlenov M, Hornby G, Smith DL, Sullivan KM, Schechter LE, Andree TH. Synthesis and structure-activity relationship of novel lactam-fused chroman derivatives having dual affinity at the 5-HT(1A) receptor and the serotonin transporter. Bioorg Med Chem Lett 2009; 20:222-7. [PMID: 19932965 DOI: 10.1016/j.bmcl.2009.10.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022]
Abstract
The structure-activity relationship (SAR) for three series of lactam-fused chroman derivatives possessing 3-amino substituents was evaluated. Many compounds exhibited affinities for both the 5-HT(1A) receptor and the 5-HT transporter. Compounds 45 and 53 demonstrated 5-HT(1A) antagonist activities in the in vitro cAMP turnover model.
Collapse
Affiliation(s)
- Zhongqi Shen
- Chemical and Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Witte AV, Flöel A, Stein P, Savli M, Mien LK, Wadsak W, Spindelegger C, Moser U, Fink M, Hahn A, Mitterhauser M, Kletter K, Kasper S, Lanzenberger R. Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 2009; 30:2558-70. [PMID: 19086022 DOI: 10.1002/hbm.20687] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Various studies indicate that serotonin regulates impulsivity and the inhibitory control of aggression. Aggression is also known to be modified by sex hormones, which exert influence on serotonergic neurotransmission. The present study aimed to elucidate potential interactions between human aggression, the inhibitory serotonergic 5-HT(1A) receptor, and sex hormones. EXPERIMENTAL DESIGN Thirty-three healthy volunteers (16 women, aged 26.24 +/- 5.5 yr) completed a validated questionnaire incorporating five dimensions of aggression. Subsequently, all subjects underwent positron emission tomography with the radioligand [carbonyl-(11)C]WAY-100635 to quantify 5-HT(1A) binding potentials (BP(ND)s) in the prefrontal cortex, limbic areas, and midbrain. Also, plasma levels of testosterone, 17beta-estradiol and sex hormone-binding globulin (SHBG) were measured. Relations between aggression scores, regional 5-HT(1A) BP(ND)s, and hormone levels were analyzed using correlations, multivariate analyses of variance, and linear regressions. PRINCIPAL OBSERVATIONS Statistical analyses revealed higher 5-HT(1A) receptor BP(ND)s in subjects exhibiting higher aggression scores in prefrontal (all P < 0.041) and anterior cingulate cortices (P = 0.016). More aggressive subjects were also characterized by lower SHBG levels (P = 0.015). Moreover, higher SHBG levels were associated with lower 5-HT(1A) BP(ND)s in frontal (P = 0.048) and cingulate cortices (all P < 0.013) and in the amygdala (P = 0.03). CONCLUSIONS The present study provides first-time evidence for a specific interrelation between the 5-HT(1A) receptor distribution, sex hormones, and aggression in humans. Our findings point to a reduced down-stream control due to higher amounts or activities of frontal 5-HT(1A) receptors in more aggressive subjects, which is presumably modulated by sex hormones.
Collapse
Affiliation(s)
- A Veronica Witte
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lorenzi V, Carpenter RE, Summers CH, Earley RL, Grober MS. Serotonin, social status and sex change in the bluebanded goby Lythrypnus dalli. Physiol Behav 2009; 97:476-83. [PMID: 19345236 DOI: 10.1016/j.physbeh.2009.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
In a variety of vertebrates, highly aggressive individuals tend to have high social status and low serotonergic function. In the sex changing fish Lythrypnus dalli, serotonin (5-HT) may be involved as a mediator between the social environment and the reproductive system because social status is a critical cue in regulating sex change. Subordination inhibits sex change in L. dalli, and it is associated with higher serotonergic activity in other species. We tested the hypothesis that high serotonergic activity has an inhibitory effect on sex change. In a social situation permissive to sex change, we administered to the dominant female implants containing the serotonin precursor 5-hydroxytryptophan (5-HTP). In a social situation not conducive to sex change, we administered either the serotonin synthesis inhibitor p-chlorophenylalanine (PCPA) or the 5-HT(1A) receptor antagonist p-MPPI. After three weeks we used HPLC to measure brain levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). We also performed PCPA, p-MPPI and fluoxetine injections in size-matched pairs of females to assess its effect on dominance status. Males and newly sex changed fish showed a trend for higher levels of 5-HIAA and 5-HT/5-HIAA ratio than females. The different implants treatments did not affect the probability of sex change. Interestingly, this species does not seem to fit the pattern seen in other vertebrates where dominant individuals have lower serotonergic activity than subordinates.
Collapse
Affiliation(s)
- Varenka Lorenzi
- Department of Biology, Georgia State University & Center for Behavioral Neuroscience, Atlanta, GA 30303, USA.
| | | | | | | | | |
Collapse
|
24
|
Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell 2008; 135:561-71. [PMID: 18984166 DOI: 10.1016/j.cell.2008.08.040] [Citation(s) in RCA: 513] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/27/2008] [Accepted: 08/28/2008] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 nonodorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted previously unidentified roles for less-studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue, suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets.
Collapse
Affiliation(s)
- Jean B Regard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|