1
|
Georgopoulos AP, James LM. Association between brain cancer immunogenetic profile and in silico immunogenicities of 11 viruses. Sci Rep 2023; 13:21528. [PMID: 38057480 PMCID: PMC10700375 DOI: 10.1038/s41598-023-48843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Several viruses including human herpes viruses (HHVs), human polyomavirus JCV, and human papilloma virus (HPV) have been implicated in brain cancer, albeit inconsistently. Since human leukocyte antigen (HLA) is centrally involved in the human immune response to viruses and has been implicated in brain cancer, we evaluated in silico the immunogenicity between 69 Class I HLA alleles with epitopes of proteins of 9 HHVs, JCV, and HPV with respect to a population-based HLA-brain cancer profile. We found that immunogenicity varied widely across HLA alleles with HLA-C alleles exhibiting the highest immunogenicity, and that immunogenicity scores were negatively associated with the population-based HLA-brain cancer profile, particularly for JCV, HHV6A, HHV5, HHV3, HHV8, and HHV7. Consistent with the role of HLA in foreign antigen elimination, the findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to cause brain cancer; conversely, the absence of highly immunogenic HLA may allow the viral antigens to persist, contributing to cancer.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
James LM, Georgopoulos AP. Positive Association Between the Immunogenetic Human Leukocyte Antigen (HLA) Profiles of Multiple Sclerosis and Brain Cancer. Neurosci Insights 2023; 18:26331055231214543. [PMID: 38046672 PMCID: PMC10693228 DOI: 10.1177/26331055231214543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Previous research has documented elevated risk of brain cancer in patients with multiple sclerosis (MS). Separately, human leukocyte antigen (HLA) has been implicated in protection or susceptibility for both conditions. The aim of the current study was to assess a possible role of shared immunogenetic influence on risk of MS and brain cancer. We first identified an immunogenetic profile for each condition based on the covariance between the population frequency of 127 high-resolution HLA alleles and the population prevalence of each condition in 14 Continental Western European countries and then evaluated the correspondence between MS and brain cancer immunogenetic profiles. Also, since each individual carries 12 HLA alleles (2 × 6 genes), we estimated HLA protection and susceptibility for MS and brain cancer at the individual level. We found that the immunogenetic profiles of MS and brain cancer were highly correlated overall (P < .001) and across all 6 HLA genes with the strongest association observed for DRB1, followed by DQB1 and HLA-A. These findings of immunogenetic overlap between MS and brain cancer are discussed in light of the role of HLA in the immune system response to viruses and other foreign antigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Sun Y, Li R, Chen Y, Yang B, Li X, Li Z, He J, Zhou Z, Li J, Guo X, Wang X, Wu Y, Zhang W, Guo G. The value of basement membrane-associated genes in the prognosis and immune regulation of glioma. Medicine (Baltimore) 2023; 102:e33935. [PMID: 37335645 DOI: 10.1097/md.0000000000033935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Gliomas have a high incidence rate in central nervous tumors. Although many breakthroughs have been made in the pathogenesis and treatment of glioma, the recurrence and metastasis rates of patients have not been improved based on the uniqueness of glioma. Glioma destroys the surrounding basement membrane (BM), leading to local infiltration, resulting in the corresponding clinical and neurological symptoms. Therefore, exploring the biological roles played by BM associated genes in glioma is particularly necessary for a comprehensive understanding of the biological processes of glioma and its treatment. Differential expression and univariate COX regression analyses were used to identify the basement membrane genes (BMGs) to be included in the model. LASSO regression was used to construct the BMG model. The Kaplan-Meier (KM) survival analysis model was used to assess the prognosis discrimination between training sets, validation sets, and clinical subgroups. Receiver-operating characteristic (ROC) analysis was used to test the prognostic efficacy of the model. Use calibration curves to verify the accuracy of nomograms. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA) were used to analyze the function and pathway enrichment among the model groups. ESTIMATE and other 7 algorithms including CIBERSORT were used to evaluate the immune microenvironment. "pRRophetic" was used to evaluate drug sensitivity. This study demonstrated that high-risk genes (LAMB4, MMP1, MMP7) promote glioma progression and negatively correlate with patient prognosis. In the tumor microenvironment (TME), high-risk genes have increased scores of macrophages, neutrophils, immune checkpoints, chemokines, and chemokine receptors. This study suggests that BMGs, especially high-risk-related genes, are potential sites for glioma therapy, a new prospect for comprehensively understanding the molecular mechanism of glioma.
Collapse
Affiliation(s)
- Yanqi Sun
- Department of Emergency, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ren Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Emergency, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Guerra G, Kachuri L, Wendt G, Hansen HM, Mack SJ, Molinaro AM, Rice T, Bracci P, Wiencke JK, Kasahara N, Eckel-Passow JE, Jenkins RB, Wrensch M, Francis SS. The immunogenetics of viral antigen response is associated with subtype-specific glioma risk and survival. Am J Hum Genet 2022; 109:1105-1116. [PMID: 35550063 PMCID: PMC9247888 DOI: 10.1016/j.ajhg.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Glioma is a highly fatal cancer with prognostically significant molecular subtypes and few known risk factors. Multiple studies have implicated infections in glioma susceptibility, but evidence remains inconsistent. Genetic variants in the human leukocyte antigen (HLA) region modulate host response to infection and have been linked to glioma risk. In this study, we leveraged genetic predictors of antibody response to 12 viral antigens to investigate the relationship with glioma risk and survival. Genetic reactivity scores (GRSs) for each antigen were derived from genome-wide-significant (p < 5 × 10-8) variants associated with immunoglobulin G antibody response in the UK Biobank cohort. We conducted parallel analyses of glioma risk and survival for each GRS and HLA alleles imputed at two-field resolution by using data from 3,418 glioma-affected individuals subtyped by somatic mutations and 8,156 controls. Genetic reactivity scores to Epstein-Barr virus (EBV) ZEBRA and EBNA antigens and Merkel cell polyomavirus (MCV) VP1 antigen were associated with glioma risk and survival (Bonferroni-corrected p < 0.01). GRSZEBRA and GRSMCV were associated in opposite directions with risk of IDH wild-type gliomas (ORZEBRA = 0.91, p = 0.0099/ORMCV = 1.11, p = 0.0054). GRSEBNA was associated with both increased risk for IDH mutated gliomas (OR = 1.09, p = 0.040) and improved survival (HR = 0.86, p = 0.010). HLA-DQA1∗03:01 was significantly associated with decreased risk of glioma overall (OR = 0.85, p = 3.96 × 10-4) after multiple testing adjustment. This systematic investigation of the role of genetic determinants of viral antigen reactivity in glioma risk and survival provides insight into complex immunogenomic mechanisms of glioma pathogenesis. These results may inform applications of antiviral-based therapies in glioma treatment.
Collapse
Affiliation(s)
- Geno Guerra
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - George Wendt
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Nori Kasahara
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| | | | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
5
|
Charney E. The "Golden Age" of Behavior Genetics? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1188-1210. [PMID: 35180032 DOI: 10.1177/17456916211041602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The search for genetic risk factors underlying the presumed heritability of all human behavior has unfolded in two phases. The first phase, characterized by candidate-gene-association (CGA) studies, has fallen out of favor in the behavior-genetics community, so much so that it has been referred to as a "cautionary tale." The second and current iteration is characterized by genome-wide association studies (GWASs), single-nucleotide polymorphism (SNP) heritability estimates, and polygenic risk scores. This research is guided by the resurrection of, or reemphasis on, Fisher's "infinite infinitesimal allele" model of the heritability of complex phenotypes, first proposed over 100 years ago. Despite seemingly significant differences between the two iterations, they are united in viewing the discovery of risk alleles underlying heritability as a matter of finding differences in allele frequencies. Many of the infirmities that beset CGA studies persist in the era of GWASs, accompanied by a host of new difficulties due to the human genome's underlying complexities and the limitations of Fisher's model in the postgenomics era.
Collapse
Affiliation(s)
- Evan Charney
- The Samuel DuBois Cook Center on Social Equity, Duke University
| |
Collapse
|
6
|
Choi SS, Choi H, Baek IC, Park SA, Park JS, Kim TG, Jeun SS, Ahn S. HLA polymorphisms and risk of glioblastoma in Koreans. PLoS One 2021; 16:e0260618. [PMID: 34882724 PMCID: PMC8659341 DOI: 10.1371/journal.pone.0260618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Immune responses for cancer cells can be altered according to genetic variation of human leukocyte antigen (HLA). Association of HLA polymorphism with risk of various cancer types is well known. However, the association between HLA and glioblastoma (GBM) remains uncertain. We sought to evaluate the association of HLA polymorphism with risk of GBM development in Koreans. Materials and methods A case-control study was performed to identify the odds ratios (OR) of HLA class I and II genes for GBM. The control group consisted of 142 healthy Korean volunteers, and the GBM group was 80 patients with newly diagnosed GBM at our institution. HLA class I (-A, -B, and–C) and class II (-DR, -DQ, and–DP) genotyping was performed by high-resolution polymerase chain reaction (PCR)-sequence-based typing (PCR-SBT) methods. Results There were significantly decreased frequencies of HLA-A*26:02 (OR 0.22 CI 0.05–0.98), HLA-C*08:01 (OR 0.29 CI 0.10–0.87), and HLA-DRB1*08:03 (OR 0.32 CI 0.11–0.98), while there was significantly increased frequency of HLA-C*04:01 (OR 2.29 CI 1.05–4.97). In analysis of haplotypes, the frequency of DRB1*14:05-DQB1*05:03 was significantly decreased (OR 0.22 CI 0.05–0.98). Conclusion This study suggests that genetic variations of HLA may affect GBM development in Koreans. Further investigations with larger sample sizes are needed to delineate any potential role of the HLA polymorphisms in the pathogenesis of GBM development.
Collapse
Affiliation(s)
- Sang-Soo Choi
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon A. Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- * E-mail:
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Brain and other central nervous system (CNS) tumors, while rare, cause significant morbidity and mortality across all ages. This article summarizes the current state of the knowledge on the epidemiology of brain and other CNS tumors. RECENT FINDINGS For childhood and adolescent brain and other CNS tumors, high birth weight, non-chromosomal structural birth defects and higher socioeconomic position were shown to be risk factors. For adults, increased leukocyte telomere length, proportion of European ancestry, higher socioeconomic position, and HLA haplotypes increase risk of malignant brain tumors, while immune factors decrease risk. Although no risk factor accounting for a large proportion of brain and other CNS tumors has been discovered, the use of high throughput "omics" approaches and improved detection/measurement of environmental exposures will help us refine our current understanding of these factors and discover novel risk factors for this disease.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephen S Francis
- Department of Neurological Surgery, Division of Neuro and Molecular Epidemiology, University of California, San Francisco, CA, USA
| | - Jill S Barnholtz-Sloan
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, and Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Ostrom QT, Edelson J, Byun J, Han Y, Kinnersley B, Melin B, Houlston RS, Monje M, Walsh KM, Amos CI, Bondy ML. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro Oncol 2021; 23:1304-1314. [PMID: 33743008 PMCID: PMC8328033 DOI: 10.1093/neuonc/noab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological studies of adult glioma have identified genetic syndromes and 25 heritable risk loci that modify individual risk for glioma, as well increased risk in association with exposure to ionizing radiation and decreased risk in association with allergies. In this analysis, we assess whether there is a shared genome-wide genetic architecture between glioma and atopic/autoimmune diseases. METHODS Using summary statistics from a glioma genome-wide association studies (GWAS) meta-analysis, we identified significant enrichment for risk variants associated with gene expression changes in immune cell populations. We also estimated genetic correlations between glioma and autoimmune, atopic, and hematologic traits using linkage disequilibrium score regression (LDSC), which leverages genome-wide single-nucleotide polymorphism (SNP) associations and patterns of linkage disequilibrium. RESULTS Nominally significant negative correlations were observed for glioblastoma (GB) and primary biliary cirrhosis (rg = -0.26, P = .0228), and for non-GB gliomas and celiac disease (rg = -0.32, P = .0109). Our analyses implicate dendritic cells (GB pHM = 0.0306 and non-GB pHM = 0.0186) in mediating both GB and non-GB genetic predisposition, with GB-specific associations identified in natural killer (NK) cells (pHM = 0.0201) and stem cells (pHM = 0.0265). CONCLUSIONS This analysis identifies putative new associations between glioma and autoimmune conditions with genomic architecture that is inversely correlated with that of glioma and that T cells, NK cells, and myeloid cells are involved in mediating glioma predisposition. This provides further evidence that increased activation of the acquired immune system may modify individual susceptibility to glioma.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob Edelson
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California, USA
| | - Jinyoung Byun
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Younghun Han
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Beatrice Melin
- Department of Radiation Sciences - Oncology, Umea University, Umea, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Michelle Monje
- Department of Neurology, Neurosurgery, Pediatrics and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
D'Antonio M, Reyna J, Jakubosky D, Donovan MKR, Bonder MJ, Matsui H, Stegle O, Nariai N, D'Antonio-Chronowska A, Frazer KA. Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease. eLife 2019; 8:e48476. [PMID: 31746734 PMCID: PMC6904215 DOI: 10.7554/elife.48476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Joaquin Reyna
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
| | - David Jakubosky
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
| | - Margaret KR Donovan
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
- Department of Biomedical InformaticsUniversity of California, San DiegoSan DiegoUnited States
| | - Marc-Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Hiroko Matsui
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Naoki Nariai
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Agnieszka D'Antonio-Chronowska
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Kelly A Frazer
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
10
|
Xu D, Xu H, Wang F, Wang G, Wei Q, Lei S, Gao Q, Zhang Q, Guo F. Multiple Distinctive Demyelinating Lesions Caused by Eosinophilic Granulomatosis With Polyangiitis: Case Report and Literature Review. Front Neurol 2019; 10:213. [PMID: 30930835 PMCID: PMC6423896 DOI: 10.3389/fneur.2019.00213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is an extremely rare rheumatic immune disease characterized by vasculitis of small- and medium-sized blood vessels. Central nervous system (CNS) involvement frequently consists of cerebrovascular disease; a manifestation with multiple demyelinating lesions has never been reported in detail. This report describes a 38-year-old man, who presented with progressive memory deterioration and underwent microsurgery; EGPA was subsequently confirmed. Unique clinical and radiological features as well as immunohistological outcomes and DNA sequencing revealed a potential disease-associated human leukocyte antigen (HLA) type, and single-nucleotide polymorphisms (SNPs) are described for this uncommon case. Although EGPA rarely involves the CNS, this differential diagnosis should be considered when patients present with a history of nasosinusitis, elevated eosinophil percentage, clinical pulmonitis, and neurological manifestations. Microsurgery is necessary for precise diagnosis and effective treatment.
Collapse
Affiliation(s)
- Dingkang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Center for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoqing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjie Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiong Lei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Zhang
- Center for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Neurosurgical Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zhang C, Wiemels JL, Hansen HM, Gonzalez-Maya J, Endicott AA, de Smith AJ, Smirnov IV, Witte JS, Morimoto LM, Metayer C, Walsh KM. Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiol Biomarkers Prev 2018; 27:1151-1158. [PMID: 30038050 DOI: 10.1158/1055-9965.epi-18-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The genetic etiology of osteosarcoma remains poorly understood despite the publication of a genome-wide association study. Association between HLA genetic variants and risk of several cancers has been observed, but HLA variation is not well captured by standard SNP arrays.Methods: We genotyped 207 Californian pediatric osteosarcoma cases and 696 controls of European ancestry using a custom genome-wide array supplemented with approximately 6,000 additional probes across the MHC region. We subsequently imputed 4-digit classical HLA alleles using a reference panel of 5,225 individuals who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for ancestry-informative principal components, and top associations from the discovery analysis underwent replication in an independent dataset of 657 cases and 1,183 controls.Results: Three highly correlated HLA class II variants (r 2 = 0.33-0.98) were associated with osteosarcoma risk in discovery analyses, including HLA-DRB1*0301 (OR = 0.52; P = 3.2 × 10-3), HLA-DQA1*0501 (OR = 0.74; P = 0.031), and HLA-DQB1*0201 (OR = 0.51; P = 2.7 × 10-3). Similar associations were observed in the replication data (P range = 0.011-0.037). Meta-analysis of the two datasets identified HLA-DRB1*0301 as the most significantly associated variant (ORmeta = 0.62; P meta = 1.5 × 10-4), reaching Bonferroni-corrected statistical significance. The meta-analysis also revealed a second significant independent signal at HLA-DQA1*01:01 (ORmeta = 1.33, P meta = 1.2 × 10-3), and a third suggestive association at HLA-DQB1*0302 (ORmeta = 0.73, P meta = 6.4 × 10-3).Conclusions: Multiple independent HLA class II alleles may influence osteosarcoma risk.Impact: Additional work is needed to extend our observations to other patient populations and to clarify the potential causal mechanisms underlying these associations. Understanding immunologic contributions to the etiology of osteosarcoma may inform rational therapeutic targets. Cancer Epidemiol Biomarkers Prev; 27(10); 1151-8. ©2018 AACR.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Julio Gonzalez-Maya
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Alyson A Endicott
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Ivan V Smirnov
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Libby M Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. .,Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina.,Children's Health and Discovery Institute, Duke University, Durham, North Carolina
| |
Collapse
|