1
|
Marshall KL, Velayutham M, Khramtsov VV, Mizener A, Cifarelli CP. Enhancing radiation-induced reactive oxygen species generation through mitochondrial transplantation in human glioblastoma. Sci Rep 2025; 15:7618. [PMID: 40038364 PMCID: PMC11880374 DOI: 10.1038/s41598-025-91331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain malignancy in adults, with high recurrence rates and resistance to standard therapies. This study explores mitochondrial transplantation as a novel method to enhance the radiobiological effect (RBE) of ionizing radiation (IR) by increasing mitochondrial density in GBM cells, potentially boosting reactive oxygen species (ROS) production and promoting radiation-induced cell death. Using cell-penetrating peptides (CPPs), mitochondria were transplanted into GBM cell lines U3035 and U3046. Transplanted mitochondria were successfully incorporated into recipient cells, increasing mitochondrial density significantly. Mitochondrial chimeric cells demonstrated enhanced ROS generation post-irradiation, as evidenced by increased electron paramagnetic resonance (EPR) signal intensity and fluorescent ROS assays. The transplanted mitochondria retained functionality and viability for up to 14 days, with mitochondrial DNA (mtDNA) sequencing confirming high transfection and retention rates. Notably, mitochondrial transplantation was feasible in radiation-resistant GBM cells, suggesting potential clinical applicability. These findings support mitochondrial transplantation as a promising strategy to overcome therapeutic resistance in GBM by amplifying ROS-mediated cytotoxicity, warranting further investigation into its efficacy and mechanisms in vivo.
Collapse
Affiliation(s)
- Kent L Marshall
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Drive, Morgantown, WV, 26506-9183, USA
| | - Murugesan Velayutham
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Valery V Khramtsov
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Alan Mizener
- West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Christopher P Cifarelli
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Drive, Morgantown, WV, 26506-9183, USA.
- West Virginia University Cancer Institute, Morgantown, WV, USA.
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Mrvoljak M, Mishra S, Chen L, Neil E, Ehler E, Terezakis S, Sloan L. Case report: A rare case of a long-term survivor of glioblastoma who underwent two courses of hypofractionated radiotherapy as part of her care. Front Oncol 2025; 15:1501466. [PMID: 39968069 PMCID: PMC11832352 DOI: 10.3389/fonc.2025.1501466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GB) is a primary brain tumor that is lethal and challenging to treat. The 3-year overall survival (OS) of patients with this diagnosis has stayed the same since 2005. The patient is a 75-year-old woman who presented with progressive aphasia and was diagnosed with GB (WHO grade 4, IDH1/IDH2 wild type, ATRX intact, p53 and PTEN mutant, BRAF non-mutated, O6-methylguanine-DNA methyltransferase promoter methylated) and who underwent surgical resection, hypofractionated radiotherapy (HFRT) using intensity-modulated radiotherapy (IMRT) (4,005 cGy in 15 fractions) alone, and adjuvant temozolomide (TMZ). She was progression-free for approximately 20 months. Although planned, concurrent TMZ was not used during the complete first course of HFRT due to the patient's performance status. After recurrence, another HFRT (35 Gy in 10 fractions) was employed. She was progression-free on imaging for 8 months until a recent follow-up scan showed potential progression versus radiation-related change. At the time of this case report, her care is still ongoing. This represents a rare case of a long-term survivor of GB who has received two courses of HFRT, a treatment option that is usually used in those with predicted shorter survival times.
Collapse
Affiliation(s)
- Midhad Mrvoljak
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, United States
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shubhendu Mishra
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Liam Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Elizabeth Neil
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Eric Ehler
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Ma Z, Huang D, Ru L, Chen M. Procollagen C-protease enhancer protein promotes glioma growth by activating ERK signaling. Asia Pac J Clin Oncol 2025; 21:48-57. [PMID: 39403870 PMCID: PMC11733849 DOI: 10.1111/ajco.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/19/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Procollagen C-proteinase enhancer (PCOLCE) promotes tumor progression in multiple cancers. However, the specific role of PCOLCE in gliomas remains enigmatic. In this study, we focused on analyzing PCOLCE expression and its correlation with clinicopathological parameters in glioma specimens; moreover, we explored the effects of PCOLCE in glioma proliferation in vitro and in vivo. METHODS A tissue microarray containing 159 human glioma specimens was pressed to explore the correlation between PCOLCE expression and the survival of glioma patients. Cell Counting Kit-8 (CCK8), colony formation, and immunoblot assays were used to detect the role of PCOLCE on cell proliferation in glioma. Furthermore, the in vivo role of PCOLCE was investigated using a subcutaneous glioma xenograft model. RESULTS The expression of PCOLCE was higher in grade III and IV gliomas than in grade I and II gliomas. High PCOLCE expression was related to a remarkably worse prognosis in glioma patients. Additionally, PCOLCE downregulation impeded glioma cell proliferation. Furthermore, PCOLCE knockdown markedly abrogated p-ERK expression in glioma cells, whereas, it negligibly influenced p38 and JNK signaling. CONCLUSIONS These results indicate that PCOLCE is a feasible prognostic biomarker for glioma, and PCOLCE-induced activation of ERK signaling may be a pro-growth mechanism in glioma cells.
Collapse
Affiliation(s)
- Zhenchao Ma
- Department of Radiation OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Radiation OncologyHuzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
| | - Daxing Huang
- Department of Radiation OncologyHuzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
| | - Lixin Ru
- Department of Radiation OncologyHuzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
| | - Ming Chen
- Department of Radiation OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Radiation OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
LeCompte MC, Vuppala N, Reyes JM, Page B, Croog V, Huang E, Redmond KJ, Kleinberg LR. Fractionated reirradiation of recurrent high-grade gliomas: Safety with higher reirradiation dose and larger targets. Neurooncol Adv 2025; 7:vdaf004. [PMID: 39991181 PMCID: PMC11842973 DOI: 10.1093/noajnl/vdaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Background The optimal regimen, normal tissue tolerances, and appropriate indications for reirradiation for recurrent high-grade glioma (HGG) are uncertain. The aim of this study was to determine whether higher reirradiation dose was associated with toxicity or survival. Methods Patients with HGG treated with fractionated reirradiation at a single institution from 2007 to 2022 were retrospectively reviewed. Metrics evaluated included overall survival (OS), prognostic factors for survival, and treatment-related toxicity. Results Two hundred and thirty patients with recurrent HGG were reviewed. Median follow-up was 8.8 months. Median reirradiation dose was 41.4 Gy with 80.4% receiving concurrent systemic therapy. Median cumulative maximum doses to brainstem and optic structures were 77.9 Gy (range: 4.6-146.0 Gy) and 55.1 Gy (3.3-106.3 Gy), respectively. No injuries to these structures were identified. Radiation necrosis (RN) was identified in 9.4%. There were no significant associations between RN and target size, systemic therapy use, or reirradiation dose. Median OS was 10.2 months from reirradiation start. On multivariate analysis, improved OS was associated with better KPS, longer interval between radiotherapy sessions, reirradiation at first recurrence, and reirradiation dose ≥ 41.4 Gy. Median OS for those with IDH wildtype glioblastoma was 8.7 months. On multivariate analysis of an IDH wildtype disease subanalysis, improved OS was associated with longer interval between radiotherapy sessions and higher reirradiation dose. Conclusions These data support the safety and efficacy of fractionated reirradiation for recurrent HGG. They suggest higher reirradiation dose may be feasible, including for large treatment volumes and for tumors near the brainstem or optic structures.
Collapse
Affiliation(s)
- Michael C LeCompte
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Neil Vuppala
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Juan M Reyes
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandi Page
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Croog
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ellen Huang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Willmann J, Andratschke N, Klußmann JP, Gschwend JE, Tabatabai G, Niyazi M. Criteria for Re-Irradiation. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:725-732. [PMID: 39194170 DOI: 10.3238/arztebl.m2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The treatment options for patients with progressive malignant tumors despite primary radiotherapy are often limited. In selected cases, re-irradiation can be offered. This article concerns the selection criteria and results of re-irradiation for certain types of cancer. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed, with particular attention to glio - blastoma, head and neck tumors, and prostatic carcinoma. RESULTS The published studies of re-irradiation are few in number and often of limited methodological quality. For glioblastoma, a randomized controlled trial (RCT) found that adding re-irradiation to treatment with bevacizumab yielded no significant improvement in either median progression-free survival or median overall survival (hazard ratio [HR] 0.73; p = 0.05 and HR 0.98; p = 0.46, respec - tively). Re-irradiation is a treatment option for locoregional recurrences of head and neck tumors after primary radiotherapy, but it carries a risk of serious side effects. For unresectable recurrences of nasopharyngeal carcinoma, an RCT has shown that hyperfractionated re-irradiation is more effective than normofractionated re-irradiation (overall survival: HR 0.54, p = 0.014). For locally recurrent prostatic carcinoma after radiotherapy, re-irradiation can yield good oncologic outcomes with an acceptable level of urogenital and gastrointestinal side effects (5-year recurrence-free survival: stereotactic body radiation therapy (SBRT), 58%; high dose rate (HDR) brachytherapy, 77%; versus salvage prostatectomy, 72%). RCTs on this topic are lacking. CONCLUSION Re-irradiation is a treatment option for selected cancer patients. As the available scientific evidence is limited, multidisciplinary collaboration and participatory decision-making are particularly important.
Collapse
Affiliation(s)
- Jonas Willmann
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Rechts der Isar Medical Center, Department of Urology, Technical University Munich, Munich, Germany; Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Tubingen, Germany; Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Germany; Center for Neurooncology, Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Marshall KL, Velayutham M, Khramtsov VV, Mizener A, Cifarelli CP. Enhancing Radiation-induced Reactive Oxygen Species Generation Through Mitochondrial Transplantation in Human Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619301. [PMID: 39484465 PMCID: PMC11526886 DOI: 10.1101/2024.10.20.619301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain malignancy in adults, with high recurrence rates and resistance to standard therapies. This study explores mitochondrial transplantation as a novel method to enhance the radiobiological effect (RBE) of ionizing radiation (IR) by increasing mitochondrial density in GBM cells, potentially boosting reactive oxygen species (ROS) production and promoting radiation-induced cell death. Using cell-penetrating peptides (CPPs), mitochondria were transplanted into GBM cell lines U3020 and U3035. Transplanted mitochondria were successfully incorporated into recipient cells, increasing mitochondrial density significantly. Mitochondrial chimeric cells demonstrated enhanced ROS generation post-irradiation, as evidenced by increased electron paramagnetic resonance (EPR) signal intensity and fluorescent ROS assays. The transplanted mitochondria retained functionality and viability for up to 14 days, with mitochondrial DNA (mtDNA) sequencing confirming high transfection and retention rates. Notably, mitochondrial transplantation was feasible in radiation-resistant GBM cells, suggesting potential clinical applicability. These findings support mitochondrial transplantation as a promising strategy to overcome therapeutic resistance in GBM by amplifying ROS-mediated cytotoxicity, warranting further investigation into its efficacy and mechanisms in vivo .
Collapse
|
7
|
Lucas Calduch A, Macià Garau M, Villà Freixa S, García Expósito N, Modolell Farré I, Majós Torró C, Pons Escoda A, Mesía Barroso C, Vilariño Quintela N, Rosselló Gómez A, Plans Ahicart G, Martínez García M, Esteve Gómez A, Bruna Escuer J. Salvage reirradiation for recurrent glioblastoma: a retrospective case series analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03750-8. [PMID: 39388047 DOI: 10.1007/s12094-024-03750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE To assess the clinical outcome of patients with recurrent glioblastoma treated with salvage reirradiation. METHODS Between 2005 and 2022, data from adult patients with glioblastoma treated with surgery and radio-chemotherapy Stupp regimen who developed a local in-field relapse and received stereotactic radiotherapy (SRT) were retrospectively reviewed. RESULTS The study population included 44 patients with recurrent glioblastoma (median of 9.5 months after the first radiotherapy). Reirradiation alone was given to 47.7% of patients. The median maximum diameter of the recurrence was 13.5 mm. The most common SRT regimen (52.3%) was 35 Gy in 10 fractions. Acute toxicity was mild, with transient worsening of previous neurological symptoms in only 15% of patients. After a median follow-up of 15 months, 40% presented radiological response, but a remarkable number of early distant progressions were recorded (32.5%). The median time to progression was 4.8 months, being the dose, the scheme, the size of the recurrence or the strategy (exclusive RT vs. combined) unrelated factors. The median overall survival (OS) was 14.9 months. Karnofsky index < 70 and the size of the recurrence (maximum diameter < 25 mm) were significant factors associated with OS. Radiological changes after reirradiation were commonly seen (> 50% of patients) hindering the response assessment. CONCLUSIONS Reirradiation is a feasible and safe therapeutic option to treat localized glioblastoma recurrences, able to control the disease for a few months in selected patients, especially those with good functional status and small lesions. Hypofractionated schemes provided a suitable toxicity profile. Radiological changes were common.
Collapse
Affiliation(s)
- Anna Lucas Calduch
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain.
| | - Miquel Macià Garau
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | | | - Nagore García Expósito
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | - Ignasi Modolell Farré
- Medical Physics, Institut Català de'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carles Majós Torró
- Institut de Diagnòstic per la Imatge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Pons Escoda
- Institut de Diagnòstic per la Imatge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Mesía Barroso
- Medical Oncology, Institut Català de'Oncologia (ICO)- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Noelia Vilariño Quintela
- Medical Oncology, Institut Català de'Oncologia (ICO)- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aleix Rosselló Gómez
- Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Plans Ahicart
- Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Anna Esteve Gómez
- Badalona Applied Research Group in Oncology (B-ARGO), Badalona, Barcelona, Spain
| | - Jordi Bruna Escuer
- Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
8
|
Valerio JE, Wolf AL, Mantilla-Farfan P, Aguirre Vera GDJ, Fernández-Gómez MP, Alvarez-Pinzon AM. Efficacy and Cognitive Outcomes of Gamma Knife Radiosurgery in Glioblastoma Management for Elderly Patients. J Pers Med 2024; 14:1049. [PMID: 39452556 PMCID: PMC11508357 DOI: 10.3390/jpm14101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Gamma Knife Radiosurgery (GKRS), a specific type of Stereotactic Radiosurgery (SRS), has developed as a significant modality in the treatment of glioblastoma, particularly in conjunction with standard chemotherapy. The goal of this study is to evaluate the efficacy of combining GKRS with surgical resection and chemotherapy in enhancing therapeutic effects for glioblastoma patients aged 55 years and older. METHODS This prospective clinical study, conducted in accordance with the STROBE guidelines, involved 49 glioblastoma patients aged 55 years and older, treated between January 2013 and January 2023. Data were collected prospectively, and strict adherence to the STUPP protocol was maintained. Only patients who conformed to the STUPP protocol were included in the analysis. Due to concerns regarding the cognitive impairment associated with conventional radiotherapy, and at the patients' request, a radiosurgery plan was offered. Radiosurgery was administered for 4-8 weeks following surgical resection. Any patients who had not received previous radiotherapy received open surgical tumor removal, followed by GKRS along with adjuvant chemotherapy. RESULTS In this prospective clinical study of 49 glioblastoma patients aged 55 years and older, the average lifespan post-histopathological diagnosis was established at 22.3 months (95% CI: 12.0-28.0 months). The median time before disease progression was 14.3 months (95% CI: 13.0-29.7 months). The median duration until the first recurrence after treatment was 15.2 months, with documented cases varying between 4 and 33 months. The Gamma Knife Radiosurgery (GKRS) treatment involved a median marginal recommended dose of 12.5 Gy, targeting an average volume of 5.7 cm3 (range: 1.6-39 cm3). Local recurrence occurred in 21 patients, while distant recurrence was identified in 8 patients. Within the cohort, 34 patients were subjected to further therapeutic approaches, including reoperation, a second GKRS session, the administration of bevacizumab and irinotecan, and PCV chemotherapy. A cognitive function assessment revealed that the patients treated with GKRS experienced significantly less cognitive decline compared to the historical controls, who were treated with conventional radiotherapy. The median MMSE scores declined by 1.9 points over 12 months, and the median MoCA scores declined by 2.9 points. CONCLUSION This study demonstrates that Gamma Knife Radiosurgery (GKRS), when integrated with surgical resection and adjuvant chemotherapy, offers a substantial benefit for glioblastoma patients aged 55 years and older. The data reveal that GKRS not only prolongs overall survival and progression-free survival but also significantly reduces cognitive decline compared to conventional radiotherapy. These findings underscore the efficacy and safety of GKRS, advocating for its incorporation into standard treatment protocols for older glioblastoma patients. The potential of GKRS to improve patient outcomes while preserving cognitive function is compelling and warrants further research to optimize and confirm its role in glioblastoma management.
Collapse
Affiliation(s)
- José E. Valerio
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
- GW School of Business, The George Washington University, Washington, DC 20052, USA
| | - Aizik L. Wolf
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
| | - Penelope Mantilla-Farfan
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
| | - Guillermo de Jesús Aguirre Vera
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
- Tecnológico de Monterrey School of Medicine and Health Sciences Mexico City, Monterrey 64710, Mexico
| | - María P. Fernández-Gómez
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
| | - Andrés M. Alvarez-Pinzon
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
- Cancer Neuroscience, The Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca (USAL), 37008 Salamanca, Spain
- Stanford LEAD Program, Graduate School of Business, Stanford University, Palo Alto, CA 94305, USA
- Institute for Human Health and Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33431, USA
| |
Collapse
|
9
|
Fleischmann DF, Gajdi L, Corradini S, Schönecker S, Marschner S, Bodensohn R, Hofmaier J, Garny S, Forbrig R, Thon N, Belka C, Niyazi M. Re-irradiation treatment regimens for patients with recurrent glioma - Evaluation of the optimal dose and best concurrent therapy. Radiother Oncol 2024; 199:110437. [PMID: 39013502 DOI: 10.1016/j.radonc.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Laura Gajdi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
12
|
Kim D, Lee JH, Kim N, Lim DH, Song JH, Suh CO, Wee CW, Kim IA. Optimizing Recurrent Glioblastoma Salvage Treatment: A Multicenter Study Integrating Genetic Biomarkers From the Korean Radiation Oncology Group (21-02). Neurosurgery 2024; 95:584-595. [PMID: 38511935 DOI: 10.1227/neu.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Few studies have used real-world patient data to compare overall treatment patterns and survival outcomes for recurrent glioblastoma (rGBM). This study aimed to evaluate postprogression survival (PPS) according to the treatment strategy for rGBM by incorporating biomarker analysis. METHODS We assessed 468 adult patients with rGBM who underwent standard temozolomide-based chemoradiation. The impact of predictors on PPS was evaluated in patients with isocitrate dehydrogenase wild-type rGBM (n = 439) using survival probability analysis. We identified patients who would benefit from reirradiation (re-RT) during the first progression. RESULTS Median PPS was 3.4, 13.8, 6.6, and 10.0 months in the best supportive care (n = 82), surgery (with/without adjuvant therapy, n = 112), chemotherapy alone (n = 170), and re-RT (with/without chemotherapy, n = 75) groups, respectively. After propensity score matching analysis of the cohort, both the surgery and re-RT groups had a significantly better PPS than the chemotherapy-only group; however, no significant difference was observed in PPS between the surgery and re-RT groups. In the surgery subgroup, surgery with chemotherapy ( P = .024) and surgery with radio(chemo)therapy ( P = .039) showed significantly improved PPS compared with surgery alone. In the no-surgery subgroup, radio(chemo)therapy showed significantly improved PPS compared with chemotherapy alone ( P = .047). Homozygous deletion of cyclin-dependent kinase inhibitor 2A/B, along with other clinical factors (performance score and progression-free interval), was significantly associated with the re-RT survival benefit. CONCLUSION Surgery combined with radio(chemo)therapy resulted in the best survival outcomes for rGBM. re-RT should also be considered for patients with rGBM at first recurrence. Furthermore, this study identified a specific genetic biomarker and clinical factors that may enhance the survival benefit of re-RT.
Collapse
Affiliation(s)
- Dowook Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon , Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul , Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul , Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul , Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul , Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Bundang CHA Medical Center, CHA University, Seongnam , Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul , Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam , Korea
| |
Collapse
|
13
|
Chen ATC, Serante AR, Ayres AS, Tonaki JO, Moreno RA, Shih H, Gattás GS, Lopez RVM, Dos Santos de Jesus GR, de Carvalho IT, Marotta RC, Marta GN, Feher O, Neto HS, Ribeiro ISN, Vasconcelos KGMDC, Figueiredo EG, Weltman E. Prospective Randomized Phase 2 Trial of Hypofractionated Stereotactic Radiation Therapy of 25 Gy in 5 Fractions Compared With 35 Gy in 5 Fractions in the Reirradiation of Recurrent Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 119:1122-1132. [PMID: 38232937 DOI: 10.1016/j.ijrobp.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this work was to investigate whether reirradiation of recurrent glioblastoma with hypofractionated stereotactic radiation therapy (HSRT) consisting of 35 Gy in 5 fractions (35 Gy/5 fx) compared with 25 Gy in 5 fractions (25 Gy/5 fx) improves outcomes while maintaining acceptable toxicity. METHODS AND MATERIALS We conducted a prospective randomized phase 2 trial involving patients with recurrent glioblastoma (per the 2007 and 2016 World Health Organization classification). A minimum interval from first radiation therapy of 5 months and gross tumor volume of 150 cc were required. Patients were randomized 1:1 to receive HSRT alone in 25 Gy/5 fx or 35 Gy/5 fx. The primary endpoint was progression-free survival (PFS). We used a randomized phase 2 screening design with a 2-sided α of 0.15 for the primary endpoint. RESULTS From 2011 to 2019, 40 patients were randomized and received HSRT, with 20 patients in each group. The median age was 50 years (range, 27-71); a new resection before HSRT was performed in 75% of patients. The median PFS was 4.9 months in the 25 Gy/5 fx group and 5.2 months in the 35 Gy/5 fx group (P = .23). Six-month PFS was similar at 40% (85% CI, 24%-55%) for both groups. The median overall survival (OS) was 9.2 months in the 25 Gy/5 fx group and 10 months in the 35 Gy/5 fx group (P = .201). Grade ≥3 necrosis was numerically higher in the 35 Gy/5 fx group (3 [16%] vs 1 [5%]), but the difference was not statistically significant (P = .267). In an exploratory analysis, median OS of patients who developed treatment-related necrosis was 14.1 months, and that of patients who did not was 8.7 months (P = .003). CONCLUSIONS HSRT alone with 35 Gy/5 fx was not superior to 25 Gy/5 fx in terms of PFS or OS. Due to a potential increase in the rate of clinically meaningful treatment-related necrosis, we suggest 25 Gy/5 fx as the standard dose in HSRT alone. During follow-up, attention should be given to differentiating tumor progression from potentially manageable complications.
Collapse
Affiliation(s)
- Andre Tsin Chih Chen
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.
| | - Alexandre Ruggieri Serante
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Aline Sgnolf Ayres
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Juliana Ono Tonaki
- Division of Psychology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Raquel Andrade Moreno
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Helen Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rossana Veronica Mendoza Lopez
- Oncology Translational Research Center, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Gabriela Reis Dos Santos de Jesus
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Icaro Thiago de Carvalho
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rodrigo Carvalho Marotta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Olavo Feher
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Hugo Sterman Neto
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Iuri Santana Neville Ribeiro
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
14
|
Straube C, Combs SE, Bernhardt D, Gempt J, Meyer B, Zimmer C, Schmidt-Graf F, Vajkoczy P, Grün A, Ehret F, Zips D, Kaul D. Adjuvant re-irradiation vs. no early re-irradiation of resected recurrent glioblastoma: pooled comparative cohort analysis from two tertiary centers. J Neurooncol 2024; 168:49-56. [PMID: 38520571 PMCID: PMC11093803 DOI: 10.1007/s11060-024-04633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The optimal management strategy for recurrent glioblastoma (rGBM) remains uncertain, and the impact of re-irradiation (Re-RT) on overall survival (OS) is still a matter of debate. This study included patients who achieved gross total resection (GTR) after a second surgery after recurrence, following the GlioCave criteria. METHODS Inclusion criteria include being 18 years or older, having histologically confirmed locally recurrent IDHwt or IDH unknown GBM, achieving MRI-proven GTR after the second surgery, having a Karnofsky performance status of at least 60% after the second surgery, having a minimum interval of 6 months between the first radiotherapy and the second surgery, and a maximum of 8 weeks from second surgery to the start of Re-RT. RESULTS A total of 44 patients have met the inclusion criteria. The median OS after the second surgery was 14 months. All patients underwent standard treatment after initial diagnosis, including maximum safe resection, adjuvant radiochemotherapy and adjuvant chemotherapy. Re-RT did not significantly impact OS. However, MGMT promoter methylation status and a longer interval (> 12 months) between treatments were associated with better OS. Multivariate analysis revealed the MGMT status as the only significant predictor of OS. CONCLUSION Factors such as MGMT promoter methylation status and treatment interval play crucial roles in determining patient outcomes after second surgery. Personalized treatment strategies should consider these factors to optimize the management of rGBM. Prospective research is needed to define the value of re-RT after second surgery and to inform decision making in this situation.
Collapse
Affiliation(s)
- Christoph Straube
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Department of Radiation Oncology and Radiotherapy, Klinikum Landshut, Landshut, Germany.
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Grün
- Department of Radiation Oncology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Ehret
- Department of Radiation Oncology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Zhao X, Li R, Guo Y, Wan H, Zhou D. Laser interstitial thermal therapy for recurrent glioblastomas: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:159. [PMID: 38625588 DOI: 10.1007/s10143-024-02409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
We aim to investigate the efficacy and safety of laser interstitial thermal therapy (LITT) in treating recurrent glioblastomas (rGBMs). A comprehensive search was conducted in four databases to identify studies published between January 2001 and June 2022 that reported prognosis information of rGBM patients treated with LITT as the primary therapy. The primary outcomes of interest were progression-free survival (PFS) and overall survival (OS) at 6 and 12 months after LITT intervention. Adverse events and complications were also evaluated. Eight eligible non-comparative studies comprising 128 patients were included in the analysis. Seven studies involving 120 patients provided data for the analysis of PFS. The pooled PFS rate at 6 months after LITT was 25% (95% CI 15-37%, I2 = 53%), and at 12 months, it was 9% (95% CI 4-15%, I2 = 24%). OS analysis was performed on 54 patients from six studies, with an OS rate of 92% (95% CI 84-100%, I2 = 0%) at 6 months and 42% (95% CI 13-73%, I2 = 67%) at 12 months after LITT. LITT demonstrates a favorable safety profile with low complication rates and promising tumor control and overall survival rates in patients with rGBMs. Tumor volume and performance status are important factors that may influence the effectiveness of LITT in selected patients. Additionally, the combination of LITT with immune-based therapy holds promise. Further well-designed clinical trials are needed to expand the application of LITT in glioma treatment.
Collapse
Affiliation(s)
- Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, #119 Fanyang Road, Fengtai District, Beijing, 100070, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, #119 Fanyang Road, Fengtai District, Beijing, 100070, China
| | - Yiding Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, #119 Fanyang Road, Fengtai District, Beijing, 100070, China
| | - Haibin Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, #119 Fanyang Road, Fengtai District, Beijing, 100070, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, #119 Fanyang Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
16
|
Chen X, Cui Y, Zou L. Treatment advances in high-grade gliomas. Front Oncol 2024; 14:1287725. [PMID: 38660136 PMCID: PMC11039916 DOI: 10.3389/fonc.2024.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Cui
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Yilmaz MT, Kahvecioglu A, Yazici G, Mohammadipour S, Kertmen N, Cifci GC, Zorlu F. Hypofractionated stereotactic re-irradiation for progressive glioblastoma: twelve years' experience of a single center. J Neurooncol 2024; 167:295-303. [PMID: 38383875 PMCID: PMC11023988 DOI: 10.1007/s11060-024-04607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE We aimed to evaluate the prognostic factors and the role of stereotactic radiotherapy (SRT) as a re-irradiation technique in the management of progressive glioblastoma. METHODS The records of 77 previously irradiated glioblastoma patients who progressed and received second course hypofractionated SRT (1-5 fractions) between 2009 and 2022 in our department were evaluated retrospectively. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for all statistical analyses. RESULTS The median time to progression from the end of initial radiotherapy was 14 months (range, 6-68 months). The most common SRT schedule was 30 Gy (range, 18-50 Gy) in 5 fractions (range, 1-5 fractions). The median follow-up after SRT was 9 months (range, 3-80 months). One-year overall (OS) and progression-free survival (PFS) rates after SRT were 46% and 35%, respectively. Re-irradiation dose and the presence of pseudoprogression were both significant independent positive prognostic factors for both OS (p = 0.009 and p = 0.04, respectively) and PFS (p = 0.008 and p = 0.04, respectively). For PFS, progression-free interval > 14 months was also a prognostic factor (p = 0.04). The treatment was well tolerated without significant acute toxicity. During follow-up, radiation necrosis was observed in 17 patients (22%), and 14 (82%) of them were asymptomatic. CONCLUSION Hypofractionated SRT is an effective treatment approach for patients with progressive glioblastoma. Younger patients who progressed later than 14 months, received higher SRT doses, and experienced pseudoprogression following SRT had improved survival rates.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Sepideh Mohammadipour
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gokcen Coban Cifci
- Radiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Hudson EM, Noutch S, Webster J, Brown SR, Boele FW, Al-Salihi O, Baines H, Bulbeck H, Currie S, Fernandez S, Hughes J, Lilley J, Smith A, Parbutt C, Slevin F, Short S, Sebag-Montefiore D, Murray L. Brain Re-Irradiation Or Chemotherapy: a phase II randomised trial of re-irradiation and chemotherapy in patients with recurrent glioblastoma (BRIOChe) - protocol for a multi-centre open-label randomised trial. BMJ Open 2024; 14:e078926. [PMID: 38458809 PMCID: PMC11145639 DOI: 10.1136/bmjopen-2023-078926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common adult primary malignant brain tumour. The condition is incurable and, despite aggressive treatment at first presentation, almost all tumours recur after a median of 7 months. The aim of treatment at recurrence is to prolong survival and maintain health-related quality of life (HRQoL). Chemotherapy is typically employed for recurrent GBM, often using nitrosourea-based regimens. However, efficacy is limited, with reported median survivals between 5 and 9 months from recurrence. Although less commonly used in the UK, there is growing evidence that re-irradiation may produce survival outcomes at least similar to nitrosourea-based chemotherapy. However, there remains uncertainty as to the optimum approach and there is a paucity of available data, especially with regards to HRQoL. Brain Re-Irradiation Or Chemotherapy (BRIOChe) aims to assess re-irradiation, as an acceptable treatment option for recurrent IDH-wild-type GBM. METHODS AND ANALYSIS BRIOChe is a phase II, multi-centre, open-label, randomised trial in patients with recurrent GBM. The trial uses Sargent's three-outcome design and will recruit approximately 55 participants from 10 to 15 UK radiotherapy sites, allocated (2:1) to receive re-irradiation (35 Gy in 10 daily fractions) or nitrosourea-based chemotherapy (up to six, 6-weekly cycles). The primary endpoint is overall survival rate for re-irradiation patients at 9 months. There will be no formal statistical comparison between treatment arms for the decision-making primary analysis. The chemotherapy arm will be used for calibration purposes, to collect concurrent data to aid interpretation of results. Secondary outcomes include HRQoL, dexamethasone requirement, anti-epileptic drug requirement, radiological response, treatment compliance, acute and late toxicities, progression-free survival. ETHICS AND DISSEMINATION BRIOChe obtained ethical approval from Office for Research Ethics Committees Northern Ireland (reference no. 20/NI/0070). Final trial results will be published in peer-reviewed journals and adhere to the ICMJE guidelines. TRIAL REGISTRATION NUMBER ISRCTN60524.
Collapse
Affiliation(s)
- Eleanor M Hudson
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Samantha Noutch
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Joanne Webster
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah R Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Florien W Boele
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Helen Baines
- National Radiotherapy Trials QA (RTTQA) Group, Mount Vernon Cancer Centre, Northwood, UK
| | | | - Stuart Currie
- Department of Radiology, Leeds General Infirmary, Leeds, UK
| | - Sharon Fernandez
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jane Hughes
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - John Lilley
- Department of Medical Physics, Leeds Cancer Centre, Leeds, UK
| | - Alexandra Smith
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | - Finbar Slevin
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | - Susan Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | | | - Louise Murray
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| |
Collapse
|
19
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
20
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
21
|
Pepper NB, Eich HT, Müther M, Oertel M, Rehn S, Spille DC, Stummer W. ALA-RDT in GBM: protocol of the phase I/II dose escalation trial of radiodynamic therapy with 5-Aminolevulinic acid in patients with recurrent glioblastoma. Radiat Oncol 2024; 19:11. [PMID: 38254201 PMCID: PMC10804590 DOI: 10.1186/s13014-024-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Despite improvements in surgical as well as adjuvant therapies over the last decades, the prognosis for patients with glioblastoma remains poor. Five-Aminolevulinic acid (5-ALA) induced porphyrins are already used for fluorescence-guided resection and as photosensitizer for photodynamic therapy. New findings reveal their potential use as sensitizing agents in combination with ionizing radiation. METHODS We initiated a phase I/II dose escalation study, treating patients with recurrence of glioblastoma with oral 5-ALA concurrent to radiotherapy (RT). This prospective single-center study based in the University Hospital Münster aims to recruit 30 patients over 18 years of age with histologically verified recurrence of supratentorial glioblastoma in good performance status (KPS ≥ 60). Following a 3 + 3 dose-escalation design, patients having undergone re-resection will receive a 36 Gy RT including radiodynamic therapy fractions (RDT). RDT constitutes of oral administration of 5-ALA before the irradiation session. Two cohorts will additionally receive two fractions of neoadjuvant treatment three and two days before surgery. To determine the maximum tolerated dose of repeated 5-ALA-administration, the number of RDT-fractions will increase, starting with one to a maximum of eight fractions, while closely monitoring for safety and toxicity. Follow-up will be performed at two and five months after treatment. Primary endpoint will be the maximum tolerated dose (MTD) of repeated ALA-administration, secondary endpoints are event-free-, progression-free-, and overall-survival. Additionally, 5-ALA metabolites and radiobiological markers will be analysed throughout the course of therapy and tissue effects after neoadjuvant treatment will be determined in resected tissue. This protocol is in accordance with the SPIRIT guidelines for clinical trial protocols. DISCUSSION This is the protocol of the ALA-RDT in GBM-study, the first-in-man evaluation of repeated administration of 5-ALA as a radiosensitizer for treatment of recurrent glioblastoma. TRIAL REGISTRATION This study was approved by the local ethics committee of the Medical Association of Westphalia-Lippe and the University of Münster on 12.10.2022, the German federal institute for Drugs and medical devices on 13.10.2022 and the federal office for radiation protection on 29.08.2022. This trial was registered on the public European EudraCT database (EudraCT-No.: 2021-004631-92) and is registered under www.cliniclatrials.gov (Identifier: NCT05590689).
Collapse
Affiliation(s)
- Niklas Benedikt Pepper
- Department of Radiation Oncology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Michael Oertel
- Department of Radiation Oncology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Stephan Rehn
- Department of Radiation Oncology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Cäcilia Spille
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
22
|
Sun Y, Liu P, Wang Z, Zhang H, Xu Y, Hu S, Yan Y. Efficacy and indications of gamma knife radiosurgery for recurrent low-and high-grade glioma. BMC Cancer 2024; 24:37. [PMID: 38183008 PMCID: PMC10768340 DOI: 10.1186/s12885-023-11772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
PURPOSE To investigate the indications and efficacy of gamma knife radiosurgery (GKRS) as a salvage treatment for recurrent low-and high-grade glioma. METHODS This retrospective study of 107 patients with recurrent glioma treated with GKRS between 2009 and 2022, including 68 high-grade glioma (HGG) and 39 low-grade glioma (LGG) cases. The Kaplan-Meier method was used to calculate the overall survival (OS) and progression-free survival (PFS). The log-rank test was used to analyze the multivariate prognosis of the Cox proportional hazards model. Adverse reactions were evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. The prognostic value of main clinical features was estimated, including histopathology, Karnofsky performance status (KPS), recurrence time interval, target location, two or more GKRS, surgery for recurrence, site of recurrence, left or right side of the brain and so on. RESULTS The median follow-up time was 74.5 months. The median OS and PFS were 17.0 months and 5.5 months for all patients. The median OS and PFS were 11.0 months and 5.0 months for HGG, respectively. The median OS and PFS were 49.0 months and 12.0 months for LGG, respectively. Multivariate analysis showed that two or more GKRS, left or right side of the brain and brainstem significantly affected PFS. Meanwhile, the KPS index, two or more GKRS, pathological grade, and brainstem significantly affected OS. Stratified analysis showed that surgery for recurrence significantly affected OS and PFS for LGG. KPS significantly affected OS and PFS for HGG. No serious adverse events were noted post-GKRS. CONCLUSION GKRS is a safe and effective salvage treatment for recurrent glioma. Moreover, it can be applied after multiple recurrences with tolerable adverse effects.
Collapse
Affiliation(s)
- Ying Sun
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Peiru Liu
- Beifang Hospital of China Medical University, 110016, Shenyang, China
| | - Zixi Wang
- Graduate School of Dalian Medical University, 116000, Dalian, China
| | - Haibo Zhang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Shenghui Hu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China.
| |
Collapse
|
23
|
Christ SM, Youssef G, Tanguturi SK, Cagney D, Shi D, McFaline-Figueroa JR, Chukwueke U, Lee EQ, Hertler C, Andratschke N, Weller M, Reardon DA, Haas-Kogan D, Guckenberger M, Wen PY, Rahman R. Re-irradiation of recurrent IDH-wildtype glioblastoma in the bevacizumab and immunotherapy era: Target delineation, outcomes and patterns of recurrence. Clin Transl Radiat Oncol 2024; 44:100697. [PMID: 38046107 PMCID: PMC10689476 DOI: 10.1016/j.ctro.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction and background While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. Materials and methods Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. Results One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). Conclusion Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.
Collapse
Affiliation(s)
- Sebastian M. Christ
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shyam K. Tanguturi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Cagney
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Diana Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eudocia Q. Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline Hertler
- Competence Center Palliative Care, University Hospital and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Xiang X, Ji Z, Jin J. Brachytherapy is an effective and safe salvage option for re-irradiation in recurrent glioblastoma (rGBM): A systematic review. Radiother Oncol 2024; 190:110012. [PMID: 37972737 DOI: 10.1016/j.radonc.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To evaluate the clinical efficacy and toxicity of brachytherapy as a salvage therapy for patients with recurrent glioblastoma (rGBM). METHODS AND MATERIALS We searched the PubMed, Embase, and Cochrane libraries from its inception to June 2023, for eligible studies in which patients underwent brachytherapy for rGBM. Outcomes of interest were mOS, mPFS, OS, PFS, and adverse events (AEs). For individual clinical survival outcomes and common AEs, weighted-mean descriptive statistics were calculated as a summary measure using study sample size as the weight. The calculation formula is as follows: weighted-mean = Σwx/Σw (w is the sample size and x is the outcome). RESULTS This review included 29 studies with a total of 1202 rGBM patients, including 22 retrospective and 7 prospective studies. The results showed that from the time of brachytherapy, the mOS and mPFS were 6.8 to 24.4 months and 3.7 to 11.7 months. The OS of 6 months, 1 year, 18 months, 2 years, and 3 years after brachytherapy were 58.3 % to 85.2 % (weighted-mean 76.2 %), 26 % to 66 % (weighted-mean 41.9 %), 20 % to 37 % (weighted-mean 27.6 %), 11 % to 23 % (weighted-mean 14.8 %), and 8 % to 15 % (weighted-mean 12.1 %), respectively. The PFS of 6 months and 1 year after brachytherapy were 26.7 % to 86 % (weighted-mean 53.4 %) and 14 % to 81 % (weighted-mean 24.1 %). Most patients with rGBM will experience treatment failure again during the follow-up period, mainly local (10.7 % to 79.4 %) or marginal(3.6 % to 22.2 %) recurrence, followed by distant failure (6.7 % to 57.7 %). Although therapeutic AEs had not been uniformly reported, the overall toxicity rate was considered to be low. The common AEs reported included progressive neurologic deterioration, seizures, CSF leak, brain necrosis, hemorrhage, and infection/meningitis, with a weighted-mean incidence of 1.9 %, 2.4 %, 4.1 %, 5.4 %, 2.1 %, and 3.8 %, respectively. CONCLUSIONS The evidence summarized above, albeit mostly level III, suggests that brachytherapy has acceptable safety and good post-treatment clinical efficacy for selected patients with rGBM. Well-designed, high-quality, large-sample randomized controlled and prospective studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Xiaoyong Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhe Ji
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
25
|
Pichler J, Traub-Weidinger T, Spiegl K, Imamovic L, Braat AJAT, Snijders TJ, Verhoeff JJC, Flamen P, Tauchmanova L, Hayward C, Kluge A. Results from a phase I study of 4- l-[131I]iodo-phenylalanine ([ 131I]IPA) with external radiation therapy in patients with recurrent glioblastoma (IPAX-1). Neurooncol Adv 2024; 6:vdae130. [PMID: 39211520 PMCID: PMC11358817 DOI: 10.1093/noajnl/vdae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Glioblastoma (GBM), the most common malignant brain tumor, is associated with devastating outcomes. IPAX-1 was a multicenter, open-label, single-arm phase I study to evaluate carrier-added 4-L-[131I]iodo-phenylalanine ([131I]IPA) plus external radiation therapy (XRT) in recurrent GBM. Methods A total of 10 adults with recurrent GBM who had received first-line debulking surgery plus radio-chemotherapy, were randomized to a single-dose regimen (1f; 131I-IPA 2 GBq before XRT); a fractionated parallel dose regimen (3f-p; 3 131I-IPA 670 MBq fractions, in parallel with second-line XRT), or a fractionated sequential dose regimen (3f-s; 3 131I-IPA 670 MBq fractions before and after XRT). Metabolic tumor responses were determined using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography, while single-photon emission computed tomography was used to guide [131I]IPA tumor dosimetry. Results All dose regimens were well tolerated. Organ-absorbed radiation doses in red marrow (0.38 Gy) and kidney (1.28 Gy) confirmed no radiation-based toxicity. Stable disease was observed in 4 of the 9 patients at 3 months post-treatment (3-month follow-up [FU], 1 patient did not reach protocol-mandated end of study), yielding a response rate of 44.4%. At the 3-month FU, 6 patients demonstrated metabolic stable disease. Median progression-free survival was 4.3 months (95% confidence interval [CI]: 3.3-4.5), while median overall survival was 13 months (95% CI: 7.1-27). Conclusions Single or fractionated doses of [131I]IPA plus XRT were associated with acceptable tolerability and specific tumor targeting in patients with recurrent GBM, warranting further investigation.
Collapse
Affiliation(s)
- Josef Pichler
- Department of Internal Medicine and Neuro-oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Spiegl
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Larisa Imamovic
- Department of Nuclear Medicine, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology, University Medical Center Utrecht, Brain Center, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Colin Hayward
- TelixPharmaceuticals, North Melbourne, VIC, Australia
| | - Andreas Kluge
- ABX - CRO Advanced Pharmaceutical Services Forschungsgesellschaft, Dresden, Germany
| |
Collapse
|
26
|
Zeng F, Fan Z, Li S, Li L, Sun T, Qiu Y, Nie L, Huang G. Tumor Microenvironment Activated Photoacoustic-Fluorescence Bimodal Nanoprobe for Precise Chemo-immunotherapy and Immune Response Tracing of Glioblastoma. ACS NANO 2023; 17:19753-19766. [PMID: 37812513 DOI: 10.1021/acsnano.3c03378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synergistic therapy strategy and prognostic monitoring of glioblastoma's immune response to treatment are crucial to optimize patient care and advance clinical outcomes. However, current systemic temozolomide (TMZ) chemotherapy and imaging methods for in vivo tracing of immune responses are inadequate. Herein, we report an all-in-one theranostic nanoprobe (PEG/αCD25-Cy7/TMZ) for precise chemotherapy and real-time immune response tracing of glioblastoma by photoacoustic-fluorescence imaging. The nanoprobe was loaded with TMZ and targeted regulatory T lymphocyte optical dye αCD25-Cy7 encapsulated by glutathione-responsive DSPE-SS-PEG2000. The results showed that the targeted efficiency of the nanoprobe to regulatory T lymphocytes is up to 92.3%. The activation of PEG/αCD25-Cy7/TMZ by glutathione enhanced the precise delivery of TMZ to the tumor microenvironment for local chemotherapy and monitored glioblastoma's boundary by photoacoustic-fluorescence imaging. Immunotherapy with indoleamine 2,3-dioxygenase inhibitors after chemotherapy could promote immunological responses and reduce regulatory T lymphocyte infiltration, which could improve the survival rate. Photoacoustic imaging has in real-time and noninvasively depicted the dynamic process of immune response on a micrometer scale, showing that the infiltration of regulatory T lymphocytes after chemotherapy was up-regulated and would down-regulate after IDO inhibitor treatment. This all-in-one theranostic strategy is a promising method for precisely delivering TMZ and long-term dynamically tracing regulatory T lymphocytes to evaluate the immune response in situ for accurate tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Fanchu Zeng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhijin Fan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Shiying Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovsacular Institute, Guangzhou 510000, China
| | - Lanqing Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yang Qiu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Guojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| |
Collapse
|
27
|
Marwah R, Xing D, Squire T, Soon YY, Gan HK, Ng SP. Reirradiation versus systemic therapy versus combination therapy for recurrent high-grade glioma: a systematic review and meta-analysis of survival and toxicity. J Neurooncol 2023; 164:505-524. [PMID: 37733174 PMCID: PMC10589175 DOI: 10.1007/s11060-023-04441-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE This review compares reirradiation (reRT), systemic therapy and combination therapy (reRT & systemic therapy) with regards to overall survival (OS), progression-free survival (PFS), adverse effects (AEs) and quality of life (QoL) in patients with recurrent high-grade glioma (rHGG). METHODS A search was performed on PubMed, Scopus, Embase and CENTRAL. Studies reporting OS, PFS, AEs and/or QoL and encompassing the following groups were included; reirradiation vs systemic therapy, combination therapy vs systemic therapy, combination therapy vs reRT, and bevacizumab-based combination therapy vs reRT with/without non-bevacizumab-based systemic therapy. Meta-analyses were performed utilising a random effects model. Certainty of evidence was assessed using GRADE. RESULTS Thirty-one studies (three randomised, twenty-eight non-randomised) comprising 2084 participants were included. In the combination therapy vs systemic therapy group, combination therapy improved PFS (HR 0.57 (95% CI 0.41-0.79); low certainty) and OS (HR 0.73 (95% CI 0.56-0.95); low certainty) and there was no difference in grade 3 + AEs (RR 1.03 (95% CI 0.57-1.86); very low certainty). In the combination therapy vs reRT group, combination therapy improved PFS (HR 0.52 (95% CI 0.38-0.72); low certainty) and OS (HR 0.69 (95% CI 0.52-0.93); low certainty). In the bevacizumab-based combination therapy vs reRT with/without non-bevacizumab-based systemic therapy group, adding bevacizumab improved PFS (HR 0.46 (95% CI 0.27-0.77); low certainty) and OS (HR 0.42 (95% CI 0.24-0.72; low certainty) and reduced radionecrosis (RR 0.17 (95% CI 0.06-0.48); low certainty). CONCLUSIONS Combination therapy may improve OS and PFS with acceptable toxicities in patients with rHGG compared to reRT or systemic therapy alone. Particularly, combining bevacizumab with reRT prophylactically reduces radionecrosis. REGISTRATION CRD42022291741.
Collapse
Affiliation(s)
- Ravi Marwah
- Department of Radiation Oncology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, Townsville, QLD, 4814, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Australia.
| | - Daniel Xing
- Department of Radiation Oncology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, Townsville, QLD, 4814, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Timothy Squire
- Department of Radiation Oncology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, Townsville, QLD, 4814, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Cancer Institute, Singapore, Singapore
| | - Hui K Gan
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Melbourne, Australia
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness & Research Centre, Austin Hospital, Melbourne, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
28
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
29
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
30
|
Eltoukhy M, Kandula V, Joseph S, Albanese E, Giridharan S. Should Redo Surgery be Offered to Patients with Relapsed Glioblastoma? - Outcome Analyses of a Single Institution Comparative Cohort Study. World Neurosurg 2023; 176:e543-e547. [PMID: 37268188 DOI: 10.1016/j.wneu.2023.05.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the predominant malignant brain tumor originating intracranially. The established first-line treatment postsurgery is concurrent chemoradiation as a definitive measure. However, recurrent GBM's pose a challenge for clinicians who rely on institutional experience to determine the most suitable course of action. Second-line chemotherapy may be administered with or without surgery depending on the institution's practice. This study aims to present our tertiary center institution's experience with recurrent GBM patients who underwent redo surgery. METHODS In this retrospective study we analyzed the surgical and oncological data of patients with recurrent GBM who underwent redo surgery at the Royal Stoke University Hospitals between 2006 and 2015. The group 1 (G1) comprised the reviewed patients, while a control group (G2) was randomly selected, matching the reviewed group by age, primary treatment, and progression-free survival (PFS). The study collected data on various parameters, including overall survival, PFS, extent of surgical resection, and postoperative complications. RESULTS This retrospective study included 30 patients in G1 and 32 patients in G2, matched based on age, primary treatment, and PFS. The study found that the overall survival for the G1 group from the time of first diagnosis was 109 weeks (45-180) compared to 57 weeks (28-127) in the G2 group. The incidence of postoperative complications after the second surgery was 57%, which included hemorrhage, infarction, worsening neurology due to edema, cerebrospinal fluid leak, and wound infection. Furthermore, 50% of the patients in the G1 group who underwent redo surgery received second-line chemotherapy. CONCLUSIONS Our study found that redo surgery for recurrent GBM is a viable treatment option for a select group of patients with good performance status, longer PFS from primary treatment, and compressive symptoms. However, the use of redo surgery varies depending on the institution. A well-designed randomized controlled trial in this population would help establish the standard of surgical care.
Collapse
Affiliation(s)
| | - Viswapathi Kandula
- Department of Neurosurgery, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Shibu Joseph
- Department of Radiation Oncology, Riverina Cancer Care Centre, New South Wales, Australia
| | - Erminia Albanese
- Department of Neurosurgery, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | | |
Collapse
|
31
|
You WC, Lee HD, Pan HC, Chen HC. Re-irradiation combined with bevacizumab for recurrent glioblastoma beyond bevacizumab failure: survival outcomes and prognostic factors. Sci Rep 2023; 13:9442. [PMID: 37296207 PMCID: PMC10256803 DOI: 10.1038/s41598-023-36290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The combination of re-irradiation and bevacizumab has emerged as a potential therapeutic strategy for patients experiencing their first glioblastoma multiforme (GBM) recurrence. This study aims to assess the effectiveness of the re-irradiation and bevacizumab combination in treating second-progression GBM patients who are resistant to bevacizumab monotherapy. This retrospective study enrolled 64 patients who developed a second progression after single-agent bevacizumab therapy. The patients were divided into two groups: 35 underwent best supportive care (none-ReRT group), and 29 received bevacizumab and re-irradiation (ReRT group). The study measured the overall survival time after bevacizumab failure (OST-BF) and re-irradiation (OST-RT). Statistical tests were used to compare categorical variables, evaluate the difference in recurrence patterns between the two groups, and identify optimal cutoff points for re-irradiation volume. The results of the Kaplan-Meier survival analysis indicated that the re-irradiation (ReRT) group experienced a significantly higher survival rate and longer median survival time than the non-ReRT group. The median OST-BF and OST-RT were 14.5 months and 8.8 months, respectively, for the ReRT group, while the OST-BF for the none-ReRT group was 3.9 months (p < 0.001). The multivariable analysis identified the re-irradiation target volume as a significant factor for OST-RT. Moreover, the re-irradiation target volume exhibited excellent discriminatory ability in the area under the curve (AUC) analysis, with an optimal cutoff point of greater than 27.58 ml. These findings suggest that incorporating re-irradiation with bevacizumab therapy may be a promising treatment strategy for patients with recurrent GBM resistant to bevacizumab monotherapy. The re-irradiation target volume may serve as a valuable selection factor in determining which patients with recurrent GBM are likely to benefit from the combined re-irradiation and bevacizumab treatment modality.
Collapse
Affiliation(s)
- Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, 1650, Tawain Blvd Section 4, Taichung, 40704, Taiwan.
| | - Hsu-Dung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Yanchu L, Rong P, Rong C, Li Z, Xiaoyan Y, Feng W. Ozone therapy for high-grade glioma: an overview. Front Oncol 2023; 13:1161206. [PMID: 37293584 PMCID: PMC10244787 DOI: 10.3389/fonc.2023.1161206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
High-grade gliomas (grades III and IV) are highly malignant and aggressive brain tumors that present significant treatment challenges. Despite advances in surgery, chemotherapy, and radiation therapy, the prognosis for patients with glioma remains poor, with a median overall survival (mOS) range of 9-12 months. Therefore, exploring new and effective therapeutic strategies to improve glioma prognosis is of utmost importance and ozone therapy is a viable option. Ozone therapy has been used in various cancers, such as colon, breast, and lung, yielding significant results in preclinical studies and clinical trials. Only a few studies have been conducted on gliomas. Furthermore, since the metabolism of brain cells involves aerobic glycolysis, ozone therapy may improve the oxygen condition and enhance glioma radiation treatment. However, understanding the correct ozone dosage and optimal time of administration remains challenging. Herein, we hypothesize that ozone therapy should be more effective in gliomas compared with other tumors. This study provides an overview of the use of ozone therapy in high-grade glioma, including mechanisms of action, preclinical data, and clinical evidence.
Collapse
Affiliation(s)
- Li Yanchu
- Head and Neck Oncology Ward, West China Hospital of Sichuan University, Chengdu, China
| | - Pu Rong
- Oncology Department, Chengdu Fuxing Hospital, Chengdu, China
| | - Cao Rong
- Head and Neck Oncology Ward, West China Hospital of Sichuan University, Chengdu, China
| | - Zhang Li
- Head and Neck Oncology Ward, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Xiaoyan
- Radiation Therapy Department, West China Hospital of Sichuan University, Chengdu, China
| | - Wang Feng
- Head and Neck Oncology Ward, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Murray LJ, Appelt AL, Ajithkumar T, Bedford JL, Burnet NG, Lalondrelle S, Manolopoulos S, O'Cathail SM, Robinson M, Short SC, Slevin F, Thomson DJ. Re-irradiation: From Cell Lines to Patients, Filling the (Science) Gap in the Market. Clin Oncol (R Coll Radiol) 2023; 35:318-322. [PMID: 36842937 DOI: 10.1016/j.clon.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Affiliation(s)
- L J Murray
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - A L Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - T Ajithkumar
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - N G Burnet
- The Christie NHS Foundation Trust, Manchester, UK
| | - S Lalondrelle
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, Sutton, UK
| | - S Manolopoulos
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Cumberland Infirmary, Carlisle, UK
| | - S M O'Cathail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - M Robinson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - S C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - F Slevin
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - D J Thomson
- The Christie NHS Foundation Trust, Manchester, UK; The University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Luo T, Feng J, Sun P. Fractionated stereotactic re-irradiation for recurrent glioblastoma: A systematic review and meta-analysis. Clin Neurol Neurosurg 2023; 229:107728. [PMID: 37105068 DOI: 10.1016/j.clineuro.2023.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The clinical benefit and the safety of fractionated stereotactic re-irradiation in treating patients with recurrent glioblastoma are still disputed. Thus, we conducted a meta-analysis to explore the clinical benefit and the safety of fractionated stereotactic re-irradiation for patients with recurrent glioblastoma. MATERIALS AND METHODS We retrieved the eligible papers published up to Nov. 2022 through PubMed, Embase, Cochrane, Web of Science, and Clinical Trials. Gov, and other biomedical databases and evaluated the quality of the studies by Newcastle-Ottawa Scale. The random effect model was used to pool 12-month overall survival rates, 12-month progression-free survival rates, and radiational necrosis risk, and an interaction test was used to compare defined subgroups. RESULTS We identified eight eligible studies, including 307 patients. The overall survival rate of 12 months was 33.1 % (95 % CI 26.0 %-40.9 %), and the progression-free survival rate of 12 months was 13.4 % (95 % CI 8.0 %-21.3 %). Radiation necrosis was low in incidence in the included studies. Additionally, the subgroup analysis demonstrated that factors such as age, time interval (from the first radiation to the re-irradiation), total dose, and single dose, impacted the survival rate. CONCLUSION Fractionated stereotactic re-irradiation produces relative clinical benefit and safety for patients with recurrent glioblastoma.
Collapse
Affiliation(s)
- Tingfan Luo
- Department of Radiotherapy, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, People's Republic of China
| | - Jin Feng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Pengfei Sun
- Department of Radiotherapy, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, People's Republic of China.
| |
Collapse
|
35
|
Datta D, Dasgupta A, Chatterjee A, Sahu A, Bhattacharya K, Meena L, Joshi K, Puranik A, Dev I, Moiyadi A, Shetty P, Singh V, Patil V, Menon N, Epari S, Sahay A, Gupta T. Imaging-Based Patterns of Failure following Re-Irradiation for Recurrent/Progressive High-Grade Glioma. J Pers Med 2023; 13:685. [PMID: 37109071 PMCID: PMC10144403 DOI: 10.3390/jpm13040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Re-irradiation (ReRT) is an effective treatment modality in appropriately selected patients with recurrent/progressive high-grade glioma (HGG). The literature is limited regarding recurrence patterns following ReRT, which was investigated in the current study. METHODS Patients with available radiation (RT) contours, dosimetry, and imaging-based evidence of recurrence were included in the retrospective study. All patients were treated with fractionated focal conformal RT. Recurrence was detected on imaging with magnetic resonance imaging (MRI) and/ or amino-acid positron emission tomography (PET), which was co-registered with the RT planning dataset. Failure patterns were classified as central, marginal, and distant if >80%, 20-80%, or <20% of the recurrence volumes were within 95% isodose lines, respectively. RESULTS Thirty-seven patients were included in the current analysis. A total of 92% of patients had undergone surgery before ReRT, and 84% received chemotherapy. The median time to recurrence was 9 months. Central, marginal, and distant failures were seen in 27 (73%), 4 (11%), and 6 (16%) patients, respectively. None of the patient-, disease-, or treatment-related factors were significantly different across different recurrence patterns. CONCLUSION Failures are seen predominantly within the high-dose region following ReRT in recurrent/ progressive HGG.
Collapse
Affiliation(s)
- Debanjali Datta
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India (A.D.)
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India (A.D.)
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India (A.D.)
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
| | - Arpita Sahu
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Radio-Diagnosis, Tata Memorial Centre, Mumbai 400012, India
| | - Kajari Bhattacharya
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Radio-Diagnosis, Tata Memorial Centre, Mumbai 400012, India
| | - Lilawati Meena
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Medical Physics, Tata Memorial Centre, Mumbai 400012, India
| | - Kishore Joshi
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Medical Physics, Tata Memorial Centre, Mumbai 400012, India
| | - Ameya Puranik
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Nuclear Medicine, Tata Memorial Centre, Mumbai 400012, India
| | - Indraja Dev
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Nuclear Medicine, Tata Memorial Centre, Mumbai 400012, India
| | - Aliasgar Moiyadi
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Prakash Shetty
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Vikas Singh
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Vijay Patil
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Nandini Menon
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Sridhar Epari
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Ayushi Sahay
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India (A.D.)
- Homi Bhabha National Institute (HBNI), Mumbai 400012, India
| |
Collapse
|
36
|
Bell JB, Jin W, Goryawala MZ, Azzam GA, Abramowitz MC, Diwanji T, Ivan ME, del Pilar Guillermo Prieto Eibl M, de la Fuente MI, Mellon EA. Delineation of recurrent glioblastoma by whole brain spectroscopic magnetic resonance imaging. Radiat Oncol 2023; 18:37. [PMID: 36814267 PMCID: PMC9948314 DOI: 10.1186/s13014-023-02219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) cellularity correlates with whole brain spectroscopic MRI (sMRI) generated relative choline to N-Acetyl-Aspartate ratio (rChoNAA) mapping. In recurrent GBM (rGBM), tumor volume (TV) delineation is challenging and rChoNAA maps may assist with re-RT targeting. METHODS Fourteen rGBM patients underwent sMRI in a prospective study. Whole brain sMRI was performed to generate rChoNAA maps. TVs were delineated by the union of rChoNAA ratio over 2 (rChoNAA > 2) on sMRI and T1PC. rChoNAA > 2 volumes were compared with multiparametric MRI sequences including T1PC, T2/FLAIR, diffusion-restriction on apparent diffusion coefficient (ADC) maps, and perfusion relative cerebral blood volume (rCBV). RESULTS rChoNAA > 2 (mean 27.6 cc, range 6.6-79.1 cc) was different from other imaging modalities (P ≤ 0.05). Mean T1PC volumes were 10.7 cc (range 1.2-31.4 cc). The mean non-overlapping volume of rChoNAA > 2 and T1PC was 29.2 cm3. rChoNAA > 2 was 287% larger (range 23% smaller-873% larger) than T1PC. T2/FLAIR volumes (mean 111.7 cc, range 19.0-232.7 cc) were much larger than other modalities. rCBV volumes (mean 6.2 cc, range 0.2-19.1 cc) and ADC volumes were tiny (mean 0.8 cc, range 0-3.7 cc). Eight in-field failures were observed. Three patients failed outside T1PC but within rChoNAA > 2. No grade 3 toxicities attributable to re-RT were observed. Median progression-free and overall survival for re-RT patients were 6.5 and 7.1 months, respectively. CONCLUSIONS Treatment of rGBM may be optimized by sMRI, and failure patterns suggest benefit for dose-escalation within sMRI-delineated volumes. Dose-escalation and radiologic-pathologic studies are underway to confirm the utility of sMRI in rGBM.
Collapse
Affiliation(s)
- Jonathan B. Bell
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - William Jin
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Mohammed Z. Goryawala
- grid.26790.3a0000 0004 1936 8606Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Gregory A. Azzam
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew C. Abramowitz
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Tejan Diwanji
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Michael E. Ivan
- grid.26790.3a0000 0004 1936 8606Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Maria del Pilar Guillermo Prieto Eibl
- grid.26790.3a0000 0004 1936 8606Department of Neurology and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Macarena I. de la Fuente
- grid.26790.3a0000 0004 1936 8606Department of Neurology and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Eric A. Mellon
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| |
Collapse
|
37
|
Tsien CI, Pugh SL, Dicker AP, Raizer JJ, Matuszak MM, Lallana EC, Huang J, Algan O, Deb N, Portelance L, Villano JL, Hamm JT, Oh KS, Ali AN, Kim MM, Lindhorst SM, Mehta MP. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol 2023; 41:1285-1295. [PMID: 36260832 PMCID: PMC9940937 DOI: 10.1200/jco.22.00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS.
Collapse
Affiliation(s)
| | - Stephanie L. Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | | | | - Jiayi Huang
- Washington University School of Medicine in St Louis-Siteman Cancer Center, St. Louis, MO
| | - Ozer Algan
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nimisha Deb
- St Luke's University Hospital & Health Network accruals Thomas Jefferson University Hospital, Bethlehem, PA
| | - Lorraine Portelance
- University of Miami Miller School of Medicine-Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - John T. Hamm
- Norton Hospital Pavilion and Medical Campus, Louisville, KY
| | - Kevin S. Oh
- Dana-Farber/Harvard Cancer Center, Boston, MA
| | - Arif N. Ali
- The Hope Center accruals Emory University/Winship Cancer Institute, Dalton, GA
| | - Michelle M. Kim
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Scott M. Lindhorst
- Medical University of South Carolina Minority Underserved NCORP, Charleston, SC
| | | |
Collapse
|
38
|
Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther 2023; 16:71-86. [PMID: 36721854 PMCID: PMC9884437 DOI: 10.2147/ott.s366371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Virtually all glioblastomas treated in the first-line setting will recur in a short period of time, and the search for alternative effective treatments has so far been unsuccessful. Various obstacles remain unresolved, and no effective salvage therapy for recurrent glioblastoma can be envisaged in the short term. One of the main impediments to progress is the low incidence of the disease itself in comparison with other pathologies, which will be made even lower by the recent WHO classification of gliomas, which includes molecular alterations. This new classification helps refine patient prognosis but does not clarify the most appropriate treatment. Other impediments are related to clinical trials: glioblastoma patients are often excluded from trials due to their advanced age and limiting neurological symptoms; there is also the question of how best to measure treatment efficacy, which conditions the design of trials and can affect the acceptance of results by oncologists and medicine agencies. Other obstacles are related to the drugs themselves: most treatments cannot cross the blood-brain-barrier or the brain-to-tumor barrier to reach therapeutic drug levels in the tumor without producing toxicity; the drugs under study may have adverse metabolic interactions with those required for symptom control; identifying the target of the drug can be a complex issue. Additionally, the optimal method of treatment - local vs systemic therapy, the choice of chemotherapy, irradiation, targeted therapy, immunotherapy, or a combination thereof - is not yet clear in glioblastoma in comparison with other cancers. Finally, in addition to curing or stabilizing the disease, glioblastoma therapy should aim at maintaining the neurological status of the patients to enable them to return to their previous lifestyle. Here we review currently available treatments, obstacles in the search for new treatments, and novel lines of research that show promise for the future.
Collapse
Affiliation(s)
- Estela Pineda
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Ainhoa Hernández
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona, Spain
| | - Carmen Balaña
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain,Correspondence: Carmen Balaña, Institut Catala d’Oncologia (ICO) Badalona, Carretera Canyet s/n, Badalona, 08916, Spain, Tel +34 497 89 25, Fax +34 497 89 50, Email
| |
Collapse
|
39
|
Vargas López AJ, Fernández Carballal C, Valera Melé M, Rodríguez-Boto G. Survival analysis in high-grade glioma: The role of salvage surgery. Neurologia 2023; 38:21-28. [PMID: 36464224 DOI: 10.1016/j.nrleng.2020.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study addresses the survival of consecutive patients with high-grade gliomas (HGG) treated at the same institution over a period of 10 years. We analyse the importance of associated factors and the role of salvage surgery at the time of progression. METHODS We retrospectively analysed a series of patients with World Health Organization (WHO) grade III/IV gliomas treated between 2008 and 2017 at Hospital Gregorio Marañón (Madrid, Spain). Clinical, radiological, and anatomical pathology data were obtained from patient clinical histories. RESULTS Follow-up was completed in 233 patients with HGG. Mean age was 62.2 years. The median survival time was 15.4 months. Of 133 patients (59.6%) who had undergone surgery at the time of diagnosis, 43 (32.3%) underwent salvage surgery at the time of progression. This subgroup presented longer overall survival and survival after progression. Higher Karnofsky Performance Status score at diagnosis, a greater extent of surgical resection, and initial diagnosis of WHO grade III glioma were also associated with longer survival. CONCLUSIONS About one-third of patients with HGG may be eligible for salvage surgery at the time of progression. Salvage surgery in this subgroup of patients was significantly associated with longer survival.
Collapse
Affiliation(s)
- A J Vargas López
- Servicio de Neurocirugía, Hospital Universitario Torrecárdenas, Almería, Spain; Programa de Doctorado en Medicina y Cirugía, Universidad Autónoma de Madrid, Madrid, Spain.
| | - C Fernández Carballal
- Servicio de Neurocirugía, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Valera Melé
- Servicio de Neurocirugía, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - G Rodríguez-Boto
- Programa de Doctorado en Medicina y Cirugía, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Neurocirugía, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
40
|
Acharekar A, Bachal K, Shirke P, Thorat R, Banerjee A, Gardi N, Majumder A, Dutt S. Substrate stiffness regulates the recurrent glioblastoma cell morphology and aggressiveness. Matrix Biol 2023; 115:107-127. [PMID: 36563706 DOI: 10.1016/j.matbio.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Recurrent glioblastoma is highly aggressive with currently no specific treatment regime. Therefore, to identify novel therapeutic targets for recurrent GBM, we used a cellular model developed in our lab from commercially available cell line U87MG and patient-derived cultures that allows the comparison between radiation naïve (Parent) and recurrent GBM cells generated after parent cells are exposed to lethal dose of radiation. Total RNA-seq of parent and recurrent population revealed significant upregulation of cell-ECM interactions pathway in the recurrent population. These results led us to hypothesize that the physical microenvironment contributes to the aggressiveness of recurrent GBM. To verify this, we cultured parent and recurrent GBM cells on collagen-coated polyacrylamide gels mimicking the stiffness of normal brain (Young's modulus E = 0.5kPa) or tumorigenic brain (E = 10kPa) and tissue culture plastic dishes (E ∼ 1 GPa). We found that compared to parent cells, recurrent cells showed higher proliferation, invasion, migration, and resistance to EGFR inhibitor. Using orthotopic GBM mouse model and resection model, we demonstrate that recurrent cells cultured on 0.5kPa had higher in vivo tumorigenicity and recurrent disease progression than parent cells, whereas these differences were insignificant when parent and recurrent cells were cultured on plastic substrates. Furthermore, recurrent cells on 0.5kPa showed high expression of ECM proteins like Collagen, MMP2 and MMP9. These proteins were also significantly upregulated in recurrent patient biopsies. Additionally, the brain of mice injected with recurrent cells grown on 0.5kPa showed higher Young's moduli suggesting the ability of these cells to make the surrounding ECM stiffer. Total RNA-seq of parent and recurrent cells grown on plastic and 0.5kpa identified PLEKHA7 significantly upregulated specifically in recurrent cells grown on 0.5 kPa substrate. PLEKHA7 was also found to be high in recurrent GBM patient biopsies. Accordingly, PLEKHA7 knockdown reduced invasion and survival of recurrent GBM cells. Together, these data provide an in vitro model system that captures the observed in vivo and clinical behavior of recurrent GBM by mimicking mechanical microenvironment and identifies PLEKHA7 as a novel potential target for recurrent GBM.
Collapse
Affiliation(s)
- Anagha Acharekar
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Ketaki Bachal
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Shirke
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Archisman Banerjee
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Abhijit Majumder
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shilpee Dutt
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India..
| |
Collapse
|
41
|
Zeng YF, Wei XY, Guo QH, Chen SY, Deng S, Liu ZZ, Gong ZC, Zeng WJ. The efficacy and safety of anti-PD-1/PD-L1 in treatment of glioma: a single-arm meta-analysis. Front Immunol 2023; 14:1168244. [PMID: 37122727 PMCID: PMC10140424 DOI: 10.3389/fimmu.2023.1168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Objective This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors in patients with glioma. Methods PubMed, EMBASE, Web of Science, and the Cochrane library were searched from inception to January 2023 without language restriction. Primary outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs). The risk of bias was assessed by subgroup analysis, sensitivity analysis, and publication bias, including funnel plot, Egger's test, and Begg's test. Results A total of 20 studies involving 2,321 patients were included in this meta-analysis. In the analysis of the included phase III clinical trials, the forest plot showed that PD-1/PD-L1 inhibitors did not improve the OS (HR=1.15, 95% CI: 1.03-1.29, P=0.02, I2 = 14%) and PFS (HR=1.43, 95% CI: 1.03-1.99, P=0.03, I2 = 87%). In the single-arm analysis, the forest plot demonstrated that the 6-month OS was 71% (95% CI: 57%-83%, I2 = 92%), 1-year OS was 43% (95% CI: 33%-54%, I2 = 93%), and the 2-year OS was 27% (95% CI: 13%-44%, I2 = 97%). The pooled estimate of the median OS was 8.85 months (95% CI: 7.33-10.36, I2 = 91%). Furthermore, the result indicated that the 6-month PFS was 28% (95% CI: 18%-40%, I2 = 95%), 1-year PFS was 15% (95% CI: 8%-23%, I2 = 92%), and the 18-month PFS was 10% (95% CI: 3%-20%, I2 = 93%). The pooled estimate of the median PFS was 3.72 months (95% CI: 2.44-5.00, I2 = 99%). For ORR, the pooled estimate of ORR was 10% (95% CI: 2%-20%, I2 = 88%). We further analyzed the incidence of PD-1/PD-L1 inhibitor-related AEs, and the pooled incidence of AEs was 70% (95% CI: 58%-81%, I2 = 94%). The incidence of AEs ≥ grade 3 was 19% (95% CI: 11%-30%, I2 = 94%). The funnel plot for the median PFS and median OS was symmetric with no significant differences in Egger's test and Begg's test. The sensitivity analysis revealed that our results were stable and reliable. Conclusion The results of this meta-analysis suggest that anti-PD-1/PD-L1 therapy is relatively safe but could not prolong survival in glioma. More randomized controlled trials are needed to confirm our results. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023396057.
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Hao Guo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si-Yu Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Zheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wen-Jing Zeng,
| |
Collapse
|
42
|
Impact of fractionated stereotactic radiotherapy on activity of daily living and performance status in progressive/recurrent glioblastoma: a retrospective study. Radiat Oncol 2022; 17:201. [PMID: 36474245 PMCID: PMC9727986 DOI: 10.1186/s13014-022-02169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prognosis of recurrent glioblastoma (GBM) is poor, with limited options of palliative localized or systemic treatments. Survival can be improved by a second localized treatment; however, it is not currently possible to identify which patients would benefit from this approach. This study aims to evaluate which factors lead to a lower Karnofsky performance status (KPS) score after fractionated stereotactic RT (fSRT). METHODS We retrospectively collected data from patients treated with fSRT for recurrent GBM at the Institut de Cancérologie de Lorraine between October 2010 and November 2017 and analyzed which factors were associated with a lower KPS score. RESULTS 59 patients received a dose of 25 Gy in 5 sessions spread over 5-7 days (80% isodose). The median time from the end of primary radiotherapy to the initiation of fSRT was 10.7 months. The median follow-up after fSRT initiation was 8.8 months. The incidence of KPS and ADL impairment in all patients were 51.9% and 37.8% respectively with an adverse impact of PTV size on KPS (HR = 1.57 [95% CI 1.19-2.08], p = 0.028). Only two patients showed early grade 3 toxicity and none showed grade 4 or late toxicity. The median overall survival time, median overall survival time after fSRT, median progression-free survival and institutionalization-free survival times were 25.8, 8.8, 3.9 and 7.7 months, respectively. Initial surgery was associated with better progression-free survival (Hazard ratio (HR) = 0.48 [95% CI 0.27-0.86], p = 0.013). CONCLUSIONS A larger PTV should predicts lower KPS in the treatment of recurrent GBM using fSRT.
Collapse
|
43
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
44
|
Clavreul A, Autier L, Lemée JM, Augereau P, Soulard G, Bauchet L, Figarella-Branger D, Menei P, Network FGB. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers (Basel) 2022; 14:cancers14225510. [PMID: 36428604 PMCID: PMC9688811 DOI: 10.3390/cancers14225510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Safe maximal resection followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) is universally accepted as the first-line treatment for glioblastoma (GB), but no standard of care has yet been defined for managing recurrent GB (rGB). We used the French GB biobank (FGB) to evaluate the second-line options currently used, with a view to defining the optimal approach and future directions in GB research. We retrospectively analyzed data for 338 patients with de novo isocitrate dehydrogenase (IDH)-wildtype GB recurring after TMZ chemoradiotherapy. Cox proportional hazards models and Kaplan-Meier analyses were used to investigate survival outcomes. Median overall survival after first surgery (OS1) was 19.8 months (95% CI: 18.5-22.0) and median OS after first progression (OS2) was 9.9 months (95% CI: 8.8-10.8). Two second-line options were noted for rGB patients in the FGB: supportive care and treatments, with systemic treatment being the treatment most frequently used. The supportive care option was independently associated with a shorter OS2 (p < 0.001). None of the systemic treatment regimens was unequivocally better than the others for rGB patients. An analysis of survival outcomes based on time to first recurrence (TFR) after chemoradiotherapy indicated that survival was best for patients with a long TFR (≥18 months; median OS1: 44.3 months (95% CI: 41.7-56.4) and median OS2: 13.0 months (95% CI: 11.2-17.7), but that such patients constituted only a small proportion of the total patient population (13.0%). This better survival appeared to be more strongly associated with response to first-line treatment than with response to second-line treatment, indicating that the recurring tumors were more aggressive and/or resistant than the initial tumors in these patients. In the face of high rates of treatment failure for GB, the establishment of well-designed large cohorts of primary and rGB samples, with the help of biobanks, such as the FGB, taking into account the TFR and survival outcomes of GB patients, is urgently required for solid comparative biological analyses to drive the discovery of novel prognostic and/or therapeutic clinical markers for GB.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-241-354822; Fax: +33-241-354508
| | - Lila Autier
- Département de Neurologie, CHU, 49933 Angers, France
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | - Paule Augereau
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | | | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, INSERM, 34295 Montpellier, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13385 Marseille, France
- Aix-Marseille University, CNRS, INP, Inst. Neurophysiopathol, 13005 Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | | |
Collapse
|
45
|
Smith K, Nakaji P, Thomas T, Pinnaduwage D, Wallstrom G, Choi M, Zabramski J, Chen C, Brachman D. Safety and patterns of survivorship in recurrent GBM following resection and surgically targeted radiation therapy: Results from a prospective trial. Neuro Oncol 2022; 24:S4-S15. [PMID: 36322102 PMCID: PMC9629483 DOI: 10.1093/neuonc/noac133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Treatment of recurrent glioblastoma (GBM) remains problematic with survival after additional therapy typically less than 12 months. We prospectively evaluated whether outcomes might be improved with resection plus permanent implantation of a novel radiation device utilizing the gamma-emitting isotope Cs-131 embedded within bioresorbable collagen tiles. METHODS Recurrent histologic GBM were treated in a single-arm trial. Following radiation, the surgical bed was lined with the tiles. Subsequent treatments were at the treating physician's discretion. RESULTS 28 patients were treated (20 at first recurrence, range 1-3). Median age was 58 years, KPS was 80, female:male ratio was 10:18. Methylguanine methyltransferase (MGMT) was methylated in 11%, unmethylated in 18%, and unknown in 71%. Post implant, 17 patients (61%) received ≥1 course of systemic therapy. For all patients, Kaplan-Meier estimates of median time to local failure were 12.1 months, post-implant survival was 10.7 months for all patients and 15.1 months for patients who received systemic therapy; for all patients, median overall survival from diagnosis was 25.0 months (range 9.1-143.1). Sex, age, and number of prior progressions were not statistically significant. Local control was continuously maintained in 46% of patients. Two deaths within 30 days occurred, one from intracranial hemorrhage and one after persistent coma. Three symptomatic adverse events occurred: one wound infection requiring surgery and two late radiation brain injury, resolved non-surgically. CONCLUSION This pre-commercial trial demonstrated acceptable safety and favorable post-treatment local control and survival. The device has received FDA clearance for use in newly diagnosed malignant and all recurrent intracranial neoplasms.
Collapse
Affiliation(s)
- Kris Smith
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Peter Nakaji
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Theresa Thomas
- Radiation Oncology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dilini Pinnaduwage
- Radiation Oncology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Garrick Wallstrom
- Division of Biostatistics, Statistics and Data Corporation, Tempe, Arizona, USA
| | - Mehee Choi
- Radiation Oncology, GT Medical Technologies, Tempe, Arizona, USA
| | - Joseph Zabramski
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Clark Chen
- Department of Neurological Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Brachman
- Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Radiation Oncology, GT Medical Technologies, Tempe, Arizona, USA
| |
Collapse
|
46
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers (Basel) 2022; 14:5377. [PMID: 36358795 PMCID: PMC9655599 DOI: 10.3390/cancers14215377] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common histologic type of all gliomas and contributes to 57.3% of all cases. Despite the standard management based on surgical resection and radiotherapy, it is related to poor outcome, with a 5-year relative survival rate below 6.9%. In order to improve the overall outcome for patients, the new therapeutic strategies are needed. Herein, we describe the current state of knowledge on novel targeted therapies in glioblastoma. Based on recent studies, we compared treatment efficacy measured by overall survival and progression-free survival in patients treated with selected potential antitumor drugs. The results of the application of the analyzed inhibitors are highly variable despite the encouraging conclusions of previous preclinical studies. This paper focused on drugs that target major glioblastoma kinases. As far, the results of some BRAF inhibitors are favorable. Vemurafenib demonstrated a long-term efficacy in clinical trials while the combination of dabrafenib and trametinib improves PFS compared with both vemurafenib and dabrafenib alone. There is no evidence that any MEK inhibitor is effective in monotherapy. According to the current state of knowledge, BRAF and MEK inhibition are more advantageous than BRAF inhibitor monotherapy. Moreover, mTOR inhibitors (especially paxalisib) may be considered a particularly important group. Everolimus demonstrated a partial response in a significant proportion of patients when combined with bevacizumab, however its actual role in the treatment is unclear. Neither nintedanib nor pemigatinib were efficient in treatment of GBM. Among the anti-VEGF drugs, bevacizumab monotherapy was a well-tolerated option, significantly associated with anti-GBM activity in patients with recurrent GBM. The efficacy of aflibercept and pazopanib in monotherapy has not been demonstrated. Apatinib has been proven to be effective and tolerable by a single clinical trial, but more research is needed. Lenvatinib is under trial. Finally, promising results from a study with regorafenib may be confirmed by the ongoing randomized AGILE trial. The studies conducted so far have provided a relatively wide range of drugs, which are at least well tolerated and demonstrated some efficacy in the randomized clinical trials. The comprehensive understanding of the molecular biology of gliomas promises to further improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Wieteska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Monika Wacławska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
47
|
Ciammella P, Cozzi S, Botti A, Giaccherini L, Sghedoni R, Orlandi M, Napoli M, Pascarella R, Pisanello A, Russo M, Cavallieri F, Ruggieri MP, Cavuto S, Savoldi L, Iotti C, Iori M. Safety of Inhomogeneous Dose Distribution IMRT for High-Grade Glioma Reirradiation: A Prospective Phase I/II Trial (GLIORAD TRIAL). Cancers (Basel) 2022; 14:cancers14194604. [PMID: 36230525 PMCID: PMC9562035 DOI: 10.3390/cancers14194604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor, and despite advances in imaging techniques and treatment options, the outcome remains poor and recurrence is inevitable. Salvage therapy presents a challenge, and re-irradiation can be a therapeutic option in recurrent GBM. The decision-making process for re-irradiation is a challenge for radiation oncologists due to the expected toxicity of a second course of radiotherapy and the limited radiation tolerance of normal tissue; nevertheless, it is being increasingly used, as several studies have demonstrated its feasibility. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation radiotherapy in recurrent GBM patients after conventional concurrent chemoradiation. Twelve patients were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose range of 30–50 Gy over 5 days using the IMRT (arc VMAT) technique using dose painting planning. The treatment was well tolerated. No toxicities greater than 3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively. Our phase I study demonstrated an acceptable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS. Abstract Glioblastoma multiforme (GBM) is the most aggressive astrocytic primary brain tumor, and concurrent temozolomide (TMZ) and radiotherapy (RT) followed by maintenance of adjuvant TMZ is the current standard of care. Despite advances in imaging techniques and multi-modal treatment options, the median overall survival (OS) remains poor. As an alternative to surgery, re-irradiation (re-RT) can be a therapeutic option in recurrent GBM. Re-irradiation for brain tumors is increasingly used today, and several studies have demonstrated its feasibility. Besides differing techniques, the published data include a wide range of doses, emphasizing that no standard approach exists. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation in recurrent GBM. From 2016 to 2019, 12 patients met the inclusion criteria and were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose of 30 Gy (up to 50 Gy) over 5 days using the IMRT (arc VMAT) technique. A dose painting by numbers (DPBN)/dose escalation plan were performed, and a continuous relation between the voxel intensity of the functional image set and the risk of recurrence in that voxel were used to define target and dose distribution. Re-irradiation was well tolerated in all treated patients. No toxicities greater than G3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively; 3-, 6-, and 12-month OS2 were 92%, 75%, and 42%, respectively; and 3-, 6-, and 12-month PFS2 were 83%, 42%, and 8%, respectively. Our work demonstrated a tolerable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS.
Collapse
Affiliation(s)
- Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-3297317608
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lucia Giaccherini
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marco Russo
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Paola Ruggieri
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Silvio Cavuto
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luisa Savoldi
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
48
|
Waltenberger M, Furkel J, Röhrich M, Salome P, Debus C, Tawk B, Gahlawat AW, Kudak A, Dostal M, Wirkner U, Schwager C, Herold-Mende C, Combs SE, König L, Debus J, Haberkorn U, Abdollahi A, Knoll M. The impact of tumor metabolic activity assessed by 18F-FET amino acid PET imaging in particle radiotherapy of high-grade glioma patients. Front Oncol 2022; 12:901390. [PMID: 36203443 PMCID: PMC9531169 DOI: 10.3389/fonc.2022.901390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Selective uptake of (18)F-fluoro-ethyl-tyrosine (18F-FET) is used in high-grade glioma (HGG) to assess tumor metabolic activity via positron emission tomography (PET). We aim to investigate its value for target volume definition, as a prognosticator, and associations with whole-blood transcriptome liquid biopsy (WBT lbx) for which we recently reported feasibility to mirror tumor characteristics and response to particle irradiation in recurrent HGG (rHGG). Methods 18F-FET-PET data from n = 43 patients with primary glioblastoma (pGBM) and n = 33 patients with rHGG were assessed. pGBM patients were irradiated with photons and sequential proton/carbon boost, and rHGG patients were treated with carbon re-irradiation (CIR). WBT (Illumina HumanHT-12 Expression BeadChips) lbx was available for n = 9 patients from the rHGG cohort. PET isocontours (40%–70% SUVmax, 10% steps) and MRI-based treatment volumes (MRIvol) were compared using the conformity index (CI) (pGBM, n = 16; rHGG, n = 27). Associations with WBT lbx data were tested on gene expression level and inferred pathways activity scores (PROGENy) and from transcriptome estimated cell fractions (CIBERSORT, xCell). Results In pGBM, median SUVmax was higher in PET acquired pre-radiotherapy (4.1, range (R) 1.5–7.8; n = 20) vs. during radiotherapy (3.3, R 1.5–5.7, n = 23; p = 0.03) and in non-resected (4.7, R 2.9–7.9; n = 11) vs. resected tumors (3.3, R 1.5–7.8, n = 32; p = 0.01). In rHGG, a trend toward higher SUVmax values in grade IV tumors was observed (p = 0.13). Median MRIvol was 32.34 (R 8.75–108.77) cm3 in pGBM (n = 16) and 20.77 (R 0.63–128.44) cm3 in rHGG patients (n = 27). The highest median CI was observed for 40% (pGBM, 0.31) and 50% (rHGG, 0.43, all tumors) isodose, with 70% (40%) isodose in grade III (IV) rHGG tumors (median CI, 0.38 and 0.49). High SUVmax was linked to shorter survival in pGBM (>3.3, p = 0.001, OR 6.0 [2.1–17.4]) and rHGG (>2.8, p = 0.02, OR 4.1 [1.2–13.9]). SUVmax showed associations with inferred monocyte fractions, hypoxia, and TGFbeta pathway activity and links to immune checkpoint gene expression from WBT lbx. Conclusion The benefits of 18F-FET-PET imaging on gross tumor volume (GTV) definition for particle radiotherapy warrant further evaluation. SUVmax might assist in prognostic stratification of HGG patients for particle radiotherapy, highlights heterogeneity in rHGG, and is positively associated with unfavorable signatures in peripheral whole-blood transcriptomes.
Collapse
Affiliation(s)
- Maria Waltenberger
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Jennifer Furkel
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Salome
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Bouchra Tawk
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aoife Ward Gahlawat
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Kudak
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
| | - Matthias Dostal
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
| | - Ute Wirkner
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Experimental Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum Munich, Munich, Germany
| | - Laila König
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Maximilian Knoll,
| |
Collapse
|
49
|
She L, Su L, Liu C. Bevacizumab combined with re-irradiation in recurrent glioblastoma. Front Oncol 2022; 12:961014. [PMID: 36046037 PMCID: PMC9423039 DOI: 10.3389/fonc.2022.961014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma is characterized by rich vasculature and abnormal vascular structure and function. Currently, there is no standard treatment for recurrent glioblastoma (rGBM). Bevacizumab (BEV) has established role of inhibiting neovascularization, alleviating hypoxia in the tumor area and activating the immune microenvironment. BEV may exert synergistic effects with re-irradiation (re-RT) to improve the tumor microenvironment for rGBM. Purpose The purpose of this study was to evaluate the safety, tolerability, and efficacy of a combination of BEV and re-RT for rGBM treatment. Methods In this retrospective study, a total of 26 rGBM patients with surgical pathologically confirmed glioblastoma and at least one event of recurrence were enrolled. All patients were treated with re-RT in combination with BEV. BEV was administered until progression or serious adverse events. Results Median follow-up was 21.9 months for all patients, whereas median progression-free survival (PFS) was 8.0 months (95% confidence interval [CI]: 6.5–9.5 months). In addition, the 6-month and 1-year PFS rates were 65.4% and 28.2%, respectively. The median overall survival (OS), 6-month OS rate, and 1-year OS rate were 13.6 months (95% CI: 10.2–17.0 months), 92.3%, and 67.5%, respectively. The patient showed good tolerance during the treatment with no grade > 3 grade side event and radiation necrosis occurrence rate of 0%. Combined treatment of gross total resection (GTR) before re-RT and concurrent temozolomide during re-RT was an independent prognostic factor that affected both OS and PFS in the whole cohort (OS: 0.067, 95% CI: 0.009–0.521, p = 0.010; PFS: 0.238, 95% CI: 0.076–0.744, p = 0.038). Conclusion In this study, re-RT combined with concurrent and maintenance BEV treatment was safe, tolerable, and effective in rGBM patients. Moreover, GTR before re-RT and selective concurrent temozolomide could further improve patient PFS and OS.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Tian Y, Ge Z, Xu M, Ge X, Zhao M, Ding F, Yin J, Wang X, You Y, Shi Z, Qian X. Diallyl trisulfide sensitizes radiation therapy on glioblastoma through directly targeting thioredoxin 1. Free Radic Biol Med 2022; 189:157-168. [PMID: 35921994 DOI: 10.1016/j.freeradbiomed.2022.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy is a standard-of-care treatment approach for glioblastoma (GBM) patients, but therapeutic resistance to radiotherapy remains a major challenge. Here we demonstrate that diallyl trisulfide (DATS) directly conjugates with cysteine (C) 32 and C35 (C32/35) residues of thioredoxin 1 (Trx1) through Michael addition reactions. Due to localizing in activity center of Trx1, the conjugation between DATS and C32/35 results in inhibition of Trx1 activity, therefore disturbing thioredoxin system and leading to accumulated levels of reactive oxygen species (ROS). High levels of Trx1 expression are correlated with poor prognosis of glioma patients. Notably, we reveal that DATS synergistically enhances irradiation (IR)-induced ROS accumulation, apoptosis, DNA damage, as well as inhibition of tumor growth of GBM cells. These findings highlight the potential benefits of DATS in sensitizing radiotherapy of GBM patients.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengjie Zhao
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fangshu Ding
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianxing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; National Health Commission Key Laboratory of Antibody Technologies, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|