1
|
Zhang C, Lai G, Deng J, Li K, Chen L, Zhong X, Xie B. Integrating Machine Learning and Mendelian Randomization Determined a Functional Neurotrophin-Related Gene Signature in Patients with Lower-Grade Glioma. Mol Biotechnol 2024; 66:2620-2634. [PMID: 38261152 DOI: 10.1007/s12033-023-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG's surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Liuyi Chen
- The Fifth People's Hospital of Chongqing, Renji Road, Chongqing, 400062, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
2
|
Strack M, Kückelhaus J, Diebold M, Wuchter P, Huber PE, Schnell O, Sankowski R, Prinz M, Grosu AL, Heiland DH, Nicolay NH, Rühle A. Effects of tumor treating fields (TTFields) on human mesenchymal stromal cells. J Neurooncol 2024; 169:329-340. [PMID: 38900237 PMCID: PMC11341748 DOI: 10.1007/s11060-024-04740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.
Collapse
Affiliation(s)
- Maren Strack
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jan Kückelhaus
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neurology and Medical Oncology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden- Württemberg- Hessen, Heidelberg University, Mannheim, Germany
| | - Peter E Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Center Heidelberg, Heidelberg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany.
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Ah-Pine F, Khettab M, Bedoui Y, Slama Y, Daniel M, Doray B, Gasque P. On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol Commun 2023; 11:104. [PMID: 37355636 PMCID: PMC10290416 DOI: 10.1186/s40478-023-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Glioblastoma, IDH wild-type is the most common and aggressive form of glial tumors. The exact mechanisms of glioblastoma oncogenesis, including the identification of the glioma-initiating cell, are yet to be discovered. Recent studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesenchymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma-initiating cells, especially with regard to the mesenchymal molecular subtype. These fibroblast-like cells, which derive from the neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro-tumoral effects within the tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of glioblastoma and provides novel research avenues to better understand this lethal disease.
Collapse
Affiliation(s)
- F. Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - M. Khettab
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Slama
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| | - M. Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Médecine d’Urgences-SAMU-SMUR, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - B. Doray
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - P. Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
4
|
Nakhle J, Khattar K, Özkan T, Boughlita A, Abba Moussa D, Darlix A, Lorcy F, Rigau V, Bauchet L, Gerbal-Chaloin S, Daujat-Chavanieu M, Bellvert F, Turchi L, Virolle T, Hugnot JP, Buisine N, Galloni M, Dardalhon V, Rodriguez AM, Vignais ML. Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring. CANCER RESEARCH COMMUNICATIONS 2023; 3:1041-1056. [PMID: 37377608 PMCID: PMC10266428 DOI: 10.1158/2767-9764.crc-23-0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jean Nakhle
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
- RESTORE Research Center, University of Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Khattar Khattar
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Tülin Özkan
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Faculty of Medicine, Department of Medical Biology, University of Ankara, Ankara, Turkey
| | - Adel Boughlita
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Daouda Abba Moussa
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Amélie Darlix
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Frédérique Lorcy
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Valérie Rigau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Luc Bauchet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Hopital Gui de Chauliac, Montpellier, France
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, University of Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Jean-Philippe Hugnot
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Mireille Galloni
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Valérie Dardalhon
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Anne-Marie Rodriguez
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Marie-Luce Vignais
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
5
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
6
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
NR2F2 Regulates Cell Proliferation and Immunomodulation in Whartons’ Jelly Stem Cells. Genes (Basel) 2022; 13:genes13081458. [PMID: 36011369 PMCID: PMC9408747 DOI: 10.3390/genes13081458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Wharton’s Jelly stem cells (WJ-MSCs) are multipotent mesenchymal stem cells that can proliferate rapidly and have low immunogenicity. Therefore, WJ-MSCs have gained considerable attention in the fields of immunomodulation and disease treatment and have entered clinical trials for the treatment of various diseases. Therefore, it is crucial to study the underlying mechanisms of WJ-MSCs proliferation, immune regulation, and disease treatment. Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) is a transcription factor that is involved in the regulation of many different genes. However, it remains unknown how NR2F2 regulates stem cell identity in WJ-MSCs. (2) Methods: We used RNAi technology to knock down NR2F2 in WJ-MSCs, and studied the regulatory role of NR2F2 in WJ-MSCs by MTT, flow cytometry, RNA-seq, and other methods. We also utilized a co-culture system in which NR2F2-depleted WJ-MSCs with MH7A and HCT116/HepG2 were used to investigate the role of NR2F2 in immunomodulation and the inhibition of cancer cell growth. (3) Results: NR2F2 knockdown resulted in decreased expressions of Cyclin D1 and CDK4, slower cell proliferation, and increased expressions of IL6 and IL8. Furthermore, Cyclin D1, CDK4, and inflammatory factors were increased in human rheumatoid fibroblast-like synoviocyte line MH7A if co-cultured with NR2F2 depleted WJ-MSCs. In addition, we observed increased p53, decreased BCL-2, and increased cell apoptosis in liver cancer cell line HepG2 if co-cultured with NR2F2-depleted WJ-MSCs. (4) Conclusions: NR2F2 not only plays an important role in the cell cycle and immune regulation of WJ-MSCs but also has potential effects on the WJ-MSCs treatment of related diseases.
Collapse
|
8
|
Shamshiripour P, Hajiahmadi F, Lotfi S, Esmaeili NR, Zare A, Akbarpour M, Ahmadvand D. Next-Generation Anti-Angiogenic Therapies as a Future Prospect for Glioma Immunotherapy; From Bench to Bedside. Front Immunol 2022; 13:859633. [PMID: 35757736 PMCID: PMC9231436 DOI: 10.3389/fimmu.2022.859633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (grade IV glioma) is the most aggressive histopathological subtype of glial tumors with inordinate microvascular proliferation as one of its key pathological features. Extensive angiogenesis in the tumor microenvironment supplies oxygen and nutrients to tumoral cells; retains their survival under hypoxic conditions; and induces an immunosuppressive microenvironment. Anti-angiogenesis therapy for high-grade gliomas has long been studied as an adjuvant immunotherapy strategy to overcome tumor growth. In the current review, we discussed the underlying molecular mechanisms contributing to glioblastoma aberrant angiogenesis. Further, we discussed clinical applications of monoclonal antibodies, tyrosine kinase inhibitors, and aptamers as three major subgroups of anti-angiogenic immunotherapeutics and their limitations. Moreover, we reviewed clinical and preclinical applications of small interfering RNAs (siRNAs) as the next-generation anti-angiogenic therapeutics and summarized their potential advantages and limitations. siRNAs may serve as next-generation anti-angiogenic therapeutics for glioma. Additionally, application of nanoparticles as a delivery vehicle could increase their selectivity and lower their off-target effects.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Hajiahmadi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Lotfi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Robab Esmaeili
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Zare
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago, IL, United States.,Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
10
|
Nowak B, Rogujski P, Janowski M, Lukomska B, Andrzejewska A. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Biochim Biophys Acta Rev Cancer 2021; 1876:188582. [PMID: 34144129 DOI: 10.1016/j.bbcan.2021.188582] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are among the most investigated and applied somatic stem cells in experimental therapies for the regeneration of damaged tissues. Moreover, as it was recently postulated, MSCs may demonstrate anti-tumor properties. Glioblastoma (GBM) is a grade IV central nervous system tumor with no available effective therapy and an inevitably fatal prognosis. Experimental studies utilizing MSCs in GBM treatment resulted in numerous controversies. Native MSCs were shown to exert anti-GBM activity by controlling angiogenesis, regulating cell cycle, and inducing apoptosis. They also were used as sensitizing factors and vehicles delivering various anti-cancer compounds. On the other hand, some experiments revealed significant risks related to MSC-based therapies for GBM, such as enhancement of tumor cell proliferation, invasion, and aggressiveness. The following review elaborates on all mentioned contradictory data and provides a realistic, current clinical perspective on MSCs' potential in GBM treatment.
Collapse
Affiliation(s)
- Blazej Nowak
- Department of Neurosurgery, Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland; Neurosurgery Department, John Paul II Western Hospital, Grodzisk Mazowiecki, Poland
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA; Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Ma X, Chen J, Liu J, Xu B, Liang X, Yang X, Feng Y, Liang X, Liu J. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133 + /CD44 + Colon cancer stem cells. J Cell Physiol 2021; 236:3114-3128. [PMID: 33078417 DOI: 10.1002/jcp.30080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
In cancer treatment, the most attractive feature of mesenchymal stem cells (MSCs) is it's homing to tumor tissues. MSC is an important part of the "colon cancer stem cell niche", but little research has been done on the tropism of human MSCs toward colon cancer stem cells (CCSCs). In this study, we first compared the effects of three tissue-derived MSCs (bone marrow, adipose tissue, and placenta) in vivo on colon tumor xenograft growth. Then, we analyzed the tropism of bone marrow-derived MSCs (BMSCs) toward normal intestinal epithelial cells (NCM460), parental colon cancer cells, CD133- /CD44-, and CD133+ /CD44+ colon cancer cells in vitro. Microarray analysis and in vitro experiments explored the mechanism of mediating the homing of BMSCs toward CCSCs. Compared with the parental and CD133- /CD44- colon cancer cells, CD133+ /CD44+ cells have a stronger ability to recruit BMSCs. In addition, BMSCs were significantly transformed into cancer-associated fibroblasts after being recruited by CCSCs. After coculture of BMSCs and CCSCs, the expression of interleukin (IL)-6, IL-8, IL-32, and CCL20 was significantly increased. Compared with parental strains, CD133- /CD44- cells, and NCM460, BMSC secreted significantly more IL-8 after coculture with CD133+ /CD44+ cells. Low concentration of IL-8 peptide inhibitors (100 ng/ml) and CXC receptor 2 (CXCR2) inhibitors have little effect on the migration of BMSCs, but can effectively weaken CCSC stemness and promote dormant CSCs in the coculture system to re-enter into the cell cycle. The endogenous IL-8 knockout in BMSCs or BMSCs loaded with IL-8 and/or CXCR2 inhibitors will make the therapy of BMSC targeting CCSCs function at its best.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyu Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Zhang Q, Xiang W, Xue BZ, Yi DY, Zhao HY, Fu P. Growth factors contribute to the mediation of angiogenic capacity of glioma-associated mesenchymal stem cells. Oncol Lett 2021; 21:215. [PMID: 33552293 PMCID: PMC7836385 DOI: 10.3892/ol.2021.12476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are important components of stromal cell populations and serve a crucial role in tumor growth and progression. Previously, our laboratory successfully isolated and cultured MSCs from human glioma issues and demonstrated that glioma-associated mesenchymal stem cells (gb-MSCs) participate in and maintain tumor angiogenesis. Furthermore, growth factors, such as fibroblast growth factor and vascular endothelial cell growth factor, were demonstrated to be associated with endothelial cell tube formation. However, the effect of transforming growth factor β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) on the angiogenic activity of gb-MSCs remains unknown. The present study aimed therefore to explore their effects in gb-MSCs angiogenesis. In the present study, gb-MSCs were isolated from patients with glioma and were characterized using flow cytometry and differentiation experiments. Furthermore, the results from tube formation assay revealed that TGF-β1 and PDGF-BB could mediate the angiogenic capacity of gb-MSCs in vitro. In addition, results from immunofluorescence demonstrated that gb-MSCs expressed TGF-β1R and PDGFR, which are the receptors for TGF-β1 and PDGF-BB, respectively. Taken together, these findings indicated that TGF-β1 and PDGF-BB may serve a crucial role in mediating gb-MSC angiogenesis, which might provide a therapeutic strategy for targeting the angiogenic capacity of gb-MSCs in patients with glioma.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Brain Tumor Research Center, Beijing Neurosurgical Institute and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing 100070, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
15
|
Pietrobono D, Giacomelli C, Marchetti L, Martini C, Trincavelli ML. High Adenosine Extracellular Levels Induce Glioblastoma Aggressive Traits Modulating the Mesenchymal Stromal Cell Secretome. Int J Mol Sci 2020; 21:E7706. [PMID: 33081024 PMCID: PMC7589183 DOI: 10.3390/ijms21207706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is an aggressive, fast-growing brain tumor influenced by the composition of the tumor microenvironment (TME) in which mesenchymal stromal cell (MSCs) play a pivotal role. Adenosine (ADO), a purinergic signal molecule, can reach up to high micromolar concentrations in TME. The activity of specific adenosine receptor subtypes on glioma cells has been widely explored, as have the effects of MSCs on tumor progression. However, the effects of high levels of ADO on glioma aggressive traits are still unclear as is its role in cancer cells-MSC cross-talk. Herein, we first studied the role of extracellular Adenosine (ADO) on isolated human U343MG cells as a glioblastoma cellular model, finding that at high concentrations it was able to prompt the gene expression of Snail and ZEB1, which regulate the epithelial-mesenchymal transition (EMT) process, even if a complete transition was not reached. These effects were mediated by the induction of ERK1/2 phosphorylation. Additionally, ADO affected isolated bone marrow derived MSCs (BM-MSCs) by modifying the pattern of secreted inflammatory cytokines. Then, the conditioned medium (CM) of BM-MSCs stimulated with ADO and a co-culture system were used to investigate the role of extracellular ADO in GBM-MSC cross-talk. The CM promoted the increase of glioma motility and induced a partial phenotypic change of glioblastoma cells. These effects were maintained when U343MG cells and BM-MSCs were co-cultured. In conclusion, ADO may affect glioma biology directly and through the modulation of the paracrine factors released by MSCs overall promoting a more aggressive phenotype. These results point out the importance to deeply investigate the role of extracellular soluble factors in the glioma cross-talk with other cell types of the TME to better understand its pathological mechanisms.
Collapse
Affiliation(s)
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.P.); (L.M.); (C.M.); (M.L.T.)
| | | | | | | |
Collapse
|
16
|
Clavreul A, Menei P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers (Basel) 2020; 12:E2628. [PMID: 32942567 PMCID: PMC7565954 DOI: 10.3390/cancers12092628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma microenvironment is a critical regulator of tumor progression. It contains different cellular components such as blood vessels, immune cells, and neuroglial cells. It also contains non-cellular components, such as the extracellular matrix, extracellular vesicles, and cytokines, and has certain physicochemical properties, such as low pH, hypoxia, elevated interstitial pressure, and impaired perfusion. This review focuses on a particular type of cells recently identified in the glioma microenvironment: glioma-associated stromal cells (GASCs). This is just one of a number of names given to these mesenchymal stromal-like cells, which have phenotypic and functional properties similar to those of mesenchymal stem cells and cancer-associated fibroblasts. Their close proximity to blood vessels may provide a permissive environment, facilitating angiogenesis, invasion, and tumor growth. Additional studies are required to characterize these cells further and to analyze their role in tumor resistance and recurrence.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| |
Collapse
|
17
|
Wang X, Li X, Ding J, Long X, Zhang H, Zhang X, Jiang X, Xu T. 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A 2020; 109:915-925. [PMID: 32779363 DOI: 10.1002/jbm.a.37082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most frequently diagnosed primary malignant brain tumor with unfavourable prognosis and high mortality. One of its key features is the extensive abnormal vascular network. Up to now, the mechanism of angiogenesis and the origin of tumor vascularization remain controversial. It is essential to establish an ideal preclinical tumor model to elucidate the mechanism of tumor vascularization, and the role of tumor cells in this process. In this study, both U118 cell and GSC23 cell exhibited good printability and cell proliferation. Compared with 3D-U118, 3D-GSC23 had a greater ability to form cell spheroids, to secrete vascular endothelial growth factor (VEGFA), and to form tubule-like structures in vitro. More importantly, 3D-glioma stem cells (GSC)23 cells had a greater power to transdifferentiate into functional endothelial cells, and blood vessels composed of tumor cells with an abnormal endothelial phenotype was observed in vivo. In summary, 3D bioprinted hydrogel scaffold provided a suitable tumor microenvironment (TME) for glioma cells and GSCs. This bioprinted model supported a novel TME for the research of glioma cells, especially GSCs in glioma vascularization and therapeutic targeting of tumor angiogenesis.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
| | - Jinju Ding
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xiaoyan Long
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Haitao Zhang
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Xinzhi Zhang
- Department of research and development, Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen, People's Republic of China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| |
Collapse
|
18
|
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol 2020; 8:43. [PMID: 32117924 PMCID: PMC7013101 DOI: 10.3389/fbioe.2020.00043] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.
Collapse
Affiliation(s)
- Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Bernat Soria
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,School of Medicine, Miguel Hernández University, Alicante, Spain.,Pablo de Olavide University, Seville, Spain
| | - Vivian Capilla-Gonzalez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| |
Collapse
|
19
|
Vangala G, Imhoff FM, Squires CM, Cridge AG, Baird SK. Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D. Exp Cell Res 2019; 383:111494. [DOI: 10.1016/j.yexcr.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
|
20
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|
21
|
Tao B, Ling Y, Zhang Y, Li S, Zhou P, Wang X, Li B, Jun Z, Zhang W, Xu C, Shi J, Wang L, Zhang W, Li S. CA10 and CA11 negatively regulate neuronal activity-dependent growth of gliomas. Mol Oncol 2019; 13:1018-1032. [PMID: 30636076 PMCID: PMC6487704 DOI: 10.1002/1878-0261.12445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies have revealed that neurons can promote glioma growth through activity‐dependent secretion of neurotrophins, especially neuroligin‐3. It has therefore been suggested that blocking neuron‐derived neurotrophins may serve as a therapeutic intervention for gliomas. Carbonic anhydrase‐related proteins 11 and 10 (CA11 and CA10) are secreted synaptic proteins which function as neurexin ligands, and the gene‐encoding CA11 is part of a gene signature associated with radiotherapy and prognosis in gliomas. We therefore hypothesized that CA11/CA10 might participate in the neuronal activity‐dependent regulation of glioma growth. In this study, we report that CA11 secreted by depolarized cultured neurons within conditioned medium (CM) inhibited the growth of glioma cell lines. CM from depolarized neurons inhibited CA11 expression in glioma cell lines via the Akt signaling pathway. Consistently, CA11 expression was also reduced in clinical glioma samples and negatively associated with high histological grade. Low CA11 expression of gliomas was associated with short survival in four independent datasets [repository of brain neoplasia data (REMBRANDT), The Cancer Genome Atlas (TCGA) lower grade glioma (LGG), GSE4271, and GSE42669]. CA11 knockdown promoted cell growth, clone formation, and migration; inhibited apoptosis; and increased tumor size in xenografted nude mice. Similarly, CA10 and CA10 secreted by depolarized cultured neurons also inhibited the growth of glioma cell lines. Low CA10 expression was associated with short survival in REMBRANDT, TCGA LGG, and GEO GSE4271 datasets. Our results suggest that CA11 and CA10 negatively regulate neuronal activity‐dependent glioma growth and inhibit glioma aggression. Thus, CA11/CA10 may represent a potential therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yiqun Ling
- Department of Nutrition, Fudan University Shanghai Cancer Center, China
| | - Youyou Zhang
- Department of Endocrinology, The First Hospital of Taizhou, Wenzhou Medical University, Taizhou, China
| | - Shu Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China.,Department of Pathophysiology, Wannan Medical College, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiaoqiang Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Bin Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Zhong Jun
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Chunyan Xu
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Juanhong Shi
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Wenhao Zhang
- Department of Hematology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
22
|
Kurogi R, Nakamizo A, Suzuki SO, Mizoguchi M, Yoshimoto K, Amano T, Amemiya T, Takagishi S, Iihara K. Inhibition of glioblastoma cell invasion by hsa-miR-145-5p and hsa-miR-31-5p co-overexpression in human mesenchymal stem cells. J Neurosurg 2019; 130:44-55. [PMID: 29521593 DOI: 10.3171/2017.8.jns1788] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Human bone marrow–derived mesenchymal stem cells (hMSCs) show tropism for brain tumors and may be a useful vehicle for drug or gene delivery to malignant gliomas. Recently, some microRNAs (miRNAs) have been shown to suppress the invasiveness of malignant gliomas. METHODS To test their potential to become vehicles for the delivery of miRNA to malignant gliomas, hMSCs were engineered so that hMSC secretion of miRNAs that inhibit glioma cell invasion was enabled without altering the hMSC tropism for glioma cells. RESULTS In coculture, hMSCs cotransfected with hsa-miR-145-5p and -31-5p miRNAs showed markedly reduced invasion by U87 glioma cells in a contact-dependent manner both in vitro and ex vivo, with invasion of hMSCs cotransfected with these 2 miRNAs by the U87 cells reduced to 60.7% compared with control cells. According to a Matrigel invasion assay, the tropism of the hMSCs for U87 cells was not affected. In glioma cell lines U251 and LN229, hMSCs exhibited tropism in vivo, and invasion of hMSCs cotransfected with hsa-miR-145-5p and -31-5p was also significantly less than that of control cells. When U87 cells were coimplanted into the striatum of organotypic rat brain slices with hMSCs cotransfected with hsa-miR-145 and -31-5p, the relative invasive area decreased by 37.1%; interestingly, these U87 cells showed a change to a rounded morphology that was apparent at the invasion front. Whole-genome microarray analysis of the expression levels of 58,341 genes revealed that the co-overexpression of hsa-miR-145-5p and -31-5p downregulated FSCN1 expression in U87 cells. CONCLUSIONS This study demonstrates that miRNA overexpression in hMSCs can alter the function of glioma cells via contact-dependent transfer. Co-overexpression of multiple miRNAs may be a useful and novel therapeutic strategy. The study results suggest that hMSCs can be applied as a delivery vehicle for miRNAs.
Collapse
Affiliation(s)
- Ryota Kurogi
- Departments of1Neurosurgery and
- 2Department of Neurosurgery, National Hospital Organization, Clinical Research Institute, Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Departments of1Neurosurgery and
- 2Department of Neurosurgery, National Hospital Organization, Clinical Research Institute, Kyushu Medical Center, Fukuoka, Japan
| | - Satoshi O Suzuki
- 3Neuropathology, Graduate School of Medical Sciences, Kyushu University; and
| | | | | | | | | | | | | |
Collapse
|
23
|
Mesenchymal Stem Cells as Regulators of Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:147-166. [DOI: 10.1007/5584_2018_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
25
|
A feasible method for the isolation of mesenchymal stem cells from menstrual blood and their exosomes. Tissue Cell 2018; 55:53-62. [DOI: 10.1016/j.tice.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/17/2023]
|
26
|
Gomes E, Vieira de Castro J, Costa B, Salgado A. The impact of Mesenchymal Stem Cells and their secretome as a treatment for gliomas. Biochimie 2018; 155:59-66. [DOI: 10.1016/j.biochi.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
27
|
Pavon LF, Sibov TT, de Souza AV, da Cruz EF, Malheiros SMF, Cabral FR, de Souza JG, Boufleur P, de Oliveira DM, de Toledo SRC, Marti LC, Malheiros JM, Paiva FF, Tannús A, de Oliveira SM, Chudzinski-Tavassi AM, de Paiva Neto MA, Cavalheiro S. Tropism of mesenchymal stem cell toward CD133 + stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res Ther 2018; 9:310. [PMID: 30413179 PMCID: PMC6234773 DOI: 10.1186/s13287-018-1049-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Department of Neurosurgery, Federal University of São Paulo, São Paulo, Brazil. .,Laboratory of Cellular and Molecular Neurosurgery, Federal University of São Paulo, Rua Napoleão de Barros, n. 626 -Vila Clementino, São Paulo, SP, 04024-002, Brazil.
| | - Tatiana Tais Sibov
- Department of Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - Pamela Boufleur
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | | | - Silvia Regina Caminada de Toledo
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Luciana C Marti
- Experimental Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Fernando F Paiva
- São Carlos Institute of Physics, São Paulo University, São Carlos, Brazil
| | - Alberto Tannús
- São Carlos Institute of Physics, São Paulo University, São Carlos, Brazil
| | | | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | | | - Sérgio Cavalheiro
- Department of Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Zhang Q, Yi DY, Xue BZ, Wen WW, Lu YP, Abdelmaksou A, Sun MX, Yuan DT, Zhao HY, Xiong NX, Xiang W, Fu P. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis 2018; 9:1101. [PMID: 30368520 PMCID: PMC6204133 DOI: 10.1038/s41419-018-1140-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023]
Abstract
Human glioma-associated mesenchymal stem cells (gbMSCs) are the stromal cell components that contribute to the tumourigenesis of malignant gliomas. Recent studies have shown that gbMSCs consist of two distinct subpopulations (CD90+ and CD90− gbMSCs). However, the different roles in glioma progression have not been expounded. In this study, we found that the different roles of gbMSCs in glioma progression were associated with CD90 expression. CD90high gbMSCs significantly drove glioma progression mainly by increasing proliferation, migration and adhesion, where as CD90low gbMSCs contributed to glioma progression chiefly through the transition to pericytes and stimulation of vascular formation via vascular endothelial cells. Furthermore, discrepancies in long non-coding RNAs and mRNAs expression were verified in these two gbMSC subpopulations, and the potential underlying molecular mechanism was discussed. Our data confirm for the first time that CD90high and CD90low gbMSCs play different roles in human glioma progression. These results provide new insights into the possible future use of strategies targeting gbMSC subpopulations in glioma patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong-Ye Yi
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing-Zhou Xue
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yin-Ping Lu
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ahmed Abdelmaksou
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Neurosurgery, Faculty of Medicine, Helwan University, Cairo, 11435, Egypt
| | - Min-Xuan Sun
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - De-Tian Yuan
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hong-Yang Zhao
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan-Xiang Xiong
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiang
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Fu
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
30
|
Ejtehadifar M, Halabian R, Ghazavi A, Khansarinejad B, Mosayebi G, Imani Fooladi AA. Bone marrow - mesenchymal stem cells impact on the U937 cells in the presence of staphylococcal enterotoxin B (SEB). Clin Exp Pharmacol Physiol 2018; 45:849-858. [PMID: 29655181 DOI: 10.1111/1440-1681.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ghazavi
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front Pharmacol 2018; 9:259. [PMID: 29615915 PMCID: PMC5869248 DOI: 10.3389/fphar.2018.00259] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.
Collapse
Affiliation(s)
- Daria S Chulpanova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Leysan G Tazetdinova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
32
|
Sharma A. Role of stem cell derived exosomes in tumor biology. Int J Cancer 2017; 142:1086-1092. [PMID: 28983919 DOI: 10.1002/ijc.31089] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/09/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 400 NCL Innovation Park, Dr Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
33
|
Vieira de Castro J, Gomes ED, Granja S, Anjo SI, Baltazar F, Manadas B, Salgado AJ, Costa BM. Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology. J Transl Med 2017; 15:200. [PMID: 28969635 PMCID: PMC5625623 DOI: 10.1186/s12967-017-1303-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton’s jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
34
|
Li G, Bonamici N, Dey M, Lesniak MS, Balyasnikova IV. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin Drug Deliv 2017; 15:163-172. [PMID: 28895435 DOI: 10.1080/17425247.2018.1378642] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most aggressive malignant brain cancer in adults, and its poor prognosis and resistance to the existing standard of care require the development of innovative therapeutic modalities. The local delivery of stem cells as therapeutic carriers against glioma has produced encouraging results, but encounters obstacles with regards to the repeatability and invasiveness of administration. Intranasal delivery of therapeutic stem cells could overcome these obstacles, among others, as a noninvasive and easily repeatable mode of administration. AREAS COVERED This review describes nasal anatomy, routes of stem cell migration, and factors affecting stem cell delivery to hard-to-reach tumors. Furthermore, this review discusses the molecular mechanisms underlying stem cell migration following delivery, as well as possible stem cell effector functions to be considered in combination with intranasal delivery. EXPERT OPINION Further research is necessary to elucidate the dynamics of stem cell effector functions in the context of intranasal delivery and optimize their therapeutic potency. Nonetheless, the technique represents a promising tool against brain cancer and has the potential to be expanded for use against other brain pathologies.
Collapse
Affiliation(s)
- Gina Li
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Nicolas Bonamici
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Mahua Dey
- b Department of Neurological Surgery , Indiana University , Indianapolis , IN , USA
| | - Maciej S Lesniak
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Irina V Balyasnikova
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
35
|
|
36
|
Annabi B, Zgheib A, Annabi B. Cavin-2 Functions as a Suppressive Regulator in TNF-induced Mesenchymal Stromal Cell Inflammation and Angiogenic Phenotypes. Int J Stem Cells 2017; 10:103-113. [PMID: 28024316 PMCID: PMC5488782 DOI: 10.15283/ijsc16032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Tumour necrosis factor (TNF)-α activation of mesenchymal stromal cells (MSC) enhances their tumour-suppressive properties and tumour-homing ability. The molecular actors involved are unknown. We found that TNF induced MSC migration and tubulogenesis which correlated with a dose-dependent increase in Cavin-1 and Cavin-3 transcript levels. TNF triggered cyclooxygenase (COX)-2 expression, whereas specific siRNA-mediated gene silencing of Cavin-2 resulted in an amplified COX-2 expression, tubulogenesis, and migratory response partially due to a rapid and sustained increase in NF-κB phosphorylation status. Our results highlight a suppressive role for the caveolar component Cavin-2 in the angiogenic and inflammatory regulation of TNF-activated MSC.
Collapse
Affiliation(s)
- Bayader Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada.,Département de Physiologie Moléculaire et Intégrative, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada
| |
Collapse
|
37
|
Li X, He L, Yue Q, Lu J, Kang N, Xu X, Wang H, Zhang H. MiR-9-5p promotes MSC migration by activating β-catenin signaling pathway. Am J Physiol Cell Physiol 2017; 313:C80-C93. [PMID: 28424168 DOI: 10.1152/ajpcell.00232.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have the potential to treat various tissue damages, but the very limited number of cells that migrate to the damaged region strongly restricts their therapeutic applications. Full understanding of mechanisms regulating MSC migration will help to improve their migration ability and therapeutic effects. Increasing evidence shows that microRNAs play important roles in the regulation of MSC migration. In the present study, we reported that miR-9-5p was upregulated in hepatocyte growth factor -treated MSCs and in MSCs with high migration ability. Overexpression of miR-9-5p promoted MSC migration, whereas inhibition of endogenous miR-9-5p decreased MSC migration. To elucidate the underlying mechanism, we screened the target genes of miR-9-5p and report for the first time that CK1α and GSK3β, two inhibitors of β-catenin signaling pathway, were direct targets of miR-9-5p in MSCs and that overexpression of miR-9-5p upregulated β-catenin signaling pathway. In line with these data, inhibition of β-catenin signaling pathway by FH535 decreased the miR-9-5p-promoted migration of MSCs, while activation of β-catenin signaling pathway by LiCl rescued the impaired migration of MSCs triggered by miR-9-5p inhibitor. Furthermore, the formation and distribution of focal adhesions as well as the reorganization of F-actin were affected by the expression of miR-9-5p. Collectively, these results demonstrate that miR-9-5p promotes MSC migration by upregulating β-catenin signaling pathway, shedding light on the optimization of MSCs for cell replacement therapy through manipulating the expression level of miR-9-5p.
Collapse
Affiliation(s)
- Xianyang Li
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Lihong He
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Qing Yue
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Naixin Kang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Xiaojing Xu
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Huihui Wang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| |
Collapse
|
38
|
Hong GH, Kwon HS, Lee KY, Ha EH, Moon KA, Kim SW, Oh W, Kim TB, Moon HB, Cho YS. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med 2017; 49:e288. [PMID: 28127050 PMCID: PMC5291839 DOI: 10.1038/emm.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co. Ltd, Gyeonggi-do, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 2017; 7:6916-32. [PMID: 26755648 PMCID: PMC4872758 DOI: 10.18632/oncotarget.6870] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer.
Collapse
|
40
|
Alshehri MM, Robbins SM, Senger DL. The Role of Neurotrophin Signaling in Gliomagenesis: A Focus on the p75 Neurotrophin Receptor (p75 NTR/CD271). VITAMINS AND HORMONES 2017; 104:367-404. [PMID: 28215302 DOI: 10.1016/bs.vh.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p75 neurotrophin receptor (p75NTR, a.k.a. CD271), a transmembrane glycoprotein and a member of the tumor necrosis family (TNF) of receptors, was originally identified as a nerve growth factor receptor in the mid-1980s. While p75NTR is recognized to have important roles during neural development, its presence in both neural and nonneural tissues clearly supports the potential to mediate a broad range of functions depending on cellular context. Using an unbiased in vivo selection paradigm for genes underlying the invasive behavior of glioma, a critical characteristic that contributes to poor clinical outcome for glioma patients, we identified p75NTR as a central regulator of glioma invasion. Herein we review the expanding role that p75NTR plays in glioma progression with an emphasis on how p75NTR may contribute to the treatment refractory nature of glioma. Based on the observation that p75NTR is expressed and functional in two critical glioma disease reservoirs, namely, the highly infiltrative cells that evade surgical resection, and the radiation- and chemotherapy-resistant brain tumor-initiating cells (also referred to as brain tumor stem cells), we propose that p75NTR and its myriad of downstream signaling effectors represent rationale therapeutic targets for this devastating disease. Lastly, we provide the provocative hypothesis that, in addition to the well-documented cell autonomous signaling functions, the neurotrophins, and their respective receptors, contribute in a cell nonautonomous manner to drive the complex cellular and molecular composition of the brain tumor microenvironment, an environment that fuels tumorigenesis.
Collapse
Affiliation(s)
- M M Alshehri
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - S M Robbins
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - D L Senger
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
41
|
Identification of two distinct mesenchymal stromal cell populations in human malignant glioma. J Neurooncol 2016; 131:245-254. [PMID: 27757723 PMCID: PMC5306185 DOI: 10.1007/s11060-016-2302-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 10/09/2016] [Indexed: 12/25/2022]
Abstract
Gene profiling has revealed that malignant gliomas can be divided into four distinct molecular subtypes, where tumors with a mesenchymal gene expression are correlated with short survival. The present investigation was undertaken to clarify whether human malignant gliomas contain endogenous mesenchymal stromal cells (MSC), fulfilling consensus criteria defined by The International Society for Cellular Therapy, recruited from the host. We found that MSC-like cells can be isolated from primary human malignant gliomas. Two distinct MSC-like cell populations, differing in their expression of the CD90 surface marker, were discovered after cell sorting. RNA sequencing revealed further genetic differences between these two cell populations and MSC-like cells lacking CD90 produced higher amounts of VEGF and PGE2 compared to cells with the true MSC phenotype, implying that the CD90− MSC-like cells most probably are more active in tumor vascularization and immunosuppression than their CD90+ counterpart. The results highlight the CD90− subpopulation as an important tumor component, however, its functional effects in glioma remains to be resolved. Using the protocols presented here, it will be possible to isolate, characterize and analyze brain tumor-derived MSC-like cells in more detail and to further test their functions in vitro and in in vivo xenograft models of glioma.
Collapse
|
42
|
Lazennec G, Lam PY. Recent discoveries concerning the tumor - mesenchymal stem cell interactions. Biochim Biophys Acta Rev Cancer 2016; 1866:290-299. [PMID: 27750042 DOI: 10.1016/j.bbcan.2016.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment plays a crucial role in coordination with cancer cells in the establishment, growth and dissemination of the tumor. Among cells of the microenvironment, mesenchymal stem cells (MSCs) and their ability to evolve into cancer associated fibroblasts (CAFs) have recently generated a major interest in the field. Numerous studies have described the potential pro- or anti-tumorigenic action of MSCs. The goal of this review is to synthesize recent and emerging discoveries concerning the mechanisms by which MSCs can be attracted to tumor sites, how they can generate CAFs and by which way MSCs are able to modulate the growth, response to treatments, angiogenesis, invasion and metastasis of tumors. The understanding of the role of MSCs in tumor development has potential and clinical applications in terms of cancer management.
Collapse
Affiliation(s)
- Gwendal Lazennec
- CNRS, SYS2DIAG, Cap delta, 1682 rue de la Valsière, Montpellier F-34184, France; CNRS, GDR 3697 "Microenvrionment of tumor niches", Micronit, France.
| | - Paula Y Lam
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
43
|
Kasashima H, Yashiro M, Nakamae H, Kitayama K, Masuda G, Kinoshita H, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. CXCL1-Chemokine (C-X-C Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow-Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3028-3039. [PMID: 27742059 DOI: 10.1016/j.ajpath.2016.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022]
Abstract
Tumor stromal cells play a critical role in the progression of diffuse-type gastric cancer (DGC). The aim of this study was to clarify where tumor stromal cells originate from and which factor(s) recruits them into the tumor stroma. Immunodeficient mice with bone marrow transplantation from the cytomegalovirus enhancer/chicken β-actin promoter-enhanced green fluorescent protein mice were used for the in vivo experiments. An in vitro study analyzed the chemotaxis-stimulating factor from DGC cells using bone marrow-derived mesenchymal cells (BM-MCs). The influences of chemokine (C-X-C motif) receptor 2 (CXCR2) inhibitor on the migration of BM-MCs were examined both in vitro and in vivo. BM-MCs frequently migrated into stroma of DGC in vivo. The number of migrating BM-MCs was increased by conditioned medium from DGC cells. CXCL1 from DGC cells stimulated the chemoattractant ability of BM-MCs. Both anti-CXCL1 antibody and CXCR2 inhibitor decreased the migration of BM-MCs, stimulated by DGC cells. A CXCR2 inhibitor, SB225002, reduced the recruitment of BM-MCs into the tumor microenvironment in vivo, decreasing tumor size and lymph node metastasis, and prolonging the survival of gastric tumor-bearing mice. These findings suggested that most tumor stromal cells in DGC might originate from BM-MCs. CXCL1 from DGC cells stimulates the recruitment of BM-MCs into tumor stroma via CXCR2 signaling of BM-MCs. Inhibition of BM-MC recruitment via the CXCL1-CXCR2 axis appears a promising therapy for DGC.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan; Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kisyu Kitayama
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
44
|
Lama G, Mangiola A, Proietti G, Colabianchi A, Angelucci C, D' Alessio A, De Bonis P, Geloso MC, Lauriola L, Binda E, Biamonte F, Giuffrida MG, Vescovi A, Sica G. Progenitor/Stem Cell Markers in Brain Adjacent to Glioblastoma: GD3 Ganglioside and NG2 Proteoglycan Expression. J Neuropathol Exp Neurol 2016; 75:134-47. [PMID: 26792897 DOI: 10.1093/jnen/nlv012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research because tumor recurrence invariably occurs in this area. We investigated the expression of the progenitor/stem cell markers GD3 ganglioside and NG2 proteoglycan in GBM, peritumor tissue (brain adjacent to tumor, BAT) and cancer stem-like cells (CSCs) isolated from GBM (GCSCs) and BAT (PCSCs). GD3 and NG2 immunohistochemistry was performed in paired GBM and BAT specimens from 40 patients. Double-immunofluorescence was carried out to characterize NG2-positive cells of vessel walls. GD3 and NG2 expression was investigated in GCSCs and PCSCs whose tumorigenicity was also evaluated in Scid/bg mice. GD3 and NG2 expression was higher in tumor tissue than in BAT. NG2 decreased as the distance from tumor margin increased, regardless of the tumor cell presence, whereas GD3 correlated with neoplastic infiltration. In BAT, NG2 was coexpressed with a-smooth muscle actin (a-SMA) in pericytes and with nestin in the endothelium. Higher levels of NG2 mRNA and protein were found in GCSCs while GD3 synthase was expressed at similar levels in the 2 CSC populations. PCSCs had lower tumorigenicity than GCSCs. These data suggest the possible involvement of GD3 and NG2 in pre/pro-tumorigenic events occurring in the complex microenvironment of the tissue surrounding GBM.
Collapse
|
45
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
46
|
NAMBA HIROKI, KAWAJI HIROSHI, YAMASAKI TOMOHIRO. Use of genetically engineered stem cells for glioma therapy. Oncol Lett 2016; 11:9-15. [PMID: 26870161 PMCID: PMC4726949 DOI: 10.3892/ol.2015.3860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common and most malignant type of primary brain tumor, is associated with poor prognosis, even when treated using combined therapies, including surgery followed by concomitant radiotherapy with temozolomide-based chemotherapy. The invasive nature of this type of tumor is a major reason underlying treatment failure. The tumor-tropic ability of neural and mesenchymal stem cells offers an alternative therapeutic approach, where these cells may be used as vehicles for the invasion of tumors. Stem cell-based therapy is particularly attractive due to its tumor selectivity, meaning that the stem cells are able to target tumor cells without harming healthy brain tissue, as well as the extensive tumor tropism of stem cells when delivering anti-tumor substances, even to distant tumor microsatellites. Stem cells have previously been used to deliver cytokine genes, suicide genes and oncolytic viruses. The present review will summarize current trends in experimental studies of stem cell-based gene therapy against gliomas, and discuss the potential concerns for translating these promising strategies into clinical use.
Collapse
Affiliation(s)
- HIROKI NAMBA
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - HIROSHI KAWAJI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - TOMOHIRO YAMASAKI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
47
|
Rhee KJ, Lee JI, Eom YW. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int J Mol Sci 2015; 16:30015-33. [PMID: 26694366 PMCID: PMC4691158 DOI: 10.3390/ijms161226215] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Korea.
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| |
Collapse
|
48
|
Wang H, Wang X, Qu J, Yue Q, Hu Y, Zhang H. VEGF Enhances the Migration of MSCs in Neural Differentiation by Regulating Focal Adhesion Turnover. J Cell Physiol 2015; 230:2728-42. [PMID: 25820249 DOI: 10.1002/jcp.24997] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in neural regeneration, due to their intrinsic neuronal potential and migratory tropism to damaged nervous tissues. However, the chemotactic signals mediating the migration of MSCs remain poorly understood. Here, we investigated the regulatory roles for focal adhesion kinase (FAK) and Rac1 in vascular endothelial growth factor (VEGF)-stimulated migration of MSCs in neural differentiation. We found that MSCs in various differentiation states show significant different chemotactic responses to VEGF and cells in 24-h preinduction state possess the highest migration speed and efficiency. FAK, as the downstream signaling molecule, is involved in the VEGF-induced migration by regulating the assembly and distribution of focal adhesions (FAs) and reorganization of F-actin. The features of FAs and cytoskeletons and the ability of lamellipodia formation are closely related to the neural differentiation states of MSCs. VEGF promotes FA formation with an asymmetric distribution of FAs and induces the activation of Y397-FAK and Y31/118-paxillin of undifferentiated and 24-h preinduced MSCs in a time-dependent manner. Inhibition of FAK by PF-228 or expressing FAK-Y397F mutant impairs the dynamics of FAs in MSCs during VEGF-induced migration. Furthermore, Rac1 regulates FA formation in a FAK-dependent manner. Overexpression of constitutive activated mutants of Rac1 increases the number of FAs in undifferentiated and 24-h preinduced MSCs, while VEGF-induced increase of FA formation is decreased by inhibiting FAK by PF-228. Collectively, these results demonstrate that FAK and Rac1 signalings coordinately regulate the dynamics of FAs during VEGF-induced migration of MSCs in varying neural differentiation states.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Xingkai Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Jing Qu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Qing Yue
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Ya'nan Hu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Huanxiang Zhang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Iser I, de Campos R, Bertoni A, Wink M. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell. Biomed Pharmacother 2015; 75:75-82. [DOI: 10.1016/j.biopha.2015.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/23/2015] [Indexed: 12/12/2022] Open
|
50
|
MA JIANGCHUN, CHENG PENG, HU YI, XUE YIXUE, LIU YUNHUI. Integrin α4 is involved in the regulation of glioma-induced motility of bone marrow mesenchymal stem cells. Oncol Rep 2015; 34:779-86. [DOI: 10.3892/or.2015.4012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023] Open
|