1
|
Sinha S, Huang MS, Mikos G, Bedi Y, Soto L, Lensch S, Ayushman M, Bintu L, Bhutani N, Heilshorn SC, Yang F. Laminin-associated integrins mediate Diffuse Intrinsic Pontine Glioma infiltration and therapy response within a neural assembloid model. Acta Neuropathol Commun 2024; 12:71. [PMID: 38706008 PMCID: PMC11070088 DOI: 10.1186/s40478-024-01765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/24/2024] [Indexed: 05/07/2024] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.
Collapse
Affiliation(s)
- Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yudhishtar Bedi
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nidhi Bhutani
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, McCullough Building, Room 246, Palo Alto, CA, 94305, USA.
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA.
| |
Collapse
|
2
|
Xiong S, Qin B, Liu C, Pan Y. Editorial: Immunosuppression mechanisms and immunotherapy strategies in glioblastoma. Front Cell Neurosci 2024; 18:1411330. [PMID: 38725447 PMCID: PMC11080981 DOI: 10.3389/fncel.2024.1411330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Sihan Xiong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuang Liu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Paioti PHS, Lounsbury KE, Romiti F, Formica M, Bauer V, Zandonella C, Hackey ME, Del Pozo J, Hoveyda AH. Click processes orthogonal to CuAAC and SuFEx forge selectively modifiable fluorescent linkers. Nat Chem 2024; 16:426-436. [PMID: 38093093 PMCID: PMC11326532 DOI: 10.1038/s41557-023-01386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 03/07/2024]
Abstract
The appeal of catalytic click chemistry is largely due to the copper-catalysed azide-alkyne cycloaddition (CuAAC) process, which is orthogonal to the more recently introduced sulfur-fluoride exchange (SuFEx). However, the triazole rings generated by CuAAC are not readily modifiable, and SuFEx connectors cannot be selectively functionalized, attributes that would be attractive in a click process. Here we introduce bisphosphine-copper-catalysed phenoxydiazaborinine formation (CuPDF), a link-and-in situ modify strategy for merging a nitrile, an allene, a diborane and a hydrazine. We also present copper- and palladium-catalysed quinoline formation (Cu/PdQNF), which is applicable in aqueous media, involving an aniline as the modifier. CuPDF and Cu/PdQNF are easy to perform and deliver robust, alterable and tunable fluorescent hubs. CuPDF and Cu/PdQNF are orthogonal to SuFEx and CuAAC, despite the latter and CuPDF also being catalysed by an organocopper species. These advantages were applied to protecting group-free syntheses of sequence-defined branched oligomers, a chemoselectively amendable polymer, three drug conjugates and a two-drug conjugate.
Collapse
Affiliation(s)
- Paulo H S Paioti
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Katherine E Lounsbury
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Michele Formica
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Valentin Bauer
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Claudio Zandonella
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Meagan E Hackey
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Amir H Hoveyda
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France.
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
5
|
Giles B, Nakhjavani M, Wiesa A, Knight T, Shigdar S, Samarasinghe RM. Unravelling the Glioblastoma Tumour Microenvironment: Can Aptamer Targeted Delivery Become Successful in Treating Brain Cancers? Cancers (Basel) 2023; 15:4376. [PMID: 37686652 PMCID: PMC10487158 DOI: 10.3390/cancers15174376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The key challenges to treating glioblastoma multiforme (GBM) are the heterogeneous and complex nature of the GBM tumour microenvironment (TME) and difficulty of drug delivery across the blood-brain barrier (BBB). The TME is composed of various neuronal and immune cells, as well as non-cellular components, including metabolic products, cellular interactions, and chemical compositions, all of which play a critical role in GBM development and therapeutic resistance. In this review, we aim to unravel the complexity of the GBM TME, evaluate current therapeutics targeting this microenvironment, and lastly identify potential targets and therapeutic delivery vehicles for the treatment of GBM. Specifically, we explore the potential of aptamer-targeted delivery as a successful approach to treating brain cancers. Aptamers have emerged as promising therapeutic drug delivery vehicles with the potential to cross the BBB and deliver payloads to GBM and brain metastases. By targeting specific ligands within the TME, aptamers could potentially improve treatment outcomes and overcome the challenges associated with larger therapies such as antibodies.
Collapse
Affiliation(s)
- Breanna Giles
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Maryam Nakhjavani
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Andrew Wiesa
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Tareeque Knight
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
6
|
Wang Y, Li S, Peng Y, Ma W, Wang Y, Li W. Progress in phase III clinical trials of molecular targeted therapy and immunotherapy for glioblastoma. CANCER INNOVATION 2023; 2:114-130. [PMID: 38090060 PMCID: PMC10686181 DOI: 10.1002/cai2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 10/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shenglan Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Zhang Q, Liu N, Wang J, Liu Y, Wang K, Zhang J, Pan X. The Recent Advance of Cell-Penetrating and Tumor-Targeting Peptides as Drug Delivery Systems Based on Tumor Microenvironment. Mol Pharm 2023; 20:789-809. [PMID: 36598861 DOI: 10.1021/acs.molpharmaceut.2c00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer has become the primary reason for industrial countries death. Although first-line treatments have achieved remarkable results in inhibiting tumors, they could have serious side effects because of insufficient selectivity. Therefore, specific localization of tumor cells is currently the main desire for cancer treatment. In recent years, cell-penetrating peptides (CPPs), as a kind of promising delivery vehicle, have attracted much attention because they mediate the high-efficiency import of large quantities of cargos in vivo and vitro. Unfortunately, the poor targeting of CPPs is still a barrier to their clinical application. In order to solve this problem, researchers use the various characteristics of tumor microenvironment and multiple receptors to improve the specificity toward tumors. This review focuses on the characteristics of the tumor microenvironment, and introduces the development of strategies and peptides based on these characteristics as drug delivery system in the tumor-targeted therapy.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 331] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Burgos-Panadero R, El Moukhtari SH, Noguera I, Rodríguez-Nogales C, Martín-Vañó S, Vicente-Munuera P, Cañete A, Navarro S, Blanco-Prieto MJ, Noguera R. Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma. Int J Pharm 2021; 608:121058. [PMID: 34461172 DOI: 10.1016/j.ijpharm.2021.121058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain.
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.
| | - Adela Cañete
- Pediatric Oncology, La Fe Hospital, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Vogelbaum MA, Krivosheya D, Borghei-Razavi H, Sanai N, Weller M, Wick W, Soffietti R, Reardon DA, Aghi MK, Galanis E, Wen PY, van den Bent M, Chang S. Phase 0 and window of opportunity clinical trial design in neuro-oncology: a RANO review. Neuro Oncol 2021; 22:1568-1579. [PMID: 32598442 DOI: 10.1093/neuonc/noaa149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is a devastating disease with poor prognosis. Few effective chemotherapeutics are currently available, and much effort has been expended to identify new drugs capable of slowing tumor progression. The phase 0 trial design was developed to facilitate early identification of promising agents for cancer that should undergo accelerated approval. This design features an early in-human study that enrolls a small number of patients who receive subtherapeutic doses of medication with the goals of describing pharmacokinetics through drug blood level measurements and determining intratumoral concentrations of the investigational compound as well as pharmacodynamics by studying the biochemical and physiological effects of drugs. In neuro-oncology, however, the presence of the blood-brain barrier and difficulty in obtaining brain tumor tissue warrant a separate set of considerations. In this paper, we critically reviewed the protocols used in all brain tumor related in-human phase 0 and phase 0-like ("window of opportunity") studies between 1993 and 2018, as well as ongoing clinical trials, and identified major challenges in trial design as applied to central nervous system tumors that include surgical specimen collection and storage, brain tumor drug level analysis, and confirmation of drug action. We therefore propose that phase 0 trials in neuro-oncology should include (i) only patients in whom a resection of the tumor is planned, (ii) use of clinical doses of an investigational agent, (iii) tissue sampling from enhancing and non-enhancing portions of the tumor, and (iv) assessment of drug-specific target effects. Standardization of clinical protocols for phase 0/window of opportunity studies can help accelerate the development of effective treatments for glioblastoma.
Collapse
Affiliation(s)
| | - Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital and German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science, Turin, Italy
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | | | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam
| | - Susan Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Li D, Patel CB, Xu G, Iagaru A, Zhu Z, Zhang L, Cheng Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front Immunol 2020; 11:592389. [PMID: 33193439 PMCID: PMC7662122 DOI: 10.3389/fimmu.2020.592389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the most common and malignant types of primary brain cancer in adults, and carry a poor prognosis. GBM has been classified into distinct subgroups over the years based on cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings. Based on these classifications, differences in therapeutic response and patient outcomes have been established. Recently, the identification of complex molecular signatures of GBM has led to the development of diverse targeted therapeutic regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and nanoparticle-based probes have been designed to target specific molecules in gliomas and then be visualized with multimodality molecular imaging (MI) techniques including positron emission tomography (PET), single-photon emission computed tomography (SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively imaged to guide targeted therapies with a potential survival benefit. Here, we review developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets, and MI monitoring of treatment response, with a focus on the biological mechanisms of these advanced molecular probes. MI probes have the potential to noninvasively demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and response assessment considerations for various targeted therapies, including immunotherapy. However, most MI tracers are in preclinical development, with only integrin αVβ3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been translated to patients. Expanded international collaborations would accelerate translational research in the field of glioma MI.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Chirag B Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guofan Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Andrei Iagaru
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
14
|
Xie X, Hu X, Li Q, Yin M, Song H, Hu J, Wang L, Fan C, Chen N. Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. NANO LETTERS 2020; 20:5228-5235. [PMID: 32510963 DOI: 10.1021/acs.nanolett.0c01503] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell-membrane-camouflaged nanoparticles (CMC-NPs) have been increasingly exploited to develop various therapeutic tools due to their high biocompatibility and cell-type-specific tumor-targeting properties. However, the molecular mechanism of CMC-NPs for homotypic targeting remains elusive. Here, we develop a plasmonic imaging method by coating gold nanoparticles (AuNPs) with cancer cell membranes and perform plasmonic imaging of the interactions between CMC-NPs and living cells at the single-cell level. Quantitative analysis of CMC-NPs in a different clustering status reveals that the presence of cell membranes on CMC-NPs results in a 7-fold increase in homotypic cell delivery and nearly 2 orders of magnitude acceleration of the intracellular agglomeration process. Significantly, we identify that integrin αvβ3, a cell surface receptor abundantly expressed in tumor cells, is critical for the selective cell recognition of CMC-NPs. We thus establish a single-cell plasmonic imaging platform for probing NP-cell interactions, which sheds new light on the therapeutic applications of CMC-NPs.
Collapse
Affiliation(s)
- Xiaodong Xie
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xingjie Hu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Yin
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Hu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
15
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Background: The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. Methods: A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms “Target Therapy”, “Target drug” and “Tailored Therapy” were combined with the terms “High-grade gliomas”, “Malignant brain tumor” and “Glioblastoma”. Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were “Central Nervous System Tumor”, “Malignant Brain Tumor”, “Brain Cancer”, “Brain Neoplasms” and “High-grade gliomas”. Results: A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. Conclusion: Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
16
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
17
|
Integrin αvβ3-Specific Hydrocyanine for Cooperative Targeting of Glioblastoma with High Sensitivity and Specificity. Anal Chem 2019; 91:12587-12595. [PMID: 31496223 DOI: 10.1021/acs.analchem.9b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvβ3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvβ3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvβ3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvβ3 and ROS.
Collapse
|
18
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
19
|
Anthony C, Mladkova-Suchy N, Adamson DC. The evolving role of antiangiogenic therapies in glioblastoma multiforme: current clinical significance and future potential. Expert Opin Investig Drugs 2019; 28:787-797. [PMID: 31356114 DOI: 10.1080/13543784.2019.1650019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, but its prognosis remains poor despite significant advances in our understanding of its molecular biology and investigation of numerous treatment modalities. Despite conventional treatment consisting of surgical resection, radiotherapy, and temozolomide marginally prolonging survival, most GBM patients die within 2 years of initial diagnosis. Bevacizumab (Bev) is the best-studied antiangiogenic agent for GBM and currently the only FDA-approved second-line treatment. Areas covered: Areas covered in this review include the molecular pathways of angiogenesis in glioblastoma, specifically the overexpression of vascular endothelial growth factor (VEGF) and robust formation of tumor neovasculature. In addition, this review covers pharmacological targeting of this process as a longstanding attractive clinical strategy, specifically by Bev. Expert opinion: This review attempts to discuss the history of early studies of antiangiogenic treatment for GBM that eventually failed in subsequent studies and the evolving modern role of Bev in the course of treatment for a variety of indications, including symptom control, reduced glucocorticoid use, and improved quality of life.
Collapse
Affiliation(s)
- Casey Anthony
- Department of Neurosurgery, Emory University , Atlanta , GA , USA
| | - Nikol Mladkova-Suchy
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London , UK
| | - David Cory Adamson
- Department of Neurosurgery, Emory University , Atlanta , GA , USA.,Neurosurgery section, Atlanta VA Medical Center , Decatur , GA , USA
| |
Collapse
|
20
|
Miller TW, Traphagen NA, Li J, Lewis LD, Lopes B, Asthagiri A, Loomba J, De Jong J, Schiff D, Patel SH, Purow BW, Fadul CE. Tumor pharmacokinetics and pharmacodynamics of the CDK4/6 inhibitor ribociclib in patients with recurrent glioblastoma. J Neurooncol 2019; 144:563-572. [PMID: 31399936 DOI: 10.1007/s11060-019-03258-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We conducted a phase Ib study (NCT02345824) to determine whether ribociclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), penetrates tumor tissue and modulates downstream signaling pathways including retinoblastoma protein (Rb) in patients with recurrent glioblastoma (GBM). METHODS Study participants received ribociclib (600 mg QD) for 8-21 days before surgical resection of their recurrent GBM. Total and unbound concentrations of ribociclib were measured in samples of tumor tissue, plasma, and cerebrospinal fluid (CSF). We analyzed tumor specimens obtained from the first (initial/pre-study) and second (recurrent/on-study) surgery by immunohistochemistry for Rb status and downstream signaling of CDK4/6 inhibition. Participants with Rb-positive recurrent tumors continued ribociclib treatment on a 21-day-on, 7-day-off schedule after surgery, and were monitored for toxicity and disease progression. RESULTS Three participants with recurrent Rb-positive GBM participated in this study. Mean unbound (pharmacologically active) ribociclib concentrations in plasma, CSF, MRI-enhancing, MRI-non-enhancing, and tumor core regions were 0.337 μM, 0.632 μM, 1.242 nmol/g, 0.484 nmol/g, and 1.526 nmol/g, respectively, which exceeded the in vitro IC50 (0.04 μM) for inhibition of CDK4/6 in cell-free assay. Modulation of pharmacodynamic markers of ribociclib CDK 4/6 inhibition in tumor tissues were inconsistent between study participants. No participants experienced serious adverse events, but all experienced early disease progression. CONCLUSIONS This study suggests that ribociclib penetrated recurrent GBM tissue at concentrations predicted to be therapeutically beneficial. Our study was unable to demonstrate tumor pharmacodynamic correlates of drug activity. Although well tolerated, ribociclib monotherapy seemed ineffective for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Jing Li
- Pharmacology Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology and Molecular Diagnostics, University of Virginia Health System, Charlottesville, VA, USA
| | - Ashok Asthagiri
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Johanna Loomba
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Jenny De Jong
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Sohil H Patel
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Benjamin W Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Camilo E Fadul
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA.
| |
Collapse
|
21
|
Guidotti G, Brambilla L, Rossi D. Peptides in clinical development for the treatment of brain tumors. Curr Opin Pharmacol 2019; 47:102-109. [DOI: 10.1016/j.coph.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
|
22
|
Zhang L, Shan X, Meng X, Gu T, Guo L, An X, Jiang Q, Ge H, Ning X. Novel Integrin αvβ3-Specific Ligand for the Sensitive Diagnosis of Glioblastoma. Mol Pharm 2019; 16:3977-3984. [DOI: 10.1021/acs.molpharmaceut.9b00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lei Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xue Shan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xia Meng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Tingting Gu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Leilei Guo
- Center of Advanced Pharmaceuticals and Biomaterials, Collaborative Innovation Center of China Pharmaceutical University and National Center for Nanoscience and Technology, China Pharmaceutical University, 210093 Nanjing, China
| | - Xueying An
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
23
|
THPep: A machine learning-based approach for predicting tumor homing peptides. Comput Biol Chem 2019; 80:441-451. [PMID: 31151025 DOI: 10.1016/j.compbiolchem.2019.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 01/24/2023]
Abstract
In the present era, a major drawback of current anti-cancer drugs is the lack of satisfactory specificity towards tumor cells. Despite the presence of several therapies against cancer, tumor homing peptides are gaining importance as therapeutic agents. In this regard, the huge number of therapeutic peptides generated in recent years, demands the need to develop an effective and interpretable computational model for rapidly, effectively and automatically predicting tumor homing peptides. Therefore, a sequence-based approach referred herein as THPep has been developed to predict and analyze tumor homing peptides by using an interpretable random forest classifier in concomitant with amino acid composition, dipeptide composition and pseudo amino acid composition. An overall accuracy and Matthews correlation coefficient of 90.13% and 0.76, respectively, were achieved from the independent test set on an objective benchmark dataset. Upon comparison, it was found that THPep was superior to the existing method and holds high potential as a useful tool for predicting tumor homing peptides. For the convenience of experimental scientists, a web server for this proposed method is provided publicly at http://codes.bio/thpep/.
Collapse
|
24
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, Swanson KR, Kaufmann TJ, Brown PD, Agar NYR, Galanis E, Buckner JC, Elmquist WF. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 2019; 20:184-191. [PMID: 29016900 DOI: 10.1093/neuonc/nox175] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Leland S Hu
- Mayo Clinic, Scottsdale, Arizona (L.S.H., K.R.S.)
| | - Ian F Parney
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Deanna H Pafundi
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Debra H Brinkmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Nadia N Laack
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Caterina Giannini
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Terence C Burns
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Sani H Kizilbash
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Janice K Laramy
- University of Minnesota, Minneapolis, Minnesota (J.K.L., W.F.E.)
| | | | - Timothy J Kaufmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Paul D Brown
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | | | - Evanthia Galanis
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Jan C Buckner
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - William F Elmquist
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| |
Collapse
|
26
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Cao Z, Suo X, Chu Y, Xu Z, Bao Y, Miao C, Deng W, Mao K, Gao J, Xu Z, Ma YQ. Peptides derived from the integrin β cytoplasmic tails inhibit angiogenesis. Cell Commun Signal 2018; 16:38. [PMID: 29970081 PMCID: PMC6029062 DOI: 10.1186/s12964-018-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrins are essential regulators of angiogenesis. However, the antiangiogenic potential of peptides derived from the integrin cytoplasmic tails (CT) remains mostly undetermined. METHODS Here we designed a panel of membrane-penetrating peptides (termed as mβCTPs), each comprising a C-terminal NxxY motif from one of the conserved integrin β CTs, and evaluated their antiangiogenic ability using both in vitro and in vivo approaches. RESULTS We found that mβ3CTP, mβ5CTP and mβ6CTP, derived respectively from the integrin β3, β5 and β6 CTs, but not others, exhibit antiangiogenic ability. Interestingly, we observed that the integrin β3, β5 and β6 CTs but not others are able to interact with β3-endonexin. In addition, the antiangiogenic core in mβ3CTP is identical to a previously identified β3-endonexin binding region in the integrin β3 CT, indicating that the antiangiogenic mβCTPs may function via their binding to β3-endonexin. Consistently, knockdown of endogenous β3-endonexin in HUVECs significantly suppresses tube formation, suggesting that β3-endonexin is proangiogenic. However, neither treatment with the antiangiogenic mβCTPs nor knockdown of endogenous β3-endonexin affects integrin-mediated HUVEC adhesion and migration, indicating that their antiangiogenic effect may not rely on directly regulating integrin activity. Importantly, both treatment with the antiangiogenic mβCTPs and knockdown of endogenous β3-endonexin in HUVECs inhibit VEGF expression and cell proliferation, thereby providing mechanistic explanations for the functional consequences. CONCLUSION Our results suggest that the antiangiogenic mβCTPs can interact with β3-endonexin in vascular endothelial cells and suppress its function in regulating VEGF expression and cell proliferation, thus disclosing a unique pathway that may be useful for developing novel antiangiogenic strategies.
Collapse
Affiliation(s)
- Zhongyuan Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinfeng Suo
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yudan Chu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhou Xu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yun Bao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunxiao Miao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenfeng Deng
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Kaijun Mao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Juan Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhen Xu
- School of Life Sciences, Shanghai University, Shanghai, China. .,Blood Research Institute, Blood Center of Wisconsin, part of Versiti, 8727 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Yan-Qing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China. .,School of Life Sciences, Shanghai University, Shanghai, China. .,Blood Research Institute, Blood Center of Wisconsin, part of Versiti, 8727 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
28
|
Li H, Hu S, Pang Y, Li M, Chen L, Liu F, Liu M, Wang Z, Cheng X. Bufalin inhibits glycolysis-induced cell growth and proliferation through the suppression of Integrin β2/FAK signaling pathway in ovarian cancer. Am J Cancer Res 2018; 8:1288-1296. [PMID: 30094101 PMCID: PMC6079152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023] Open
Abstract
Bufalin is the major digoxin-like component of the traditional Chinese medicine Chansu and has obvious anti-tumor effect in major malignancies, but the role of bufalin in glucose metabolism in ovarian cancer remains illustrated. Here, we sought to elucidate the regulatory function of bufalin on cell glucose metabolism in ovarian cancer. The treatment of bufalin on ovarian cancer cells effectively inhibited glucose uptake and lactate production in ovarian cancer cells. The expression levels of glycolysis-related proteins, including GLUT4, LDHB and HK2, were decreased by the treatment of bufalin detected by qRT-PCR and immunoblotting. Mechanistically, bufalin exerted its anti-tumor effect by targeting ITGB2/FAK signaling pathway in vitro and in vivo, which could be rescued by the introduction of ITGB2 cDNA in ovarian cancer cells. These findings provide evidence that bufalin inhibited cellular glycolysis-induced cell growth and proliferation through repression of the ITGB2/FAK pathway, indicating that bufalin may be developed as a chemotherapeutic agent to treat ovarian cancer.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Shuang Hu
- Department of Pharmacy, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Yangyang Pang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou UniversityLanzhou 730000, China
- Key Laboratory of Urological Diseases, Lanzhou UniversityLanzhou 730000, China
| | - Mengjiao Li
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Lihua Chen
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Fei Liu
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Mingming Liu
- School of Pharmacy, Anhui Medical UniversityHefei 230031, China
| | - Ziliang Wang
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology and Cancer Institute, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| |
Collapse
|
29
|
Sim HW, Morgan ER, Mason WP. Contemporary management of high-grade gliomas. CNS Oncol 2018; 7:51-65. [PMID: 29241354 PMCID: PMC6001673 DOI: 10.2217/cns-2017-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
High-grade gliomas, including glioblastoma, are the most common malignant brain tumors in adults. Despite intensive efforts to develop new therapies for these diseases, treatment options remain limited and prognosis is poor. Recently, there have been important advances in our understanding of the molecular basis of glioma, leading to refinements in our diagnostic and management approach. There is new evidence to guide the treatment of elderly patients. A multitude of new agents have been investigated, including targeted therapies, immunotherapeutics and tumor-treating fields. This review summarizes the key findings from this research, and presents a perspective on future opportunities to advance the field.
Collapse
Affiliation(s)
- Hao-Wen Sim
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Erin R Morgan
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Warren P Mason
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
30
|
Pridham KJ, Varghese RT, Sheng Z. The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in Glioblastoma. Front Oncol 2017; 7:312. [PMID: 29326882 PMCID: PMC5736525 DOI: 10.3389/fonc.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
31
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
32
|
Abstract
During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paola A Guerrero
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph H McCarty
- University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
33
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
Guerrero PA, Tchaicha JH, Chen Z, Morales JE, McCarty N, Wang Q, Sulman EP, Fuller G, Lang FF, Rao G, McCarty JH. Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1 signaling axis to drive tumor initiation and progression. Oncogene 2017; 36:6568-6580. [PMID: 28783169 DOI: 10.1038/onc.2017.248] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin αvβ8 and its latent transforming growth factor β1 (TGFβ1) protein ligand have central roles in promoting niche co-option and GBM initiation. αvβ8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of β8high cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that αvβ8 integrin regulates tumor development, in part, by driving TGFβ1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the αvβ8 integrin-TGFβ1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM.
Collapse
Affiliation(s)
- P A Guerrero
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H Tchaicha
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Z Chen
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J E Morales
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - N McCarty
- The Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Q Wang
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA
| | - E P Sulman
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Fuller
- Departments of Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - F F Lang
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Rao
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H McCarty
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Kobayashi M, Sawada K, Kimura T. Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review. Cancers (Basel) 2017; 9:E83. [PMID: 28698469 PMCID: PMC5532619 DOI: 10.3390/cancers9070083] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
Epithelial ovarian cancer is a fatal disease, with a cure rate of only 30%. Several recent studies have targeted integrins for cancer treatment. Preclinical studies have shown the effectiveness of several integrin inhibitors for blocking cancer progression, especially by blocking angiogenesis. Because the initial critical step in ovarian cancer metastasis is the attachment of cancer cells to the peritoneum or omentum and because clinical trials have provided positive results for anti-angiogenic therapy, therapies targeting integrins may be the most feasible approach for treating cancer. This review summarizes the current understanding of integrin biology in ovarian cancer metastasis and various therapeutic approaches involving integrin inhibitors. However, no integrin inhibitor has shown favorable results thus far. However, conjugates of cytotoxic agents with the triplet sequence arginine-glycine-aspartate (RGD) peptides targeting α5β1-, αvβ3-, and αvβ6-integrins may be promising integrin-targeting therapies for further clinical investigation.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| |
Collapse
|
36
|
Jin J, Choi SH, Lee JE, Joo JD, Han JH, Park SY, Kim CY. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model. Oncol Lett 2017; 13:3767-3773. [PMID: 28529591 DOI: 10.3892/ol.2017.5918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/17/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo. These results suggest that SMA salt has significant antitumor effects on glioblastoma.
Collapse
Affiliation(s)
- Jun Jin
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Suh Hee Choi
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jin-Deok Joo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Su-Young Park
- Research and Development Center, Daewoo Pharmaceutical Ind. Co., Ltd., Busan 49393, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
37
|
Guzzetti I, Civera M, Vasile F, Arosio D, Tringali C, Piarulli U, Gennari C, Pignataro L, Belvisi L, Potenza D. Insights into the Binding of Cyclic RGD Peptidomimetics to α 5β 1 Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen 2017; 6:128-136. [PMID: 28168158 PMCID: PMC5288746 DOI: 10.1002/open.201600112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The interaction of a small library of cyclic DKP-RGD peptidomimetics with α5β1 integrin has been investigated by means of an integrated experimental and computational approach. Bioaffinity NMR techniques, including saturation transfer difference (STD) and transferred NOESY, were applied to the ligands in a suspension of intact MDA-MB-231 breast cancer cells, in which integrin α5β1 is highly expressed. The NMR data were compared with the docking calculations of the RGD ligands in the crystal structure of the α5β1 binding site, and were integrated with competitive binding assays to the purified α5β1 integrin. Ligand binding epitopes involve protons of both the RGD moiety and the DKP scaffold, although the stereochemistry and the functionalization of the DKP scaffold as well as the macrocycle conformation determine a great variability in the interaction. The ligand showing the highest number of STD signals is also the most potent α5β1 ligand of the series, displaying a nanomolar IC50 value.
Collapse
Affiliation(s)
- Ileana Guzzetti
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Francesca Vasile
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Daniela Arosio
- CNR–Istituto di Scienze e Tecnologie Molecolari (ISTM)Via Golgi, 1920133MilanoItaly
| | - Cristina Tringali
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoVia Fratelli Cervi, 9320090Segrate (MI)Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 1122100ComoItaly
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Donatella Potenza
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| |
Collapse
|
38
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
39
|
Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 2016; 22:454-462. [PMID: 27856346 DOI: 10.1016/j.drudis.2016.11.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
Natural endogenously occurring peptides exhibit desirable medicinal properties, but are often limited in application by rapid proteolysis and inadequate membrane permeability. However, editing naturally occurring peptide sequences to develop peptidomimetic analogs created a promising class of therapeutics that can augment or inhibit molecular interactions. Here, we discuss a variety of chemical modifications, including l to d isomerization, cyclization, and unnatural amino acid substitution, as well as design strategies, such as attachment to cell-penetrating peptides, which are used to develop peptidomimetics. We also provide examples of approved peptidomimetics and discuss several compounds in clinical trials.
Collapse
Affiliation(s)
- Nir Qvit
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA.
| | - Samuel J S Rubin
- Stanford University, Immunology Program, School of Medicine, Stanford, CA 94305, USA
| | - Travis J Urban
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA; Stanford University, Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA
| | - Eric R Gross
- Stanford University, Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Schäfer N, Gielen GH, Kebir S, Wieland A, Till A, Mack F, Schaub C, Tzaridis T, Reinartz R, Niessen M, Fimmers R, Simon M, Coch C, Fuhrmann C, Herrlinger U, Scheffler B, Glas M. Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J Cancer Res Clin Oncol 2016; 142:1581-9. [PMID: 27100354 DOI: 10.1007/s00432-016-2161-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Dovitinib (TKI258) is an oral multi-tyrosine kinase inhibitor of FGFR, VEGFR, PDGFR β, and c-Kit. Since dovitinib is able to cross the blood-brain barrier and targets brain tumor-relevant pathways, we conducted a phase I trial to demonstrate its safety in recurrent glioblastoma (GBM). PATIENTS AND METHODS Patients with first or second GBM recurrence started treatment with the maximal tolerated dose (MTD) previously established in systemic cancer patients (500 mg/d, 5 days on/2 days off). A modified 3 + 3 design in three cohorts (500, 400, 300 mg) was used. RESULTS Twelve patients were enrolled. Seventy-two adverse events (AEs) occurred and 16.7 % of AEs were classified as ≥CTC grade 3 toxicity, mainly including hepatotoxicity and hematotoxicity. Only one out of six patients of the 300-mg cohort showed grade 3 toxicity. The PFS-6 rate was 16.7 %, and it was not associated with detection of the FGFR-TACC gene fusion in the tumor. CONCLUSION Dovitinib is safe in patients with recurrent GBM and showed efficacy in only some patients unselected for target expression. The recommended phase II dose of 300 mg would be substantially lower than the recently established MTD in systemic cancer patients. Further personalized trials are recommended.
Collapse
Affiliation(s)
- Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany.,Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, Medical Center Bonn, 53127, Bonn, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany.,Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany
| | - Anja Wieland
- Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany
| | - Andreas Till
- Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany
| | - Frederic Mack
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany
| | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany
| | - Roman Reinartz
- Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany
| | - Michael Niessen
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany
| | - Rolf Fimmers
- Institute of Bioinformatics, Medical Center Bonn, 53127, Bonn, Germany
| | - Matthias Simon
- Department of Neurosurgery, Medical Center Bonn, 53127, Bonn, Germany
| | - Christoph Coch
- Study Center Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Center Bonn, 53127, Bonn, Germany
| | - Christine Fuhrmann
- Study Center Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Center Bonn, 53127, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany
| | - Björn Scheffler
- Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany.,Division of Translational Oncology/Neurooncology, German Cancer Research Center (DKFZ), Heidelberg; West German Cancer Center (WTZ) and German Cancer Consortium (DKTK), University Hospital Essen, 45147, Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, Medical Center Bonn, 53127, Bonn, Germany. .,Stem Cell Pathologies, Institute of Reconstructive Neurobiology, University of Bonn, 53127, Bonn, Germany. .,Clinical Cooperation Unit Neurooncology, MediClin Robert Janker Klinik, 53129, Bonn, Germany.
| |
Collapse
|
41
|
Dolgos H, Freisleben A, Wimmer E, Scheible H, Krätzer F, Yamagata T, Gallemann D, Fluck M. In vitro and in vivo drug disposition of cilengitide in animals and human. Pharmacol Res Perspect 2016; 4:e00217. [PMID: 27069630 PMCID: PMC4804314 DOI: 10.1002/prp2.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/11/2015] [Accepted: 12/30/2015] [Indexed: 02/04/2023] Open
Abstract
Cilengitide is very low permeable (1.0 nm/sec) stable cyclic pentapeptide containing an Arg-Gly-Asp motif responsible for selective binding to αvβ3 and αvβ5 integrins administered intravenously (i.v.). In vivo studies in the mouse and Cynomolgus monkeys showed the major component in plasma was unchanged drug (>85%). These results, together with the absence of metabolism in vitro and in animals, indicate minimal metabolism in both species. The excretion of [(14)C]-cilengitide showed profound species differences, with a high renal excretion of the parent drug observed in Cynomolgus monkey (50% dose), but not in mouse (7 and 28%: m/f). Consistently fecal (biliary) secretion was high in mouse (87 and 66% dose: m/f) but low in Cynomolgus monkey (36.5%). Human volunteers administrated with [(14)C]-cilengitide showed that most of the dose was recovered in urine as unchanged drug (77.5%, referred to Becker et al. 2015), indicating that the Cynomolgus monkey was the closer species to human. In order to better understand the species difference between human and mouse, the hepatobiliary disposition of [(14)C]-cilengitide was determined in sandwich-cultured hepatocytes. Cilengitide exhibited modest biliary efflux (30-40%) in mouse, while in human hepatocytes this was negligible. Furthermore, it was confirmed that the uptake of cilengitide into human hepatocytes was minor and appeared to be passive. In summary, the extent of renal and biliary secretion of cilengitide appears to be highly species specific and is qualitatively well explained using sandwich hepatocyte culture models.
Collapse
Affiliation(s)
- Hugues Dolgos
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Achim Freisleben
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Elmar Wimmer
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Holger Scheible
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Friedrich Krätzer
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Tetsuo Yamagata
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Dieter Gallemann
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| | - Markus Fluck
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD) Merck Grafing Germany
| |
Collapse
|
42
|
Therapeutic options in recurrent glioblastoma--An update. Crit Rev Oncol Hematol 2016; 99:389-408. [PMID: 26830009 DOI: 10.1016/j.critrevonc.2016.01.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Standards of care are not yet defined in recurrent glioblastoma. METHODS We reviewed the literature on clinical trials for recurrent glioblastoma available in PubMed and American Society of Clinical Oncology (ASCO) abstracts until June 2015. RESULTS Evidence is limited due to the paucity of randomized controlled studies. Second surgery or re-irradiation are options for selected patients. Alkylating chemotherapy such as nitrosoureas or temozolomide and the vascular endothelial growth factor (VEGF) antibody, bevacizumab, exhibit comparable single agent activity. Phase III data exploring the benefit of combining bevacizumab and lomustine are emerging. Novel approaches in the fields of targeted therapy, immunotherapy, and tumor metabolism are coming forward. Several biomarkers are being explored, but, except for O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation, none has assumed a role in clinical practice. CONCLUSION Proper patient selection, development of predictive biomarkers and randomized controlled studies are required to develop evidence-based concepts for recurrent glioblastoma.
Collapse
|
43
|
Gaertner J, Weingärtner V, Lange S, Hausner E, Gerhardus A, Simon ST, Voltz R, Becker G, Schmacke N. The Role of End-of-Life Issues in the Design and Reporting of Cancer Clinical Trials: A Structured Literature Review. PLoS One 2015; 10:e0136640. [PMID: 26327232 PMCID: PMC4556677 DOI: 10.1371/journal.pone.0136640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) are important sources of information on the benefits and harms patients may expect from treatment options. The aim of this structured literature review by the German Institute for Quality and Efficiency in Health Care was to explore whether and how the end-of-life (EoL) situation of patients with advanced cancer is considered in RCTs investigating anti-cancer treatments. METHODS Our journal pool comprised 19 medical journals, namely five preselected key general medical journals as well as 14 specialist journals (mainly cancer) identified via a scoping search. We systematically searched these journals in MEDLINE to identify RCTs investigating anti-cancer treatments for the following four cancer types: glioblastoma, lung cancer (stage IIIb-IV), malignant melanoma (stage IV), and pancreatic cancer (search via OVID; November 2012). We selected a representative sample of 100 publications, that is, the 25 most recent publications for each cancer type. EoL was defined as a life expectancy of ≤ two years. We assessed the information provided on (1) the descriptions of the terminal stage of the disease, (2) the therapeutic goal (i.e. the intended therapeutic benefit of the intervention studied), (3) the study endpoints assessed, (4) the authors' concluding appraisal of the intervention's effects, and (5) the terminology referring to the patients' EoL situation. RESULTS Median survival was ≤ one year for each of the four cancer types. Descriptions of the terminal stage of the disease were ambiguous or lacking in 29/100 publications. One or more therapeutic goals were mentioned in 51/100 publications; these goals were patient-relevant in 38 publications (survival alone: 30/38; health-related quality of life (HRQoL) or HRQoL and survival: 6/38; symptom control or symptom control and survival: 2/38). Primary endpoints included survival (50%), surrogates (44%), and safety (3%). Patient-reported outcomes (PROs) were assessed in 36/100 RCTs. The implications of treatment-related harms for the patients were discussed in 22/100 appraisals. Terminology referring to the patients' EoL situation (e.g. "terminal") was scarce, whereas terms suggesting control of the disease (e.g. "cancer control") were common. CONCLUSIONS The EoL situation of patients with advanced cancer should be more carefully considered in clinical trials. Although the investigation and robust reporting of PROs is a prerequisite for informed decision-making in healthcare, they are rarely defined as endpoints and HRQoL is rarely mentioned as a therapeutic goal. Suggestions for improving standards for study design and reporting are presented.
Collapse
Affiliation(s)
- Jan Gaertner
- Department of Palliative Care, University Medical Center Freiburg, Freiburg, Germany
- Palliative Care Center of Excellence for Baden-Württemberg, Baden-Württemberg, Germany
| | - Vera Weingärtner
- Department of Palliative Medicine, University Hospital of Cologne, Cologne, Germany
| | - Stefan Lange
- Institute for Quality and Efficiency in Health Care (IQWiG), Cologne, Germany
| | - Elke Hausner
- Institute for Quality and Efficiency in Health Care (IQWiG), Cologne, Germany
| | - Ansgar Gerhardus
- Institute for Public Health and Nursing Research (IPP), University of Bremen, Bremen, Germany
- Health Sciences Bremen, University of Bremen, Bremen, Germany
| | - Steffen T. Simon
- Department of Palliative Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, Cologne/Bonn, Germany
- Clinical Trials Unit (BMBF 01KN1106), University Hospital of Cologne, Cologne, Germany
| | - Raymond Voltz
- Department of Palliative Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, Cologne/Bonn, Germany
- Clinical Trials Unit (BMBF 01KN1106), University Hospital of Cologne, Cologne, Germany
| | - Gerhild Becker
- Department of Palliative Care, University Medical Center Freiburg, Freiburg, Germany
- Palliative Care Center of Excellence for Baden-Württemberg, Baden-Württemberg, Germany
| | - Norbert Schmacke
- Institute for Public Health and Nursing Research (IPP), University of Bremen, Bremen, Germany
- Health Sciences Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
44
|
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12:223-37. [PMID: 26487967 PMCID: PMC4607828 DOI: 10.7497/j.issn.2095-3941.2015.0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward "targeted therapy", with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
45
|
Lau D, Magill ST, Aghi MK. Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 2015; 37:E15. [PMID: 25434384 DOI: 10.3171/2014.9.focus14519] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is expected and is extremely difficult to treat. Over the past decade, the accumulation of knowledge regarding the molecular and genetic profile of glioblastoma has led to numerous molecularly targeted therapies. This article aims to review the literature and highlight the mechanisms and efficacies of molecularly targeted therapies for recurrent glioblastoma. METHODS A systematic search was performed with the phrase "(name of particular agent) and glioblastoma" as a search term in PubMed to identify all articles published up until 2014 that included this phrase in the title and/or abstract. The references of systematic reviews were also reviewed for additional sources. The review included clinical studies that comprised at least 20 patients and reported results for the treatment of recurrent glioblastoma with molecular targeted therapies. RESULTS A total of 42 articles were included in this review. In the treatment of recurrent glioblastoma, various targeted therapies have been tested over the past 10-15 years. The targets of interest include epidermal growth factor receptor, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, Ras pathway, protein kinase C, mammalian target of rapamycin, histone acetylation, and integrins. Unfortunately, the clinical responses to most available targeted therapies are modest at best. Radiographic responses generally range in the realm of 5%-20%. Progression-free survival at 6 months and overall survival were also modest with the majority of studies reporting a 10%-20% 6-month progression-free survival and 5- to 8-month overall survival. There have been several clinical trials evaluating the use of combination therapy for molecularly targeted treatments. In general, the outcomes for combination therapy tend to be superior to single-agent therapy, regardless of the specific agent studied. CONCLUSIONS Recurrent glioblastoma remains very difficult to treat, even with molecular targeted therapies and anticancer agents. The currently available targeted therapy regimens have poor to modest activity against recurrent glioblastoma. As newer agents are actively being developed, combination regimens have provided the most promising results for improving outcomes. Targeted therapies matched to molecular profiles of individual tumors are predicted to be a critical component necessary for improving efficacy in future trials.
Collapse
Affiliation(s)
- Darryl Lau
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | |
Collapse
|
46
|
Gilbert MR, Armstrong TS, Pope WB, van den Bent MJ, Wen PY. Facing the future of brain tumor clinical research. Clin Cancer Res 2015; 20:5591-600. [PMID: 25398842 DOI: 10.1158/1078-0432.ccr-14-0835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This edition of CCR Focus provides critical reviews of several important areas in the field, including the application of findings from genomic investigations of brain tumors to improve diagnosis, clinical trial design, and ultimately optimizing individual patient treatment. Another article is a critical review provided by experts in the field that discusses the recent clinical trials using angiogenesis inhibitors, possible explanations for the results, and how to move forward. There is a concise discussion of the application of immunotherapy to brain tumors by key investigators in this field, reflecting the potential opportunities as well as the disease-specific challenges. Finally, leading pediatric brain tumor investigators provide an overview of the field and insights about the recent seminal discoveries in two pediatric brain tumors, supporting the paradigm that laboratory investigations lead to more precise diagnosis, prognosis, and ultimately better treatment. Herein, an overview of the recent advances and challenges in the area of clinical and translational brain tumor research is provided to set the stage for the contributions that follow.
Collapse
Affiliation(s)
- Mark R Gilbert
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Terri S Armstrong
- University of Texas Health Science Center School of Nursing and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney B Pope
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | |
Collapse
|
47
|
Abstract
Glioblastomas are the most common form of brain tumor with a very dismal prognosis. While a standard treatment regimen of surgery followed by chemo/radiotherapy is currently used, this has only marginally improved the survival time of patients with little benefit on tumor recurrence. Although many molecular targets have already been identified and tested in clinical trials, very few are approved for use in clinics. Efforts are ongoing to target newer molecules that could be used for drug development. This review provides up-to-date information on the drugs and their molecular targets, which are currently in different stages of clinical trials. Since multiple signaling pathways are deregulated, it appears that the use of combination drugs along with personalized targeting approach would provide better therapy in the future.
Collapse
Affiliation(s)
- Shivani Mittal
- South Campus, Delhi University, Department of Genetics, New Delhi, India
| | | | | |
Collapse
|
48
|
Gerstner ER, Ye X, Duda DG, Levine MA, Mikkelsen T, Kaley TJ, Olson JJ, Nabors BL, Ahluwalia MS, Wen PY, Jain RK, Batchelor TT, Grossman S. A phase I study of cediranib in combination with cilengitide in patients with recurrent glioblastoma. Neuro Oncol 2015; 17:1386-92. [PMID: 26008604 DOI: 10.1093/neuonc/nov085] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite being a highly vascularized tumor, glioblastoma response to anti-vascular endothelial growth factor (VEGF) therapy is transient, possibly because of tumor co-option of preexisting blood vessels and infiltration into surrounding brain. Integrins, which are upregulated after VEGF inhibition, may play a critical role in this resistance mechanism. We designed a study of cediranib, a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, combined with cilengitide, an integrin inhibitor. METHODS This phase I study was conducted through the Adult Brain Tumor Consortium in patients with recurrent glioblastoma. Once the maximum tolerated dose was determined, 40 patients enrolled in a dose expansion cohort with 20 being exposed to anti-VEGF therapy and 20 being naive. The primary endpoint was safety. Secondary endpoints included overall survival, proportion of participants alive and progression free at 6 months, radiographic response, and exploratory analyses of physiological imaging and blood biomarkers. RESULTS Forty-five patients enrolled, and no dose toxicities were observed at a dose of cediranib 30 mg daily and cilengitide 2000 mg twice weekly. Complete response was seen in 2 participants, partial response in 2, stable disease in 13, and progression in 21; 7 participants were not evaluable. Median overall survival was 6.5 months, median progression-free survival was 1.9 months, and progression-free survival at 6 months was 4.4%. Plasma-soluble VEGFR2 decreased with treatment and placental growth factor, carbonic anhydrase IX, and SDF1α, and cerebral blood flow increased. CONCLUSIONS The combination of cediranib with cilengitide was well tolerated and associated with changes in pharmacodynamic blood and imaging biomarkers. However, the survival and response rates do not warrant further development of this combination.
Collapse
Affiliation(s)
- Elizabeth R Gerstner
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Xiaobu Ye
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Dan G Duda
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Michael A Levine
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Tom Mikkelsen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Thomas J Kaley
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Jeffrey J Olson
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Burt L Nabors
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Manmeet S Ahluwalia
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Patrick Y Wen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Rakesh K Jain
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Tracy T Batchelor
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| | - Stuart Grossman
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts (E.R.G., D.G.D., R.K.J., T.T.B.); Johns Hopkins Medical Center, Baltimore, Maryland (X.Y., S.G.); Martinos Center for Biomedical Imaging, Charlestown, Massachusetts (E.R.G., M.A.L.); Henry Ford Hospital, Detroit, Michigan (T.M.); Memorial Sloan Kettering Cancer Center, New York, New York (T.J.K.); Emory University, Atlanta, Georgia (J.J.O.); University of Alabama, Birmingham, Alabama (B.L.N.); Case Comprehensive Cancer Center, Cleveland, Ohio (M.S.A.); Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.)
| |
Collapse
|
49
|
Iagaru A, Mosci C, Mittra E, Zaharchuk G, Fischbein N, Harsh G, Li G, Nagpal S, Recht L, Gambhir SS. Glioblastoma Multiforme Recurrence: An Exploratory Study of (18)F FPPRGD2 PET/CT. Radiology 2015; 277:497-506. [PMID: 25965900 DOI: 10.1148/radiol.2015141550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To prospectively evaluate fluorine 18 ((18)F) 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) (FPPRGD2) positron emission tomography (PET) in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. (18)F FPPRGD2 uptake was measured semiquantitatively in the form of maximum standardized uptake values (SUV(max)) and uptake volumes before and after treatment with bevacizumab. Vital signs and laboratory results were collected before, during, and after the examinations. A nonparametric version of multivariate analysis of variance was used to assess safety outcome measures simultaneously across time points. A paired two-sample t test was performed to compare SUV(max). RESULTS A total of 17 participants (eight men, nine women; age range, 25-65 years) were enrolled prospectively. (18)F FPPRGD2 PET/computed tomography (CT), (18)F fluorodeoxyglucose (FDG) PET/CT, and brain magnetic resonance (MR) imaging were performed within 3 weeks, prior to the start of bevacizumab therapy. In eight of the 17 patients (47%), (18)F FPPRGD2 PET/CT was repeated 1 week after the start of bevacizumab therapy; six patients (35%) underwent (18)F FPPRGD2 PET/CT a third time 6 weeks after starting bevacizumab therapy. There were no changes in vital signs, electrocardiographic findings, or laboratory values that qualified as adverse events. One patient (6%) had recurrent GBM identified only on (18)F FPPRGD2 PET images, and subsequent MR images enabled confirmation of recurrence. Of the 17 patients, 14 (82%) had recurrent GBM identified on (18)F FPPRGD2 PET and brain MR images, while (18)F FDG PET enabled identification of recurrence in 13 (76%) patients. Two patients (12%) had no recurrent GBM. CONCLUSION (18)F FPPRGD2 is a safe PET radiopharmaceutical that has increased uptake in GBM lesions. Larger cohorts are required to confirm these preliminary findings.
Collapse
Affiliation(s)
- Andrei Iagaru
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Camila Mosci
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Erik Mittra
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Greg Zaharchuk
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Nancy Fischbein
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Griffith Harsh
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Gordon Li
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Seema Nagpal
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Lawrence Recht
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Sanjiv Sam Gambhir
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| |
Collapse
|
50
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|