1
|
Cai T, Jin T, Guan Y, Zou W, Wang X, Zhu Y. Hyperbaric oxygen therapy enhances restoration of physical functional in patients with recurrent glioma: A case report. Oncol Lett 2024; 28:583. [PMID: 39421317 PMCID: PMC11484218 DOI: 10.3892/ol.2024.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Patients with recurrent glioblastoma often opt for hypofractionated stereotactic radiosurgery, which can cause various adverse reactions. The pharmacological interventions used to manage these adverse reactions are usually unsatisfactory. The present study reports the case of a patient with recurrent glioblastoma who underwent hyperbaric oxygen therapy followed by immediate hypofractionated stereotactic radiosurgery. Grip strength, isokinetic muscle testing and gait analysis were evaluated during the treatment period, spanning an interval of 7 days in March 2023. Assessments before and after treatment revealed improvements in all three parameters compared with pre-treatment levels. In summary, combining hyperbaric oxygen therapy with hypofractionated stereotactic radiosurgery may enhance muscle strength in patients with recurrent glioblastoma. This treatment approach can lead to significant improvements in gait parameters, promoting better motor coordination. Furthermore, the combined therapy could offer a promising alternative for managing muscle weakness and mobility issues after glioblastoma recurrence.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, P.R. China
| | - Tao Jin
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Yun Guan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Wei Zou
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Xin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
2
|
Ren ZQ, Wang RD, Wang C, Ren XH, Li DG, Liu YL, Yu QH. Key Genes Involved in the Beneficial Mechanism of Hyperbaric Oxygen for Glioblastoma and Predictive Indicators of Hyperbaric Oxygen Prolonging Survival in Glioblastoma Patients. Curr Med Sci 2024; 44:1036-1046. [PMID: 39446287 DOI: 10.1007/s11596-024-2934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The prognosis of glioblastoma is poor, and therapy-resistance is largely attributed to intratumor hypoxia. Hyperbaric oxygen (HBO) effectively alleviates hypoxia. However, the sole role of HBO in glioblastoma remains controversial. We previously reported that HBO can promote apoptosis, shorten protrusions, and delay growth of glioblastoma, but the molecular mechanism is unclear. We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients. METHODS Glioblastoma cell lines exposed to repetitive HBO or normobaric air (NBA) were collected for RNA isolation and microarray data analysis. GO analysis, KEGG pathway analysis and survival analysis of the differentially expressed genes (DEGs) were performed. RESULTS HBO not only inhibited hypoxia-inducing genes including CA9, FGF11, PPFIA4, TCAF2 and SLC2A12, but also regulated vascularization by downregulating the expression of COL1A1, COL8A1, COL12A1, RHOJ and FILIP1L, ultimately attenuated hypoxic microenvironment of glioblastoma. HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2, CARD8, MYD88 and CD180. HBO prevented metastasis by downregulating the expression of NTM, CXCL12, CXCL13, CXCR4, CXCR5, CDC42, IGFBP3, IGFBP5, GPC6, MMP19, ADAMTS1, EFEMP1, PTBP3, NF1 and PDCD1. HBO upregulated the expression of BAK1, PPIF, DDIT3, TP53I11 and FAS, whereas downregulated the expression of MDM4 and SIVA1, thus promoting apoptosis. HBO upregulated the expression of CDC25A, MCM2, PCNA, RFC33, DSCC1 and CDC14A, whereas downregulated the expression of ASNS, CDK6, CDKN1B, PTBP3 and MAD2L1, thus inhibiting cell cycle progression. Among these DEGs, 17 indicator-genes of HBO prolonging survival were detected. CONCLUSIONS HBO is beneficial for glioblastoma. Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy. These potential therapeutic targets especially COL1A1, ADAMTS1 and PTBP3 deserve further validation.
Collapse
Affiliation(s)
- Zi-Qi Ren
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ren-Dong Wang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Cong Wang
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiao-Hui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dong-Guo Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Ya-Ling Liu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiu-Hong Yu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
3
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
4
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
6
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
7
|
Alpuim Costa D, Sampaio-Alves M, Netto E, Fernandez G, Oliveira E, Teixeira A, Daniel PM, Bernardo GS, Amaro C. Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review. Front Neurol 2022; 13:886603. [PMID: 35847231 PMCID: PMC9283648 DOI: 10.3389/fneur.2022.886603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. The mainstay of management for GBM is surgical resection, radiation (RT), and chemotherapy (CT). Even with optimized multimodal treatment, GBM has a high recurrence and poor survival rates ranging from 12 to 24 months in most patients. Recently, relevant advances in understanding GBM pathophysiology have opened new avenues for therapies for recurrent and newly diagnosed diseases. GBM's hypoxic microenvironment has been shown to be highly associated with aggressive biology and resistance to RT and CT. Hyperbaric oxygen therapy (HBOT) may increase anticancer therapy sensitivity by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. Previous data have investigated HBOT in combination with cytostatic compounds, with an improvement of neoplastic tissue oxygenation, inhibition of HIF-1α activity, and a significant reduction in the proliferation of GBM cells. The biological effect of ionizing radiation has been reported to be higher when it is delivered under well-oxygenated rather than anoxic conditions. Several hypoxia-targeting strategies reported that HBOT showed the most significant effect that could potentially improve RT outcomes, with higher response rates and survival and no serious adverse events. However, further prospective and randomized studies are necessary to validate HBOT's effectiveness in the 'real world' GBM clinical practice.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Centro Hiperbárico de Cascais, Cascais, Portugal
| | - Mafalda Sampaio-Alves
- Faculty of Medicine, University of Porto, Oporto, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Eduardo Netto
- Radioncology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), E.P.E., Lisbon, Portugal
| | | | - Edson Oliveira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosurgery Department, Cluster CUF Descobertas, Lisbon, Portugal
| | - Andreia Teixeira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Pedro Modas Daniel
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Guilherme Silva Bernardo
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Urology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Carla Amaro
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Otorhinolaryngology Department, CUF Descobertas, Lisbon, Portugal
| |
Collapse
|
8
|
Li YC, Chen CH, Chang CL, Chiang JYW, Chu CH, Chen HH, Yip HK. Melatonin and hyperbaric oxygen therapies suppress colorectal carcinogenesis through pleiotropic effects and multifaceted mechanisms. Int J Biol Sci 2021; 17:3728-3744. [PMID: 34671196 PMCID: PMC8495382 DOI: 10.7150/ijbs.62280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Colorectal carcinogenesis is frequently induced by hypoxia to trigger the reprogramming of cellular metabolism and gain of malignant phenotypes. Previously, hyperbaric oxygen (HBO) therapy and melatonin have been reported to alter the hypoxic microenvironment, resulting in inhibiting cancer cell survival. Accordingly, this study tested the hypothesis whether HBO and melatonin effectively inhibited CRC carcinogenesis. In vitro results indicated that melatonin therapy significantly suppressed the malignant phenotypes, including colony formation, growth, invasion, migration and cancer stemness with dose-dependent manners in CRC cell lines through multifaceted mechanisms. Similar to in vitro study, in vivo findings further demonstrated the melatonin, HBO and combined treatments effectively promoted apoptosis (cleaved-caspase 3/ cleaved-PARP) and arrested tumor proliferation, followed by inhibiting colorectal tumorigenesis in CRC xenograft tumor model. Moreover, melatonin, HBO and combined treatments modulated multifaceted mechanisms, including decreasing HIF-1α expression, alleviating AKT activation, repressing glycolytic metabolism (HK-2/PFK1/PKM2/LDH), restraining cancer stemness pathway (TGF-β/p-Smad3/Oct4/Nanog), reducing inflammation (p-NFκB/ COX-2), diminishing immune escape (PD-L1), and reversing expression of epithelial mesenchymal transition (E-cadherin/N-cadherin/MMP9). In conclusion, melatonin and HBO therapies suppressed colorectal carcinogenesis through the pleiotropic effects and multifaceted mechanisms, suggesting melatonin and HBO treatments could be novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.,Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - John Yi-Wu Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, Tunghai University, Taichung 40704, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Department of Nursing, Asia University, Taichung 41354, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China
| |
Collapse
|
9
|
Xue T, Ding JS, Li B, Cao DM, Chen G. A narrative review of adjuvant therapy for glioma: hyperbaric oxygen therapy. Med Gas Res 2021; 11:155-157. [PMID: 34213498 PMCID: PMC8374463 DOI: 10.4103/2045-9912.318861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma is a kind of common malignant tumor in neurosurgery and has a high mortality and morbidity rate, which poses a serious threat to the health of people all over the world. Surgery is the preferred treatment for patients with glioma, radiotherapy or chemotherapy can be used after surgery. Although there are clear therapeutic protocols, the efficacy and safety of these protocols are clinically proven, a large number of patients are still dissatisfied with the treatment and the health of the patient remains unsatisfactory. Therefore, it is crucial to look for other treatments or complementary treatments. In the modern medical treatment, hyperbaric oxygen (HBO) therapy is widely used in various kinds of pathological state of adjuvant therapy, and existing studies confirm the efficacy of HBO therapy in combination with surgery, radiotherapy, chemotherapy, and photodynamic therapy. Studies have shown that HBO can inhibit the growth of tumor tissue as an adjunctive therapy. This provides novel insights into the clinical treatment of glioma patients. Although HBO is not licensed for use in cancer treatment, as a kind of adjuvant therapy, the treatment effect of HBO can be accepted by the patients and its cost lower, which could be regarded as an ideal safe treatment.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery, Yancheng City No. 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - De-Mao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Abstract
Gliomas are common brain mass with a high mortality rate. Patients with gliomas have a severely bad outcome, with an average survive duration less 15 months because of high recurrent rate and being resistant to radio-therapy and chemistry drugs therapy. Hyperbaric oxygen is extensively taken as an adjuvant treatment for various disease conditions. To know the characteristics of hyperbaric oxygen as a remedy for gliomas, we find that, in general, hyperbaric oxygen shows an obviously positive effect on the treatment of gliomas, and it can also relieve the complications caused by postoperative radiotherapy and chemotherapy of gliomas. Whereas, several researches have shown that hyperbaric oxygen promotes glioma progression.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Wang P, Gong S, Pan J, Wang J, Zou D, Xiong S, Zhao L, Yan Q, Deng Y, Wu N, Liao B. Hyperbaric oxygen promotes not only glioblastoma proliferation but also chemosensitization by inhibiting HIF1α/HIF2α-Sox2. Cell Death Discov 2021; 7:103. [PMID: 33986256 PMCID: PMC8119469 DOI: 10.1038/s41420-021-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
There exists a consensus that combining hyperbaric oxygen (HBO) and chemotherapy promotes chemotherapy sensitivity in GBM cells. However, few studies have explored the mechanism involved. HIF1α and HIF2α are the two main molecules that contribute to GBM malignant progression by inhibiting apoptosis or maintaining stemness under hypoxic conditions. Moreover, Sox2, a marker of stemness, also contributes to GBM malignant progression through stemness maintenance or cell cycle arrest. Briefly, HIF1α, HIF2α and Sox2 are highly expressed under hypoxia and contribute to GBM growth and chemoresistance. However, after exposure to HBO for GBM, whether the expression of the above factors is decreased, resulting in chemosensitization, remains unknown. Therefore, we performed a series of studies and determined that the expression of HIF1α, HIF2α and Sox2 was decreased after HBO and that HBO promoted GBM cell proliferation through cell cycle progression, albeit with a decrease in stemness, thus contributing to chemosensitization via the inhibition of HIF1α/HIF2α-Sox2.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.,Chongqing Medical University, Chongqing, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Dewei Zou
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Shuanglong Xiong
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Qian Yan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Yangming Deng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.
| | - Bin Liao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.
| |
Collapse
|
12
|
Arienti C, Pignatta S, Zanoni M, Zamagni A, Cortesi M, Sarnelli A, Romeo A, Arpa D, Longobardi P, Bartolini D, Tosatto L, Naldini A, Tesei A. High-pressure oxygen rewires glucose metabolism of patient-derived glioblastoma cells and fuels inflammasome response. Cancer Lett 2021; 506:152-166. [PMID: 33652086 DOI: 10.1016/j.canlet.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Human glioblastoma (GBM) is one of the most feared primary malignant brain tumors. We investigated the effect of hyperbaric oxygen (HBO) on GBM patient-derived cells and on microglia cell biology (CHME-5). HBO administered to GBM cells inhibited cell proliferation, downregulated hypoxia-inducible factor 1 α (HIF-1α) expression, and induced glucose metabolism reprogramming (glucose rewiring). It also affected the ability of a cell to perpetuate its lineage, give rise to differentiated cells and interact with its environment to maintain a balance between quiescence, proliferation and regeneration (stemness features). Such an effect may be ascribable to an increase in intracellular ROS levels and to the triggering of inflammasome signaling by HBO itself through caspase1 activation. Moreover, the results obtained from the combination of HBO and radiotherapy (RT) clearly showed a radiosensitising effect of HBO on GBM cells grown in both 2D and 3D, and a radioprotective effect of HBO in CHME-5. In addition, the exposure of M0 microglia cells to exhausted medium or extracellular vesicles (EVs) of HBO-treated GBM cells upregulated the expression of pro-inflammatory cytokines IL1β, IL6 and STAT1, whilst also downregulating the anti-inflammatory cytokine PPARγ. Collectively, these data provide a scientific rationale for the use of HBO in combination with RT for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonino Romeo
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Donatella Arpa
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | | - Luigino Tosatto
- Department of Neurosurgery, Bufalini Hospital, Cesena, Italy
| | - Antonella Naldini
- Unit of Cellular and Molecular Physiology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
13
|
Abstract
IMPACT STATEMENT Tumor hypoxia promotes cancer cell aggressiveness, and is strongly associated with poor prognosis across multiple tumor types. The hypoxic microenvironments inside tumors also limit the effectiveness of radiotherapy, chemotherapy, and immunotherapy. Several approaches to eliminate hypoxic state in tumors have been proposed to delay cancer progression and improve therapeutic efficacies. This review will summarize current knowledge on hyperoxia, used alone or in combination with other therapeutic modalities, in cancer treatment. Molecular mechanisms and undesired side effects of hyperoxia will also be discussed.
Collapse
Affiliation(s)
- Sei W Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - In K Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang H Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
14
|
Tran TQ, Hanse EA, Habowski AN, Li H, Ishak Gabra MB, Yang Y, Lowman XH, Ooi AM, Liao SY, Edwards RA, Waterman ML, Kong M. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. NATURE CANCER 2020; 1:345-358. [PMID: 32832918 PMCID: PMC7442208 DOI: 10.1038/s43018-020-0035-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Genetic-driven deregulation of the Wnt pathway is crucial but not sufficient for colorectal cancer (CRC) tumourigenesis. Here, we show that environmental glutamine restriction further augments Wnt signaling in APC mutant intestinal organoids to promote stemness and leads to adenocarcinoma formation in vivo via decreasing intracellular alpha-ketoglutarate (aKG) levels. aKG supplementation is sufficient to rescue low-glutamine induced stemness and Wnt hyperactivation. Mechanistically, we found that aKG promotes hypomethylation of DNA and histone H3K4me3, leading to an upregulation of differentiation-associated genes and downregulation of Wnt target genes, respectively. Using CRC patient-derived organoids and several in vivo CRC tumour models, we show that aKG supplementation suppresses Wnt signaling and promotes cellular differentiation, thereby significantly restricting tumour growth and extending survival. Together, our results reveal how metabolic microenvironment impacts Wnt signaling and identify aKG as a potent antineoplastic metabolite for potential differentiation therapy for CRC patients.
Collapse
Affiliation(s)
- Thai Q Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Haiqing Li
- Division of Informatics, Department of Computational and Quantitative Medicine, Center of Informatics, Beckman Research Institute of City of Hope Cancer Center, Duarte, CA, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Xazmin H Lowman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Amelia M Ooi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Shu Y Liao
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Yuan Y, Zhou Y, Li Y, Hill C, Ewing RM, Jones MG, Davies DE, Jiang Z, Wang Y. Deconvolution of RNA-Seq Analysis of Hyperbaric Oxygen-Treated Mice Lungs Reveals Mesenchymal Cell Subtype Changes. Int J Mol Sci 2020; 21:E1371. [PMID: 32085618 PMCID: PMC7039706 DOI: 10.3390/ijms21041371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen (HBO) is widely applied to treat several hypoxia-related diseases. Previous studies have focused on the immediate effect of HBO-exposure induced oxidative stress on the lungs, but knowledge regarding the chronic effects from repetitive HBO exposure is limited, especially at the gene expression level. We found that repetitive HBO exposure did not alter the morphology of murine lungs. However, by deconvolution of RNA-seq from those mice lungs using CIBERSORTx and the expression profile matrices of 8 mesenchymal cell subtypes obtained from bleomycin-treated mouse lungs, we identify several mesenchymal cell subtype changes. These include increases in Col13a1 matrix fibroblasts, mesenchymal progenitors and mesothelial cell populations and decreases in lipofibroblasts, endothelial and Pdgfrb high cell populations. Our data suggest that repetitive HBO exposure may affect biological processes in the lungs such as response to wounding, extracellular matrix, vasculature development and immune response.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yali Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Donna E Davies
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
16
|
Hyperoxia Alters Ultrastructure and Induces Apoptosis in Leukemia Cell Lines. Biomolecules 2020; 10:biom10020282. [PMID: 32059539 PMCID: PMC7072400 DOI: 10.3390/biom10020282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygenation conditions are crucial for growth and tumor progression. Recent data suggests a decrease in cancer cell proliferation occurring after exposure to normobaric hyperoxia. Those changes are associated with fractal dimension. The purpose of this research was to study the impact of hyperoxia on apoptosis and morphology of leukemia cell lines. Two hematopoietic lymphoid cancer cell lines (a T-lymphoblastoid line, JURKAT and a B lymphoid line, CCRF-SB) were tested under conditions of normobaric hyperoxia (FiO2 > 60%, ± 18h) and compared to a standard group (FiO2 = 21%). We tested for apoptosis using a caspase-3 assay. Cell morphology was evaluated by cytospin, microphotography after coloration, and analysis by a fractal dimension calculation software. Our results showed that exposure of cell cultures to transient normobaric hyperoxia induced apoptosis (elevated caspase-3) as well as significant and precocious modifications in cell complexity, as highlighted by increased fractal dimensions in both cell lines. These features are associated with changes in structure (pycnotic nucleus and apoptosis) recorded by microscopic analysis. Such morphological alterations could be due to several molecular mechanisms and rearrangements in the cancer cell, leading to cell cycle inhibition and apoptosis as shown by caspase-3 activity. T cells seem less resistant to hyperoxia than B cells.
Collapse
|
17
|
Song K, Chen J, Ding J, Xu H, Xu H, Qin Z. Hyperbaric oxygen suppresses stemness-associated properties and Nanog and oncostatin M expression, but upregulates β-catenin in orthotopic glioma models. J Int Med Res 2019; 48:300060519872898. [PMID: 31813325 PMCID: PMC7607208 DOI: 10.1177/0300060519872898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to explore whether initial hyperbaric oxygen treatment
affects the stemness of glioma stem cells using an in vivo
basal ganglia glioma model. Methods A basal ganglia glioma rat model was established. Rats were exposed to normal
oxygen or hyperbaric oxygen on days 2, 4, 6, 8, 10, and 12. After 16 days of
glioma cell inoculation, western blot, ELISA, and flow cytometry were
performed to examine stemness-associated properties by examining the
expression of CD133, A2B5, Nanog, oncostatin M, β-catenin, Oct-3/4, Sox2,
and Nestin. Results Initial hyperbaric oxygen treatment began to affect glioma
stemness-associated properties. The proportion of
CD133+A2B5+ cells was significantly reduced after
initial hyperbaric oxygen treatment. Additionally, the expression of
stemness-related genes such as Nanog and oncostatin M was reduced, while
TGF-β and β-catenin were increased. Conclusions Initial hyperbaric oxygen treatment not only alters the hypoxic
microenvironment but also affects the stemness-associated properties of
cancer stem cells.
Collapse
Affiliation(s)
- Kun Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junrui Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianbo Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Iyikesici MS. Long-Term Survival Outcomes of Metabolically Supported Chemotherapy with Gemcitabine-Based or FOLFIRINOX Regimen Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Metastatic Pancreatic Cancer. Complement Med Res 2019; 27:31-39. [PMID: 31527373 DOI: 10.1159/000502135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite introduction of new chemotherapeutic agents, outcomes of patients with metastatic pancreatic cancer are still poor. Metabolically supported chemotherapy (MSCT) is a novel approach targeting dysregulated energy mechanism of the tumor cell. OBJECTIVES This study aimed to examine the efficacy of metabolically supported administration of chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy (HBOT) in patients with metastatic pancreatic cancer. METHOD This retrospective observational study included 25 patients with metastatic pancreatic ductal carcinoma (stage IV) who received MSCT (either gemcitabine-based or FOLFIRINOX regimen administered concomitantly with induced hypoglycemia) plus ketogenic diet, hyperthermia, and HBOT combination. Survival outcomes were evaluated. RESULTS During the mean follow-up duration of 25.4 ± 19.3 months, median overall survival and median progression-free survival were 15.8 months (95% CI, 10.5-21.1) and 12.9 months (95% CI, 11.2-14.6), respectively. Age and gender did not have any effect on overall survival (p > 0.05 for all). CONCLUSIONS MSCT administered together with ketogenic diet, hyperthermia, and HBOT appears to be a viable option with the potential to improve survival outcomes in patients diagnosed with metastatic pancreatic cancer. Further research, particularly with larger comparative clinical trials, is warranted.
Collapse
Affiliation(s)
- Mehmet Salih Iyikesici
- Altinbas University, School of Medicine, Department of Medical Oncology, Bahcelievler, Turkey, .,ChemoThermia Oncology Center, Istanbul, Turkey,
| |
Collapse
|
19
|
Iyikesici MS. Feasibility study of metabolically supported chemotherapy with weekly carboplatin/paclitaxel combined with ketogenic diet, hyperthermia and hyperbaric oxygen therapy in metastatic non-small cell lung cancer. Int J Hyperthermia 2019; 36:446-455. [DOI: 10.1080/02656736.2019.1589584] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mehmet Salih Iyikesici
- Department of Medical Oncology, School of Medicine, Altinbas University, Istanbul, Turkey
- ChemoThermia Oncology Center, Istanbul, Turkey
| |
Collapse
|
20
|
Zembrzuska K, Ostrowski RP, Matyja E. Hyperbaric oxygen increases glioma cell sensitivity to antitumor treatment with a novel isothiourea derivative in vitro. Oncol Rep 2019; 41:2703-2716. [PMID: 30896865 PMCID: PMC6448092 DOI: 10.3892/or.2019.7064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Tumor hypoxia is a pivotal factor responsible for the progression of this malignant glioma, and its resistance to radiation and chemotherapy. Thus, improved tumor tissue oxygenation may promote greater sensitivity to anticancer treatment. Protein kinase D1 (PKD1) protects cells from oxidative stress, and its abnormal activity serves an important role in multiple malignancies. The present study examined the effects of various oxygen conditions on the cytotoxic potential of the novel isothiourea derivate N,N′-dimethyl-S-(2,3,4,5,6-pentabromobenzyl)- isothiouronium bromide (ZKK-3) against the T98G GBM cell line. ZKK-3 was applied at concentrations of 10, 25 and 50 µM, and cells were maintained under conditions of normoxia, anoxia, hypoxia, hyperbaric oxygen (HBO), hypoxia/hypoxia and hypoxia/HBO. The proliferation and viability of neoplastic cells, and protein expression levels of hypoxia-inducible factor 1α (HIF-1α), PKD1, phosphorylated (p)PKD1 (Ser 916) and pPKD1 (Ser 744/748) kinases were evaluated. Oxygen deficiency, particularly regarding hypoxia, could diminish the cytotoxic effect of ZKK-3 at 25 and 50 µM and improve T98G cell survival compared with normoxia. HBO significantly reduced cell proliferation and increased T98G cell sensitivity to ZKK-3 when compared with normoxia. HIF-1α expression levels were increased under hypoxia compared with normoxia and decreased under HBO compared with hypoxia/hypoxia at 0, 10 and 50 µM ZKK-3, suggesting that HBO improved oxygenation of the cells. ZKK-3 exhibited inhibitory activity against pPKD1 (Ser 916) kinase; however, the examined oxygen conditions did not appear to significantly influence the expression of this phosphorylated form in cells treated with the tested compound. Regarding pPKD1 (Ser 744/748), a significant difference in expression was observed only for cells treated with 10 µM ZKK-3 and hypoxia/hypoxia compared with normoxia. However, there were significant differences in the expression levels of both phosphorylated forms of PKD1 under different oxygen conditions in the controls. In conclusion, the combination of isothiourea derivatives and hyperbaric oxygenation appears to be a promising therapeutic approach for malignant glioma treatment.
Collapse
Affiliation(s)
- Katarzyna Zembrzuska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| |
Collapse
|
21
|
Kim SW, Kim IK, Ha JH, Yeo CD, Kang HH, Kim JW, Lee SH. Normobaric hyperoxia inhibits the progression of lung cancer by inducing apoptosis. Exp Biol Med (Maywood) 2019; 243:739-748. [PMID: 29763371 DOI: 10.1177/1535370218774737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a critical characteristic of solid tumors with respect to cancer cell survival, angiogenesis, and metastasis. Hyperoxic treatment has been attempted to reverse hypoxia by enhancing the amount of dissolved oxygen in the plasma. In this study, we evaluated the effects of normobaric hyperoxia on the progression of lung cancer to determine whether oxygen toxicity can be used in cancer therapy. Following a tail vein injection of the Lewis lung carcinoma cells, C57BL/6J mice were exposed to a 24-h normobaric hyperoxia/normoxia cycle for two weeks. In addition, A549 lung cancer cells were incubated in a normobaric hyperoxia chamber for a 24-h period. As a result, the size and number of tumors in the lung decreased significantly with exposure to normobaric hyperoxia in the mouse model. Cell viability, colony-forming ability, migration, and invasion all decreased significantly in A549 cells exposed to normobaric hyperoxia and the normal control group exposed to normobaric hyperoxia showed no significant damage. Oxidative stress was more prominent with exposure to normobaric hyperoxia in cancer cells. A549 cells exposed to normobaric hyperoxia showed a significantly higher cell apoptosis ratio compared with A549 cells without normobaric hyperoxia exposure and normal human lung cells (BEAS-2B cells). The Bax/Bcl-2 mRNA expression ratio also increased significantly. Changes in the key regulators of apoptosis were similar between in vivo and in vitro conditions. The p-ERK level decreased, while the p-JNK level increased, after normobaric hyperoxia exposure in A549 cells. This study demonstrated the role of normobaric hyperoxia in inhibiting lung cancer. Normal tissue and cells showed no significant hyperoxic damage in our experimental setting. The anti-tumor effect of normobaric hyperoxia may due to the increased reactive oxygen species activity and apoptosis, which is related to the mitogen-activated protein kinase pathway. Impact statement Normobaric hyperoxia (NBO) is a feasible therapy for cancer with a low complication rate. Although NBO may be beneficial in cancer treatment, very few studies have been conducted; thus, the evidence is thin. This is the first study to clearly demonstrate morphological changes in lung cancer with NBO exposure and to investigate the underlying mechanisms both in vivo and in vitro. This study will arouse interest in NBO treatment and promote further research.
Collapse
Affiliation(s)
- Sei Won Kim
- 1 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul 02559, Republic of Korea
| | - In Kyoung Kim
- 1 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul 02559, Republic of Korea
| | - Jick Hwan Ha
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Chang Dong Yeo
- 3 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Hyeon Hui Kang
- 1 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul 02559, Republic of Korea
| | - Jin Woo Kim
- 3 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Sang Haak Lee
- 1 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul 02559, Republic of Korea.,4 Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
22
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
23
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Wang YG, Long J, Shao DC, Song H. Hyperbaric oxygen inhibits production of CD3+ T cells in the thymus and facilitates malignant glioma cell growth. J Int Med Res 2018; 46:2780-2791. [PMID: 29785863 PMCID: PMC6124287 DOI: 10.1177/0300060518767796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Hyperbaric oxygen (HBO) is an emerging complementary alternative medical approach in glioma treatment. However, its mode of action is unknown, so this was investigated in the present study. Methods We constructed an intracranial glioma model of congenic C57BL/6J mice. Glioma growth under HBO stimulation was assessed by bioluminescent imaging and magnetic resonance imaging. Flow cytometry assessed direct effects of HBO on reactive oxygen species (ROS) signaling of transplanted glioma cells and organs, and quantified mature T cells and subgroups in tumors, the brain, and blood. Results HBO promoted the growth of transplanted GL261-Luc glioma in the intracranial glioma mouse model. ROS signaling of glioma cells and brain cells was significantly downregulated under HBO stimulation, but thymus ROS levels were significantly upregulated. CD3+ T cells were significantly downregulated, while both Ti/Th cells (CD3+CD4+) and Ts/Tc cells (CD3+CD8+) were inhibited in tumors of the HBO group. The percentage of regulatory T cells in Ti/Th (CD3+CD4+) cells was elevated in the tumors and thymuses of the HBO group. Conclusion HBO induced ROS signaling in the thymus, inhibited CD3+ T cell generation, and facilitated malignant glioma cell growth in vivo in the intracranial glioma mouse model.
Collapse
Affiliation(s)
- Yong-Gang Wang
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiang Long
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dong-Chuan Shao
- 2 Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, China
| | - Hai Song
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
25
|
Huang L, Boling W, Zhang JH. Hyperbaric oxygen therapy as adjunctive strategy in treatment of glioblastoma multiforme. Med Gas Res 2018; 8:24-28. [PMID: 29770193 PMCID: PMC5937300 DOI: 10.4103/2045-9912.229600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant intracranial tumor in adults. Tumor tissue hypoxia, high mitotic rate, and rapid tumor spread account for its poor prognosis. Hyperbaric oxygen therapy (HBOT) may improve the sensitivity of radio-chemotherapy by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. This review summarizes the research of HBOT applications within the context of experimental and clinical GBM. Limited clinical trials and preclinical studies suggest that radiotherapy immediately after HBOT enhances the effects of radiotherapy in some aspects. HBOT also is able to strengthen the anti-tumor effect of chemotherapy when applied together. Overall, HBOT is well tolerated in the GBM patients and does not significantly increase toxicity. However, HBOT applied by itself as curative strategy against GBM is controversial in preclinical studies and has not been evaluated rigorously in GBM patients. In addition to HBOT favorably managing the therapeutic resistance of GBM, future research needs to focus on the multimodal or cocktail approaches to treatment, as well as molecular strategies targeting GBM stem cells.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
26
|
Chen S, Chen X, Li W, Shan T, Lin WR, Ma J, Cui X, Yang W, Cao G, Li Y, Wang L, Kang Y. Conversion of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition is mediated by oxygen concentration in pancreatic cancer cells. Oncol Lett 2018; 15:7144-7152. [PMID: 29731878 PMCID: PMC5921234 DOI: 10.3892/ol.2018.8219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is accompanied by a two-stage process of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). Currently, the exact mechanisms underlying EMT-MET conversion are unclear. In the present study, the mechanisms by which primary sites (hypoxic) and homing sites (normoxic or hyperoxic) participate in EMT-MET conversion were evaluated. Pancreatic cancer cells were grown under different oxygenation conditions. Cell morphology and epithelial (E)-cadherin and vimentin expression were examined. Transwell chambers were used to examine tumor invasiveness, and scratch assays were performed to examine cell migration. Reverse transcription-polymerase chain reaction and western blot analysis were used to quantitate the mRNA and protein expression of E-cadherin, vimentin, Snail and hypoxia-inducible factor (HIF)-1α. BxPc-3 and Panc-1 cells grown under hypoxic conditions demonstrated increased partial EMT, reduced E-cadherin expression, and increased vimentin expression, compared with cells grown under normoxic or hyperoxic conditions. Cells grown under hypoxic conditions also indicated increased migration and invasiveness. HIF-1α mRNA and protein expression was increased in cells grown under hypoxic conditions. These changes were reversed when a specific inhibitor of the HIF-1α receptor was used to block HIF-1α signaling. Differences in oxygen concentration at primary sites and homing sites are important in the EMT-MET process, and the underlying mechanism may involve HIF-1α-Snail signaling.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Li
- The Institute for Population and Development Studies, School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wan Run Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijuan Cui
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Wang
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Xie Y, Zeng X, Wu X, Hu J, Zhu Y, Yang X. Hyperbaric oxygen as an adjuvant to temozolomide nanoparticle inhibits glioma growth by inducing G2/M phase arrest. Nanomedicine (Lond) 2018; 13:887-898. [PMID: 29473458 DOI: 10.2217/nnm-2017-0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To study the effects of combinational treatment of hyperbaric oxygen (HBO) and nanotemozolomide in glioma. MATERIALS & METHODS Temozolomide (TMZ)-loaded porous silicon nanoparticles (TMZ/PSi NPs) were prepared. In vitro and in vivo evaluations were performed. RESULTS The cell uptake of TMZ/PSi NPs could be tracked by autofluorescence of porous silicon. The concentration of oxygen in tumor was improved and the antitumor rate was increased to 84.2% in the TMZ/PSi NPs combined with HBO group. The viability of hypoxia-induced glioma C6 cells was decreased and cell cycle was arrested at G2/M phase in response to TMZ/PSi NPs treatment with HBO compared with continuous treatment with hypoxia. CONCLUSION The combinational treatment of TMZ/PSi NPs and HBO could be a promising therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yuanyuan Xie
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xiaofan Zeng
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xian Wu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Jun Hu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Yanhong Zhu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| |
Collapse
|
28
|
Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors. Oncotarget 2018; 7:19935-47. [PMID: 26918726 PMCID: PMC4991429 DOI: 10.18632/oncotarget.7661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis is essential for tumor growth and metastasis, nevertheless, in NB, results between different studies on angiogenesis have yielded contradictory results. An image analysis tool was developed to characterize the density, size and shape of total blood vessels and vascular segments in 458 primary neuroblastic tumors contained in tissue microarrays. The results were correlated with clinical and biological features of known prognostic value and with risk of progression to establish histological vascular patterns associated with different degrees of malignancy. Total blood vessels were larger, more abundant and more irregularly-shaped in tumors of patients with associated poor prognostic factors than in the favorable cohort. Tumor capillaries were less abundant and sinusoids more abundant in the patient cohort with unfavorable prognostic factors. Additionally, size of post-capillaries & metarterioles as well as higher sinusoid density can be included as predictive factors for survival. These patterns may therefore help to provide more accurate pre-treatment risk stratification, and could provide candidate targets for novel therapies.
Collapse
|
29
|
Oxygen-dependent regulation of tumor growth and metastasis in human breast cancer xenografts. PLoS One 2017; 12:e0183254. [PMID: 28832662 PMCID: PMC5568407 DOI: 10.1371/journal.pone.0183254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background Tumor hypoxia is relevant for tumor growth, metabolism, resistance to chemotherapy and metastasis. We have previously shown that hyperoxia, using hyperbaric oxygen treatment (HBOT), attenuates tumor growth and shifts the phenotype from mesenchymal to epithelial (MET) in the DMBA-induced mammary tumor model. This study describes the effect of HBOT on tumor growth, angiogenesis, chemotherapy efficacy and metastasis in a triple negative MDA-MB-231 breast cancer model, and evaluates tumor growth using a triple positive BT-474 breast cancer model. Materials and methods 5 x 105 cancer cells were injected s.c. in the groin area of NOD/SCID female mice. The BT-474 group was supplied with Progesterone and Estradiol pellets 2-days prior to tumor cell injection. Mice were divided into controls (1 bar, pO2 = 0.2 bar) or HBOT (2.5 bar, pO2 = 2.5 bar, 90 min, every third day until termination of the experiments). Treatment effects were determined by assessment of tumor growth, proliferation (Ki67-staining), angiogenesis (CD31-staining), metastasis (immunostaining), EMT markers (western blot), stromal components collagen type I, Itgb1 and FSP1 (immunostaining) and chemotherapeutic efficacy (5FU). Results HBOT significantly suppressed tumor growth in both the triple positive and negative tumors, and both MDA-MB-231 and BT-474 showed a decrease in proliferation after HBOT. No differences were found in angiogenesis or 5FU efficacy between HBOT and controls. Nevertheless, HBOT significantly reduced both numbers and total area of the metastastatic lesions, as well as reduced expression of N-cadherin, Axl and collagen type I measured in the MDA-MB-231 model. No change in stromal Itgb1 and FSP1 was found in either tumor model. Conclusion Despite the fact that behavior and prognosis of the triple positive and negative subtypes of cancer are different, the HBOT had a similar suppressive effect on tumor growth, indicating that they share a common oxygen dependent anti-tumor mechanism. Furthermore, HBOT significantly reduced the number and area of metastatic lesions in the triple negative model as well as a significant reduction in the EMT markers N-cadherin, Axl and density of collagen type I.
Collapse
|
30
|
Lu HY, Chen XQ, Tang W, Wang QX, Zhang J. GRP78 silencing enhances hyperoxia-induced alveolar epithelial cell apoptosis via CHOP pathway. Mol Med Rep 2017; 16:1493-1501. [DOI: 10.3892/mmr.2017.6681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/26/2017] [Indexed: 11/06/2022] Open
|
31
|
Qi Y, Ruan J, Wang M, Dai Y, Zhou Q, Gui S, Zhang S, Wang Y. Effects of hyperbaric oxygen treatment on gastric cancer cell line SGC7901. Biomed Rep 2017; 6:475-479. [PMID: 28413648 DOI: 10.3892/br.2017.869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 01/02/2023] Open
Abstract
Hyperbaric oxygen (HBO) has been previously identified as an effective adjunct treatment option for the management of brain injury, diabetic ulcers and chronic wounds. However, the roles of HBO as an adjunctive therapy for tumors remain controversial. The present research project was performed to explore the effects of HBO treatment on proliferation, autophagy and endoplasmic reticulum stress response of the gastric cancer cell line, SGC7901. The present study demonstrated that, after subjecting SGC7901 cells to HBO treatment, the increase in cell proliferation was significant, compared with that of the control group. In addition, there was a significant increase in LC3-phosphatidylethanolamine conjugate (LC3-II) level, as well as binding immunoglobulin protein level, and a significant decrease in CCAAT-enhancer-binding protein homologous protein level. These suggested that hyperbaric oxygen treatment alone may promote proliferation and cell survival of gastric cancer cell SGC7901, and inhibit apoptosis through regulating cell autophagy and oxidative stress.
Collapse
Affiliation(s)
- Yinliang Qi
- General Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Jianfeng Ruan
- General Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Mei Wang
- General Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yuanchang Dai
- General Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shuyu Gui
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230011, P.R. China
| | - Sumei Zhang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
32
|
Rasoulian B, Kaeidi A, Rezaei M, Hajializadeh Z. Cellular Preoxygenation Partially Attenuates the Antitumoral Effect of Cisplatin despite Highly Protective Effects on Renal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7203758. [PMID: 28298953 PMCID: PMC5337362 DOI: 10.1155/2017/7203758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/15/2017] [Indexed: 01/26/2023]
Abstract
Our previous in vitro studies demonstrated that oxygen pretreatment significantly protects human embryonic renal tubular cell against acute cisplatin- (CP-) induced cytotoxicity. The present study was designed to investigate whether this protective effect is associated with decreasing therapeutic effects of cisplatin on malignant cells. For this purpose, cultured human embryonic kidney epithelial-like (AD293), cervical carcinoma epithelial-like (Hela), and ovarian adenocarcinoma epithelial-like (OVCAR-3) cells were subjected to either 2-hour pretreatment with oxygen (≥90%) or normal air and then to a previously determined 50% lethal dose of cisplatin for 24 hours. Cellular viability was evaluated via MTT and Neutral Red assays. Also, activated caspase-3 and Bax/Bcl-2 ratio, as the biochemical markers of cell apoptosis, were determined using immunoblotting. The hyperoxic preexposure protocol significantly protects renal AD293 cells against cisplatin-induced toxicity. Oxygen pretreatment also partially attenuated the cisplatin-induced cytotoxic effects on Hela and OVCAR-3 cells. However, it did not completely protect these cells against the therapeutic cytotoxic effects of cisplatin. In summary, the protective methods for reducing cisplatin nephrotoxic side effects like oxygen pretreatment might be associated with concurrent reduction of the therapeutic cytotoxic effects of cisplatin on malignant cells like cervical carcinoma (Hela) and ovarian adenocarcinoma (OVCAR-3) cells.
Collapse
Affiliation(s)
- Bahram Rasoulian
- Razi Herbal Medicines Research Center and Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Kaeidi
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Rezaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Hajializadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
33
|
Raghu KS, Shamprasad BR, Kabekkodu SP, Paladhi P, Joshi MB, Valiathan MS, Guruprasad KP, Satyamoorthy K. Age dependent neuroprotective effects of medhya rasayana prepared from Clitoria ternatea Linn. in stress induced rat brain. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:173-183. [PMID: 27469198 DOI: 10.1016/j.jep.2016.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indian traditional medicinal system in Ayurveda suggests several preparations, known as medhya rasayanas, of diverse plant origin to enhance the health in general, reduce stress and improve brain function in particular during ageing. These effects in the context of contemporary knowledge and the underlying mechanisms are not clearly understood. Autophagy and DNA damage induced repair are inter-related quintessential pathways and are significantly altered during stress and ageing. Hence, medhya rasayana prepared from Clitoria ternatea (locally known as shankhpushpi) was used to test these effects in Wistar rat model of various age groups upon stereotaxic mediated kainic acid induced brain injury. MATERIALS AND METHODS The rodent experiments were carried out in one, twelve and eighteen months old male Wistar rats. The rats were orally fed with medhya rasayana prepared from Clitoria ternatea (3g per kg body weight/day) for 60 days. Stereotaxic mediated kainate stress to the hippocampus was performed on day 61. The rats were sacrificed on 66th day and the brain tissues were analyzed histologically and measured for autophagy, base excision repair and antioxidant enzyme activities. In addition, cognitive functions were analyzed by employing novel object recognition task and Morris water maze tests. The gene expression profile of hippocampus was assessed by microarray hybridization and two genes are validated. RESULTS Our study showed significant decrease of autophagy by medhya rasayana in both 12 and 18 months old rats. The hippocampal CA3 cellularity were increased in stereotaxic mediated stressed rats by medhya rasayana. There were no significant differences in constitutive base excision repair and antioxidant enzyme activities. Medhya rasayana treatment also significantly increased episodic memory in rats. Microarray experiments for pathway specific gene expression analysis showed altered expression of genes of long-term potentiation, axon guidance, neuroactive ligand-receptor interaction, regulation of autophagy, lysosome, homologous recombination and nucleotide excision repair pathways in adult rats by medhya rasayana. CONCLUSIONS In the present study, we show that reduction in autophagy is crucial for medhya rasayana induced protection of rat hippocampal cells and that artificially enhanced autophagy protects the brain cell damage by maintaining the selective DNA damage repair pathway and removal of reactive oxygen species to inhibit apoptosis. These findings suggest autophagy directed pathways by medhya rasayana prepared from C. ternatea protects the brain cells from stress induced injury.
Collapse
Affiliation(s)
- Kothanahalli S Raghu
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Bhanuvalli R Shamprasad
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Shama P Kabekkodu
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Puspendu Paladhi
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Manjunath B Joshi
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | | | - Kanive P Guruprasad
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| |
Collapse
|
34
|
Ding JB, Chen JR, Xu HZ, Qin ZY. Effect of Hyperbaric Oxygen on the Growth of Intracranial Glioma in Rats. Chin Med J (Engl) 2016; 128:3197-203. [PMID: 26612296 PMCID: PMC4794883 DOI: 10.4103/0366-6999.170278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Numerous studies have confirmed that hyperbaric oxygen (HBO) in combination with radiotherapy or chemotherapy may increase the efficacy of radiotherapy or chemotherapy in patients with glioma. However, whether HBO therapy alone may inhibit or promote the growth of malignant tumors remains controversial. This study aimed to investigate the effect of HBO on the growth of glioma in rats, and the impact of HBO on the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α), angiogenesis, and apoptosis of glioma cells. Methods: Male Sprague–Dawley rats were treated with or without HBO after glioma cell inoculation and followed for up to 16 days postinoculation. Rats were randomized to receive bilateral forelimb function tests (n = 20 per group) and head magnetic resonance imaging (n = 5 per group). Differences between HBO and control groups were tested using 2-sample independent t-tests and changes over time within treatment groups were analyzed using a repeated measurement analysis of variance with Bonferroni correction. The effect of HBO on the expression of VEGF, HIF-1α, von Willebrand factor, angiogenesis, and tumor cell apoptosis were also examined (n = 5 per group). Results: Forelimb function scores were reduced in both HBO-treated and control groups. HBO-treated rats had significantly larger tumor volume and more water in the cerebellum compared with control rats. The intratumoral expression of VEGF was significantly higher in HBO-treated rats compared with control rats (23.2% vs. 13.3%, P = 0.002). HIF-1α was significantly increased in HBO-treated rats compared with controls in the expression of both intratumoral (72.7% vs. 54.9%, P = 0.001) and peritumoral (2.6% vs. 1.9%, P = 0.003) cells. The intratumoral microvessel density (MVD) was significantly higher in the HBO group (15.6 vessels/field vs. 4.4 vessels/field, P < 0.001), and the peritumoral MVD was not significantly different between the two groups (P > 0.05). Apoptosis was significantly lower in HBO-treated rats compared with controls (44.4% vs. 82.8% for intratumoral; 10.1% vs. 77.5% for peritumoral, both P < 0.001). Conclusions: The current results demonstrate that HBO alone may promote tumor growth, and is therefore not suitable to treat patients with gliomas with neurological deficits or disorders with HBO alone. If HBO must be used as a mean of rehabilitation, it is recommended that HBO should be combined with radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Zhi-Yong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
35
|
Lu Z, Ma J, Liu B, Dai C, Xie T, Ma X, Li M, Dong J, Lan Q, Huang Q. Hyperbaric oxygen therapy sensitizes nimustine treatment for glioma in mice. Cancer Med 2016; 5:3147-3155. [PMID: 27734611 PMCID: PMC5119970 DOI: 10.1002/cam4.851] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022] Open
Abstract
Nimustine (ACNU) has antitumor activities in patients with malignant glioma. Hyperbaric oxygen (HBO) may enhance the efficacy of certain therapies that are hampered by the hypoxic microenvironment. We examined the combined effects of ACNU and HBO in a GFP transgenic nude mice bearing human glioma model. Mice inoculated with human glioma cells SU3 were randomly divided into the four groups: (A) the control group, (B) the HBOT (HBO therapy) group, (C) the ACNU group, and (D) the HBOT+ACNU group. Tumor size was measured at the indicated time intervals with a caliper; mice were sacrificed 28 days after treatment, and immunohistochemistry staining and western blot analysis were carried out. By the end of the trial, the tumor weights of groups A, B, C, and D were (P < 0.05), 6.03 ± 1.47, 4.13 ± 1.82 (P < 0.05), 2.39 ± 0.25 (P < 0.05), and 1.43 ± 0.38 (P < 0.01), respectively. The expressions of TNF‐α, MMP9, HIF‐α, VEGF, NF‐κB, and IL‐1β were associated with the infiltration of inflammatory cells and the inhibition rate of tumor cells. Hyperbaric oxygen therapy (HBOT) could inhibit glioma cell proliferation and inflammatory cell infiltration, and exert a sensitizing effect on ACNU therapy partially through enhancing oxygen pressure (PO2) in tumor tissues and lower expression levels of HIF‐1α, TNF‐α, IL‐1β, VEGF, MMP9, and NF‐κB.
Collapse
Affiliation(s)
- Zhaohui Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Jiawei Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Bing Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Chungang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Tao Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Xiaoyu Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Ming Li
- The Experimental Center, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Suzhou, 215004, China
| |
Collapse
|
36
|
Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol 2016; 33:101. [PMID: 27485098 PMCID: PMC4971045 DOI: 10.1007/s12032-016-0814-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
Abstract
Hyperbaric oxygen (HBO) therapy is widely used as an adjunctive treatment for various pathological states, predominantly related to hypoxic and/or ischaemic conditions. It also holds promise as an approach to overcoming the problem of oxygen deficiency in the poorly oxygenated regions of the neoplastic tissue. Occurrence of local hypoxia within the central areas of solid tumours is one of the major issues contributing to ineffective medical treatment. However, in anti-cancer therapy, HBO alone gives a limited curative effect and is typically not applied by itself. More often, HBO is used as an adjuvant treatment along with other therapeutic modalities, such as radio- and chemotherapy. This review outlines the existing data regarding the medical use of HBO in cancer treatment, with a particular focus on the use of HBO in the treatment of brain tumours. We conclude that the administration of HBO can provide many clinical benefits in the treatment of tumours, including management of highly malignant gliomas. Applied immediately before irradiation, it is safe and well tolerated by patients, causing rare and limited side effects. The results obtained with a combination of HBO/radiotherapy protocol proved to be especially favourable compared to radiation treatment alone. HBO can also increase the cytostatic effect of certain drugs, which may render standard chemotherapy more effective. The currently available data support the legitimacy of conducting further research on the use of HBO in the treatment of malignancies.
Collapse
Affiliation(s)
- Katarzyna Stępień
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland
| |
Collapse
|
37
|
Braks JAM, Spiegelberg L, Koljenovic S, Ridwan Y, Keereweer S, Kanaar R, Wolvius EB, Essers J. Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma. Mol Imaging Biol 2016; 17:633-42. [PMID: 25724406 PMCID: PMC4768231 DOI: 10.1007/s11307-015-0834-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. Results HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. Conclusions Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0834-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna A M Braks
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Linda Spiegelberg
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Senada Koljenovic
- Department of Pathology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus Medical Center, PO Box 1738, 3015 CE, Rotterdam, Netherlands
| | - Roland Kanaar
- Department of Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Durymanov MO, Yarutkin AV, Bagrov DV, Klinov DV, Kedrov AV, Chemeris NK, Rosenkranz AA, Sobolev AS. Application of vasoactive and matrix-modifying drugs can improve polyplex delivery to tumors upon intravenous administration. J Control Release 2016; 232:20-8. [DOI: 10.1016/j.jconrel.2016.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/05/2023]
|
39
|
WANG YONGGANG, ZHAN YIPING, PAN SHUYI, WANG HAIDONG, ZHANG DUNXIAO, GAO KAI, QI XUELING, YU CHUNJIANG. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis. Oncol Lett 2015; 10:189-195. [PMID: 26170997 PMCID: PMC4487135 DOI: 10.3892/ol.2015.3244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.
Collapse
Affiliation(s)
- YONG-GANG WANG
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - YI-PING ZHAN
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - SHU-YI PAN
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - HAI-DONG WANG
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - DUN-XIAO ZHANG
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - KAI GAO
- Institute of Laboratory Animal Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - XUE-LING QI
- Department of Pathology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - CHUN-JIANG YU
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
40
|
Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One 2015; 10:e0127407. [PMID: 26061868 PMCID: PMC4464523 DOI: 10.1371/journal.pone.0127407] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies - the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT) and dietary ketone supplementation - could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control), low glucose (LG), ketone supplementation (βHB), hyperbaric oxygen (HBOT), or combination therapy (LG+βHB+HBOT) on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers.
Collapse
Affiliation(s)
- A. M. Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| | - N. Ward
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| | - T. N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - P. Arnold
- Savind, Inc. Seymour, Illinois, United States of America
| | - D. P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
41
|
Leblond MM, Gérault AN, Corroyer-Dulmont A, MacKenzie ET, Petit E, Bernaudin M, Valable S. Hypoxia induces macrophage polarization and re-education toward an M2 phenotype in U87 and U251 glioblastoma models. Oncoimmunology 2015; 5:e1056442. [PMID: 26942063 PMCID: PMC4760330 DOI: 10.1080/2162402x.2015.1056442] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 11/28/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, particularly in glioblastoma (GBM), and known to be a poor prognosis factor in GBM patients. The growth of GBM is also associated with a marked inflammation partially characterized by an accumulation of macrophage (MΦ) of the M2 phenotype. However, the transition between M1 MΦ (antitumoral) and M2 MΦ (protumoral) phenotypes is a dynamic process. We made the assumption that oxygen (O2) availability could be a major regulator of this transition and that the intratumoral O2 gradient is of importance. We evaluated, in vivo, the impact of hypoxia on MΦ tropism and polarization in two models of human GBM, well differentiated by their degree of hypoxia. MΦ migration in the tumor was more pronounced in the more hypoxic tumor of the two GBM models. In the more hypoxic of the models, we have shown that MΦ migrated at the tumor site only when hypoxia takes place. We also demonstrated that the acquisition of the M2 phenotype was clearly an evolving phenomenon with hypoxia as the major trigger for this transition. In support of these in vivo finding, M0 but also M1 MΦ cultured in moderate or severe hypoxia displayed a phenotype close to that of M2 MΦ whose phenotype was further reinforced by severe hypoxia. These results highlight the role of hypoxia in the aggressiveness of GBM, in part, by transforming MΦ such that a protumoral activity is expressed.
Collapse
Affiliation(s)
- Marine M Leblond
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Aurélie N Gérault
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Aurélien Corroyer-Dulmont
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Eric T MacKenzie
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Edwige Petit
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Myriam Bernaudin
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| | - Samuel Valable
- CNRS; UMR6301-ISTCT; CERVOxy Group; GIP CYCERON; Bd Henri Becquerel; Caen Cedex, France
- Université de Caen Basse-Normandie; Caen, France
- CEA; DSV/I2BM; Caen, France
- Normandie Université; Caen, France
| |
Collapse
|
42
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
43
|
In vivo hyperoxia induces hypoxia-inducible factor-1α overexpression in LNCaP tumors without affecting the tumor growth rate. Int J Biochem Cell Biol 2014; 51:65-74. [PMID: 24704415 DOI: 10.1016/j.biocel.2014.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is a recognized cause for solid tumors malignancy and resistance, probably via hypoxia-induced overexpression of the hypoxia-inducible factor (HIF)-1α, major modulator of the cell response to oxygen deprivation. Although hyperoxia, the opposite condition, may represent a key issue to assess this paradigm, its effect on tumor growth and HIF-1α expression remains unclear. To test whether hyperoxia and hypoxia have divergent effects, and to better focus into the role of HIF-1α in vivo, athymic mice xenografted with LNCaP cells were exposed for 28 days to atmospheres containing 10, 21 or 30% O2. Whereas the xenografts grew twice faster in hypoxia, their growth rates in hyperoxia and normoxia were similar. To analyze the involved molecular mechanisms, we performed various assays in xenograft tissues. Faster xenografts growth in hypoxia was associated with higher phosphorylation of protein kinase B (Akt) and higher expression of Ki67, both related with pro-survival and cell proliferation pathways. By contrast, the expression level of HIF-1α was similar in normoxia and hypoxia, but paradoxically twice higher in hyperoxia. The protein level of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was also higher in hyperoxia, suggesting marked cell response to redox imbalance. Whereas both the vascular-endothelial growth factor (VEGF) and its receptor VEGF-R2 were overexpressed in hyperoxia, the tissue hemoglobin content was not increased, despite a slight reduction in vascularization. As a whole, this data indicates that the xenografts growth rate was independent of HIF-1α expression level, suggesting that in an in vivo setting alternative more effective proliferative paths associated with the cell response to the redox imbalance may override the paths linked to HIF-1α signaling.
Collapse
|
44
|
Geng X, Parmar S, Li X, Peng C, Ji X, Chakraborty T, Li WA, Du H, Tan X, Ling F, Guthikonda M, Rafols JA, Ding Y. Reduced apoptosis by combining normobaric oxygenation with ethanol in transient ischemic stroke. Brain Res 2013; 1531:17-24. [PMID: 23920008 DOI: 10.1016/j.brainres.2013.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE The effect of normobaric oxygen (NBO) on apoptosis remains controversial. The present study evaluated the effect of NBO on ischemia-induced apoptosis and assessed the potential for improved outcomes by combining NBO administration with another neuroprotective agent, ethanol, in a rat stroke model. METHODS Rats were subjected to right middle cerebral artery occlusion (MCAO) for 2h. At the onset of reperfusion, ischemic animals received either NBO (2h duration), an intraperitoneal injection of ethanol (1.0g/kg), or both NBO and ethanol. Extent of brain injury was determined by infarct volume, neurological deficit, and apoptotic cell death. Expression of pro- and anti-apoptotic proteins was evaluated through Western immunoblotting. RESULTS Given alone, NBO and ethanol each slightly (p<0.05) reduced infarct volume to 38% and 37%, respectively, as compared to the impressive reduction of 51% (p<0.01) seen with combined NBO-ethanol administration. Neurologic deficits were also significantly reduced by 48% with combined NBO-ethanol therapy, as compared to lesser reductions of 24% and 23% with NBO or ethanol, respectively. Combined NBO-ethanol therapy decreased apoptotic cell death by 49%, as compared to 31% with NBO and 30% with ethanol. Similarly, combination therapy significantly increased expression of anti-apoptotic factors (Bcl-2 and Bcl-xL) and significantly reduced expression of pro-apoptotic proteins (BAX, Caspase-3, and AIF), as compared to the minimal or nil protein expression changes elicited by NBO or ethanol alone. CONCLUSIONS In rats subjected to ischemic stroke, NBO administration salvages ischemic brain tissue through evidenced decrease in apoptotic cell death. Combined NBO therapy with ethanol administration greatly improves both degree of neuroprotection and associated apoptosis.
Collapse
Affiliation(s)
- Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dagıstan Y, Karaca I, Bozkurt ER, Ozar E, Yagmurlu K, Toklu A, Bilir A. Combination hyperbaric oxygen and temozolomide therapy in C6 rat glioma model. Acta Cir Bras 2013; 27:383-7. [PMID: 22666755 DOI: 10.1590/s0102-86502012000600005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Temozolomide (TMZ) has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO) may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (%) was decreased significantly in tumor tissue of the group 3 rats compared to group 1 and 2. CONCLUSION The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.
Collapse
Affiliation(s)
- Yaşar Dagıstan
- Department of Neurosurgery, Izzet Baysal Hospital, Bolu, Turkey.
| | | | | | | | | | | | | |
Collapse
|
46
|
Poff AM, Ari C, Seyfried TN, D'Agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 2013; 8:e65522. [PMID: 23755243 PMCID: PMC3673985 DOI: 10.1371/journal.pone.0065522] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/02/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. Methods We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. Results KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. Conclusions KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | |
Collapse
|
47
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
48
|
Lu XY, Cao K, Li QY, Yuan ZC, Lu PS. The synergistic therapeutic effect of temozolomide and hyperbaric oxygen on glioma U251 cell lines is accompanied by alterations in vascular endothelial growth factor and multidrug resistance-associated protein-1 levels. J Int Med Res 2013; 40:995-1004. [PMID: 22906272 DOI: 10.1177/147323001204000318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Temozolomide (TMZ) is an oral alkylating agent widely used in the treatment of refractory glioma. Its efficacy is limited, however, by poor cancer cell penetration and drug resistance. The present study, therefore, aimed to investigate whether hyperbaric oxygen (HBO) may facilitate drug delivery and enhance the anticancer effect of TMZ. METHODS Cultured glioma U251 cells were treated with HBO, TMZ, or TMZ + HBO, or were untreated (controls). Rates of growth inhibition, cell death and apoptosis were investigated using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, propidium iodide staining and flow cytometry, respectively. Protein levels of vascular endothelial growth factor (VEGF) and multidrug resistance-associated protein-1 (MRP-1) were evaluated by enzyme-linked immunosorbent assay. RESULTS Compared with TMZ or HBO alone, combined treatment with both therapies synergistically inhibited growth and induced apoptosis and death of cultured glioma U251 cells, which was accompanied by a significant decrease in levels of VEGF and MRP-1. CONCLUSIONS TMZ and HBO synergistically induced the apoptosis of glioma cells, possibly through reduced vascularization and inhibition of drug resistance. The combination of TMZ and HBO may be a powerful treatment for malignant glioma.
Collapse
Affiliation(s)
- X-Y Lu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
49
|
Moen I, Stuhr LEB. Hyperbaric oxygen therapy and cancer--a review. Target Oncol 2012; 7:233-42. [PMID: 23054400 PMCID: PMC3510426 DOI: 10.1007/s11523-012-0233-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
Hypoxia is a critical hallmark of solid tumors and involves enhanced cell survival, angiogenesis, glycolytic metabolism, and metastasis. Hyperbaric oxygen (HBO) treatment has for centuries been used to improve or cure disorders involving hypoxia and ischemia, by enhancing the amount of dissolved oxygen in the plasma and thereby increasing O2 delivery to the tissue. Studies on HBO and cancer have up to recently focused on whether enhanced oxygen acts as a cancer promoter or not. As oxygen is believed to be required for all the major processes of wound healing, one feared that the effects of HBO would be applicable to cancer tissue as well and promote cancer growth. Furthermore, one also feared that exposing patients who had been treated for cancer, to HBO, would lead to recurrence. Nevertheless, two systematic reviews on HBO and cancer have concluded that the use of HBO in patients with malignancies is considered safe. To supplement the previous reviews, we have summarized the work performed on HBO and cancer in the period 2004–2012. Based on the present as well as previous reviews, there is no evidence indicating that HBO neither acts as a stimulator of tumor growth nor as an enhancer of recurrence. On the other hand, there is evidence that implies that HBO might have tumor-inhibitory effects in certain cancer subtypes, and we thus strongly believe that we need to expand our knowledge on the effect and the mechanisms behind tumor oxygenation.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | |
Collapse
|
50
|
Sun S, Lee D, Lee NP, Pu JKS, Wong STS, Lui WM, Fung CF, Leung GKK. Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide. J Neurooncol 2012; 109:467-75. [PMID: 22763762 PMCID: PMC3434886 DOI: 10.1007/s11060-012-0923-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/19/2012] [Indexed: 12/27/2022]
Abstract
Temozolomide (TMZ) is standard chemotherapy for glioblastoma multiforme (GBM). Intratumoral hypoxia is common in GBM and may be associated with the development of TMZ resistance. Oxygen therapy has previously been reported to potentiate the effect of chemotherapy in cancer. In this study, we investigated whether hyperoxia can enhance the TMZ-induced cytotoxicity of human GBM cells, and whether and how it would resensitize TMZ-resistant GBM cells to TMZ. TMZ-sensitive human GBM cells (D54-S and U87-S) were treated with TMZ to develop isogenic subclones of TMZ-resistant cells (D54-R and U87-R). All cell lines were then exposed to different oxygen levels (1, 21, 40, or 80 %), with or without concomitant TMZ treatment, before assessment of cell cytotoxicity and morphology. Cell death and survival pathways elicited by TMZ and/or hyperoxia were elucidated by western blotting. Our results showed that TMZ sensitivity of both chemo-sensitive and resistant cells was enhanced significantly under hyperoxia. At the cell line-specific optimum oxygen concentration (D54-R, 80 %; U87-R, 40 %), resistant cells had the same response to TMZ as the parent chemosensitive cells under normoxia via the caspase-dependent pathway. Both TMZ and hyperoxia were associated with increased phosphorylation of ERK p44/42 MAPK (Erk1/2), but to a lesser extent in D54-R cells, suggesting that Erk1/2 activity may be involved in regulation of hyperoxia and TMZ-mediated cell death. Overall, hyperoxia enhanced TMZ toxicity in GBM cells by induction of apoptosis, possibly via MAPK-related pathways. Induced hyperoxia is a potentially promising approach for treatment of TMZ-resistant GBM.
Collapse
Affiliation(s)
- Stella Sun
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|