1
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Carlos-Escalante JA, Mejía-Pérez SI, Soto-Reyes E, Guerra-Calderas L, Cacho-Díaz B, Torres-Arciga K, Montalvo-Casimiro M, González-Barrios R, Reynoso-Noverón N, Ruiz-de la Cruz M, Díaz-Velásquez CE, Vidal-Millán S, Álvarez-Gómez RM, Sánchez-Correa TE, Pech-Cervantes CH, Soria-Lucio JA, Pérez-Castillo A, Salazar AM, Arriaga-Canon C, Vaca-Paniagua F, González-Arenas A, Ostrosky-Wegman P, Mohar-Betancourt A, Herrera LA, Corona T, Wegman-Ostrosky T. Deep DNA sequencing of MGMT, TP53 and AGT in Mexican astrocytoma patients identifies an excess of genetic variants in women and a predictive biomarker. J Neurooncol 2023; 161:165-174. [PMID: 36525166 DOI: 10.1007/s11060-022-04214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Astrocytomas are a type of malignant brain tumor with an unfavorable clinical course. The impact of AGT and MGMT somatic variants in the prognosis of astrocytoma is unknown, and it is controversial for TP53. Moreover, there is a lack of knowledge regarding the molecular characteristics of astrocytomas in Mexican patients. METHODS We studied 48 Mexican patients, men and women, with astrocytoma (discovery cohort). We performed DNA deep sequencing in tumor samples, targeting AGT, MGMT and TP53, and we studied MGMT gene promoter methylation status. Then we compared our findings to a cohort which included data from patients with astrocytoma from The Cancer Genome Atlas (validation cohort). RESULTS In the discovery cohort, we found a higher number of somatic variants in AGT and MGMT than in the validation cohort (10.4% vs < 1%, p < 0.001), and, in both cohorts, we observed only women carried variants AGT variants. We also found that the presence of either MGMT variant or promoter methylation was associated to better survival and response to chemotherapy, and, in conjunction with TP53 variants, to progression-free survival. CONCLUSIONS The occurrence of AGT variants only in women expands our knowledge about the molecular differences in astrocytoma between men and women. The increased prevalence of AGT and MGMT variants in the discovery cohort also points towards possible distinctions in the molecular landscape of astrocytoma among populations. Our findings warrant further study.
Collapse
Affiliation(s)
| | - Sonia Iliana Mejía-Pérez
- Departamento de Enseñanza, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Lissania Guerra-Calderas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Bernardo Cacho-Díaz
- Unidad de Neuro-Oncología, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Miguel Ruiz-de la Cruz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénsis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Clara Estela Díaz-Velásquez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Thalía Estefanía Sánchez-Correa
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Claudio Hiram Pech-Cervantes
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - José Antonio Soria-Lucio
- Departamento de Traumatología y Ortopedia, Hospital General Regional #2, Instituto Mexicano del Seguro Social, 14310, Mexico City, Mexico
| | - Areli Pérez-Castillo
- Departamento de Cirugía, Hospital General Regional #1, Instituto Mexicano del Seguro Social, 61303, Charo, Mexico
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Mohar-Betancourt
- Unidad de Epidemiología e Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Luis A Herrera
- Dirección General, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", 14269, Mexico City, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Inhibition of the angiotensin II type 2 receptor AT 2R is a novel therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 2022; 119:e2116289119. [PMID: 35917342 PMCID: PMC9371711 DOI: 10.1073/pnas.2116289119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or β-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.
Collapse
|
4
|
Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B, Carroll T, Tran A, Trivedi M, Speth RC. Alterations in Gene Expression of Renin-Angiotensin System Components and Related Proteins in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:9987115. [PMID: 34285715 PMCID: PMC8277508 DOI: 10.1155/2021/9987115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
MATERIALS AND METHODS Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was compared statistically. RESULTS Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin), and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was downregulated in CRC specimens. CONCLUSIONS Presuming gene expression parallel protein expression, these results suggest that increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP, and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of CRC.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gabriela Perez
- Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, USA
| | - Andres Rodriguez
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | | | | | | | - Timothy Carroll
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alice Tran
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Trivedi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
5
|
Khalili-Tanha G, Khalili-Tanha N, Nazari SE, Chaeichi-Tehrani N, Khazaei M, Aliakbarian M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. The Therapeutic Potential of Targeting the Angiotensin Pathway as a Novel Therapeutic Approach to Ameliorating Post-Surgical Adhesions. Curr Pharm Des 2021; 28:180-186. [PMID: 34176457 DOI: 10.2174/1381612827666210625153011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Post-surgical adhesion is a common complication after abdominal or pelvic surgeries. Despite improvements in surgical techniques or the application of physical barriers, little improvements have been achieved. It causes bowel obstruction, pelvic pain, and infertility in women and has an adverse effect on the quality of life. Renin-Angiotensin System (RAS) is traditionally considered as a blood pressure regulator. However, recent studies also indicate that the RAS plays a vital role in other processes, including oxidative stress, fibrosis, proliferation, inflammation, and the wound healing process. Angiotensin II (Ang II) is the main upstream effector of the RAS that can bind to the AT1 receptor (ATIR). A growing body of evidence has revealed that targeting Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II type 1 Receptor Blockers (ARBs), and Direct Renin Inhibitors (DRIs) can prevent post-surgical adhesions. Here we provide an overview of the therapeutic effect of RAS antagonists for adhesion. METHODS PubMed, EMBASE, and the Cochrane library were reviewed to identify potential agents targeting the RAS system as a potential approach for post-surgical adhesion. RESULTS Available evidence suggests the involvement of the RAS signaling pathway in inflammation, proliferation, and fibrosis pathways as well as in post-surgical adhesions. Several FDA-approved drugs are being used for targeting the RAS system. Some of them are being tested in different models to reduce fibrosis and improve adhesion after surgery, including Telmisartan, valsartan, and enalapril. CONCLUSION Identification of the pathological causes of post-surgical adhesion and the potential role of targeting Renin-Angiotensin System may help prevent this problem. Based on the pathological function of RAS signaling after surgeries, the administration of ARBs may be considered as a novel and efficient approach to prevent postsurgical adhesions. Pre-clinical and clinical studies should be carried out to have better information on the clinical significance of this therapy against post-surgical adhesion formation.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Medical Genetics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Pinheiro L, Perdomo-Pantoja A, Casaos J, Huq S, Paldor I, Vigilar V, Mangraviti A, Wang Y, Witham TF, Brem H, Tyler B. Captopril inhibits Matrix Metalloproteinase-2 and extends survival as a temozolomide adjuvant in an intracranial gliosarcoma model. Clin Neurol Neurosurg 2021; 207:106771. [PMID: 34198223 DOI: 10.1016/j.clineuro.2021.106771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Captopril is a well-characterized, FDA-approved drug that has demonstrated promise as a repurposed oncology therapeutic. Captopril's known anti-cancer effects include inhibition of Matrix Metalloproteinase-2 (MMP-2), an endopeptidase which selectively breaks down the extracellular matrix to promote cell migration. MMP-2 is a known therapeutic target in gliomas, tumors with significant clinical need. Using an aggressive gliosarcoma model, we assessed captopril's effects on MMP-2 expression in vitro and in vivo as well as its efficacy as an adjuvant in combination therapy regimens in vivo. METHODS Following captopril treatment, MMP-2 protein expression and migratory capabilities of 9 L gliosarcoma cells were assessed in vitro via western blots and scratch wound assays, respectively. Rats were intracranially implanted with 9 L gliosarcoma tumors, and survival was assessed in the following groups: control; captopril (30 mg/kg/day); temozolomide (TMZ) (50 mg/kg/day), and captopril+TMZ. In vivo experiments were accompanied by immunohistochemistry for MMP-2 from brain tissue. RESULTS In vitro, captopril decreased MMP-2 protein expression and reduced migratory capacity in 9 L gliosarcoma cells. In a gliosarcoma animal model, captopril decreased MMP-2 protein expression and extended survival as a TMZ adjuvant relative to untreated controls, captopril monotherapy, and TMZ monotherapy groups (27.5 versus 14 (p < 0.001), 16 (p < 0.001), and 23 (p = 0.018) days, respectively). CONCLUSIONS Captopril decreases gliosarcoma cell migration, which may be mediated by reduction in MMP-2 protein expression. Captopril provided a survival advantage as a TMZ adjuvant in a rat intracranial gliosarcoma model. Captopril may represent a promising potential adjuvant to TMZ therapy in gliosarcoma as a modulator of the MMP-2 pathway.
Collapse
Affiliation(s)
- Leon Pinheiro
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Joshua Casaos
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sakibul Huq
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Iddo Paldor
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Veronica Vigilar
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Beltrán JQ, Ogando-Rivas E, Nettel-Rueda B, Velasco-Campos F, Navarro-Olvera JL, Aguado-Carrillo G, Soriano-Sánchez JA, Alpizar-Aguirre A, Carrillo-Ruiz JD. Women in Neurosurgery: First Neurosurgeon in Latin America and Current Mexican Leaders. World Neurosurg 2021; 150:114-120. [PMID: 33781943 DOI: 10.1016/j.wneu.2021.03.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND History has taught us that Mexican culture has been largely supported by women, despite gender prejudice from the society. Neurosurgery has not been the exception. Therefore, we investigated the challenges and influence of female neurosurgeons in Mexico. METHODS We conducted a review of the literature and an analysis of the internal database of the Mexican Society of Neurological Surgery focusing on 3 topics: 1) the historical presence of women and gender inequality in Mexico; 2) the life and legacy of the woman who became the first neurosurgeon in Mexico and in Latin America; and 3) the participation of women in neurosurgery in the past 3 decades. RESULTS In Latin America, the first woman in neurosurgery was María Cristina García-Sancho, who completed her neurosurgical training in 1951. Currently, women represent 6.2% of the total members of the Mexican Society of Neurological Surgery (MSNS). This percentage is still low, although data collected in this study suggest that it might increase in the next few years because 16.7% of Board Directors of the MSNS are women, the next elected president is a female neurosurgeon, and 14.5% of neurosurgery residents are women. CONCLUSIONS Although a steady increase has occurred of women in neurosurgery in Mexico, there is still work to do, especially to overcome the barriers related to the old assumptions of the cultural and social roles of women.
Collapse
Affiliation(s)
- Jesús Q Beltrán
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico; Direction of Research, General Hospital of Mexico, Mexico City, Mexico
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Florida, USA
| | - Barbara Nettel-Rueda
- Department of Neurosurgery, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Francisco Velasco-Campos
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - José L Navarro-Olvera
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - Gustavo Aguado-Carrillo
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - José A Soriano-Sánchez
- Spine Clinic, The American-British Cowdray Medical Center IAP, Campus Santa Fe, Mexico City, Mexico
| | | | - José D Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico; Direction of Research, General Hospital of Mexico, Mexico City, Mexico; Direction of Faculty of Health Sciences, Anahuac University, Mexico City, Mexico.
| |
Collapse
|
8
|
Ramírez-Expósito MJ, Carrera-González MP, Martínez-Martos JM. Sex differences exist in brain renin-angiotensin system-regulating aminopeptidase activities in transplacental ethyl-nitrosourea-induced gliomas. Brain Res Bull 2021; 168:1-7. [PMID: 33359638 DOI: 10.1016/j.brainresbull.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The renin angiotensin system (RAS) is emerging as an important target for the treatment of glioma. We had described that the local RAS is involved in vivo in tumor growth in the rat model of experimental C6 glioma implanted at the subcutaneous region, through the modification of several proteolytic regulatory enzymes of aminopeptidase type. METHODS We analyze RAS-regulating aminopeptidase activities in plasma and brain tissue of control male and female rats and rats with transplacental ethylnitrosourea-induced gliomas. RESULTS No differences were found either the mean total number of tumors per animal or the tumor volume between male and female animals. However, we have found increased levels in aspartyl aminopeptidase in both males and females and of aminopeptidase B only in males. On the contrary, decreased levels were found in aminopeptidase N and insulin-regulated aminopeptidase activities in both males and females, whereas aminopeptidase A only decreased in females. Decreased levels of aminopeptidase N, aminopeptidase B and insulin-regulated aminopeptidase were also shown in plasma of only female rats. CONCLUSIONS Under the complexity of RAS cascade, the changes found suggest the predominant actions of angiotensin III against a decreased action of angiotensin II and angiotensin IV. We conclude that angiotensin peptides are involved in tumor growth in this rat model of glioma and that their role in tumor growth can be analyzed through their corresponding proteolytic regulatory enzymes, which make them new and attractive therapeutic targets beyond the use or angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs).
Collapse
Affiliation(s)
- M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M P Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain; Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain.
| |
Collapse
|
9
|
Khoshghamat N, Jafari N, Toloue-Pouya V, Azami S, Mirnourbakhsh SH, Khazaei M, Ferns GA, Rajabian M, Avan A. The therapeutic potential of renin-angiotensin system inhibitors in the treatment of pancreatic cancer. Life Sci 2021; 270:119118. [PMID: 33548284 DOI: 10.1016/j.lfs.2021.119118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is among the most lethal malignancies with poor prognosis and patients become chemoresistant to current therapies, supporting further investigations to identify new therapeutic regimens in the treatment of this condition. Preclinical and clinical studies now appear to support the role of the renin-angiotensin system (RAS) in the regulation of tumor growth, angiogenesis, and metastasis in different malignancies including pancreatic cancer. These studies suggest that RAS blockers; Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs); could have anti-carcinogenic effects and improve clinical outcomes in the management of pancreatic cancer. Here we provided an overview of ACE inhibitors and ARBs as a potential therapeutic option in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Negar Khoshghamat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Toloue-Pouya
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Azami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Majid Rajabian
- Department of Biology, Faculty of Science, Payame Noor University Po Box 19395-3697 Tehran, IRAN
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10:148. [PMID: 33380340 PMCID: PMC7772801 DOI: 10.1186/s13578-020-00519-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the host functional receptor for the new virus SARS-CoV-2 causing Coronavirus Disease 2019. ACE2 is expressed in 72 different cell types. Some factors that can affect the expression of the ACE2 are: sex, environment, comorbidities, medications (e.g. anti-hypertensives) and its interaction with other genes of the renin-angiotensin system and other pathways. Different factors can affect the risk of infection of SARS-CoV-2 and determine the severity of the symptoms. The ACE2 enzyme is a negative regulator of RAS expressed in various organ systems. It is with immunity, inflammation, increased coagulopathy, and cardiovascular disease. In this review, we describe the genetic and molecular functions of the ACE2 receptor and its relation with the physiological and pathological conditions to better understand how this receptor is involved in the pathogenesis of COVID-19. In addition, it reviews the different comorbidities that interact with SARS-CoV-2 in which also ACE2 plays an important role. It also describes the different factors that interact with the virus that have an influence in the expression and functional activities of the receptor. The goal is to provide the reader with an understanding of the complexity and importance of this receptor.
Collapse
Affiliation(s)
| | - Sandra Lopez-León
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | - Angelica Cuapio
- Center of Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Talia Wegman-Ostrosky
- Department of Basic Research, Instituto Nacional de Cancerología, 22 San Fernando Avenue, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
11
|
Dusart P, Hallström BM, Renné T, Odeberg J, Uhlén M, Butler LM. A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Rep 2020; 29:1690-1706.e4. [PMID: 31693905 DOI: 10.1016/j.celrep.2019.09.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023] Open
Abstract
Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate" between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Björn Mikael Hallström
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; The University Hospital of North Norway (UNN), PB100, 9038 Tromsø, Norway; Department of Hematology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| |
Collapse
|
12
|
Perdomo-Pantoja A, Chara A, Kalb S, Casaos J, Ahmed AK, Pennington Z, Cottrill E, Shah S, Jiang B, Manbachi A, Zygourakis C, Witham TF, Theodore N. The effect of renin-angiotensin system blockers on spinal cord dysfunction and imaging features of spinal cord compression in patients with symptomatic cervical spondylosis. Spine J 2020; 20:519-529. [PMID: 31821888 DOI: 10.1016/j.spinee.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cervical spondylosis may lead to spinal cord compression, poor vascular perfusion, and ultimately, cervical myelopathy. Studies suggest a neuroprotective effect of renin-angiotensin system (RAS) inhibitors in the brain, but limited data exist regarding their impact on the spinal cord. PURPOSE To investigate whether RAS blockers and other antihypertensive drugs are correlated with preoperative functional status and imaging markers of cord compression in patients with symptomatic cervical spondylosis. STUDY DESIGN Retrospective observational study. PATIENT SAMPLE Individuals with symptomatic degenerative cervical stenosis who underwent surgery. OUTCOME MEASURES Imaging features of spinal cord compression and functional status (modified Japanese Orthopedic Association [mJOA] and Nurick grading scales). METHODS Two hundred sixty-six operative patients with symptomatic degenerative cervical stenosis were included. Demographic data, comorbidities, antihypertensive medications, and functional status (including mJOA and Nurick grading scales) were collected. We evaluated canal compromise, cord compromise, surface area of T2 signal cord change, and pixel intensity of signal cord change compared with normal cord on T2-weighted magnetic resonance imaging sequences. RESULTS Of 266 patients, 41.7% were women, 58.3% were men; median age was 57.2 years; 20.6% smoked tobacco; 24.7% had diabetes mellitus. One hundred forty-nine patients (55.8%) had hypertension, 142 (95.3%) of these were taking antihypertensive medications (37 angiotensin-II receptor blockers [ARBs], 44 angiotensin-converting enzyme inhibitors, and 61 other medications). Patients treated with ARBs displayed a higher signal intensity ratio (ie, less signal intensity change in the compressed cord area) compared with untreated patients without hypertension (p=.004). Patients with hypertension had worse preoperative mJOA and Nurick scores than those without (p<.001). In the multivariate analysis, ARBs remained an independent beneficial factor for lower signal intensity change (p=.04), whereas hypertension remained a risk factor for worse preoperative neurological status (p<.01). CONCLUSIONS In our study, patients with hypertension who were treated with RAS inhibitors had decreased T2-weighted signal intensity change than untreated patients without hypertension. Patients with hypertension also had worse preoperative functional status. Prospective case-control studies may deepen understanding of RAS modulators in the imaging and functional status of chronic spinal cord compression.
Collapse
Affiliation(s)
| | - Alejandro Chara
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Samuel Kalb
- Division of Neurological Surgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joshua Casaos
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Zachary Pennington
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Sohan Shah
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Bowen Jiang
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Corinna Zygourakis
- Department of Neurosurgery, Stanford University School Of Medicine, Stanford, CA, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Tan DC, Roth IM, Wickremesekera AC, Davis PF, Kaye AH, Mantamadiotis T, Stylli SS, Tan ST. Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the Renin-Angiotensin System. Cells 2019; 8:cells8111364. [PMID: 31683669 PMCID: PMC6912312 DOI: 10.3390/cells8111364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.
Collapse
Affiliation(s)
- David Ch Tan
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
| | - Imogen M Roth
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Agadha C Wickremesekera
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem 91120, Israel.
| | - Theo Mantamadiotis
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5040, New Zealand.
| |
Collapse
|
14
|
PTB-AS, a Novel Natural Antisense Transcript, Promotes Glioma Progression by Improving PTBP1 mRNA Stability with SND1. Mol Ther 2019; 27:1621-1637. [PMID: 31253583 DOI: 10.1016/j.ymthe.2019.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/31/2023] Open
Abstract
Glioma, the most common primary malignancy in the brain, has high recurrence and lethality rates, and thus, elucidation of the molecular mechanisms of this incurable disease is urgently needed. Poly-pyrimidine tract binding protein (PTBP1, also known as hnRNP I), an RNA-binding protein, has various mechanisms to promote gliomagenesis. However, the mechanisms regulating PTBP1 expression are unclear. Herein, we report a novel natural antisense noncoding RNA, PTB-AS, whose expression correlated positively with PTBP1 mRNA. We found that PTB-AS significantly promoted the proliferation and migration in vivo and in vitro of glioma cells. PTB-AS substantially increased the PTBP1 level by directly binding to its 3' UTR and stabilizing the mRNA. Furthermore, staphylococcal nuclease domain-containing 1 (SND1) dramatically increased the binding capacity between PTB-AS and PTBP1 mRNA. Mechanistically, PTB-AS could mask the binding site of miR-9 in the PTBP1-3' UTR; miR-9 negatively regulates PTBP1. To summarize, we revealed that PTB-AS, which maintains the PTBP1 level through extended base pairing to the PTBP1 3' UTR with the assistance of SND1, could significantly promote gliomagenesis.
Collapse
|
15
|
Benenemissi IH, Sifi K, Sahli LK, Semmam O, Abadi N, Satta D. Angiotensin-converting enzyme insertion/deletion gene polymorphisms and the risk of glioma in an Algerian population. Pan Afr Med J 2019; 32:197. [PMID: 31312309 PMCID: PMC6620085 DOI: 10.11604/pamj.2019.32.197.15129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Just recently, it has been established that the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism is linked to the pathogenesis and to the evolution of human cancers. Therefore, the present study was concerned with the investigation of an eventual association between glioma and I/D polymorphism of the ACE gene. Methods The expression of ACE gene was detected by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis in 36 Algerian patients with glioma and 195 healthy controls. Results In glioma cases, allelic frequencies and genotypes distribution of the ACE I/D polymorphism were different from controls cases. ACE DD genotype were highly presented in glioma cases (63.9%) than controls (33.8%) and conferred 3.64-fold risk for predisposition in glioma cases (vs ID genotype, p<0.001). Recessive model (ACE II + ID genotypes vs DD) was associated with a 72% reduced risk of glioma (OR = 0.28, 95% CI: 0.13-0.60, p <0.001). Per copy D allele frequency was found higher in glioma cases (79.2%) than in controls (63.3 %), OR = 2.20, 95% CI: 1.20 - 4.03, p = 0.009. Conclusion The obtained data showed that the presence of the D allele might be a risk factor for the development of glioma. Further studies considering different ethnic groups with large samples are required to confirm this finding.
Collapse
Affiliation(s)
- Ikram Hana Benenemissi
- Department of Animal Biology, Faculty of Life and Natural Sciences, Molecular and Cellular Biology Laboratory, University of Constantine 1, Constantine, Algeria
| | - Karima Sifi
- Department of Biochemistry, Ben Badis University Hospital, Biology and Genetics Research Laboratory, Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| | - Lakhder Khalil Sahli
- Department of Neurosurgery, Regional Military Hospital of Constantine (HMRUC), Constantine, Algeria
| | - Ouarda Semmam
- Department of Animal Biology, Faculty of Life and Natural Sciences, Molecular and Cellular Biology Laboratory, University of Constantine 1, Constantine, Algeria
| | - Noureddine Abadi
- Department of Biochemistry, Ben Badis University Hospital, Biology and Genetics Research Laboratory, Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Department of Animal Biology, Faculty of Life and Natural Sciences, Molecular and Cellular Biology Laboratory, University of Constantine 1, Constantine, Algeria
| |
Collapse
|
16
|
Perdomo-Pantoja A, Mejía-Pérez SI, Reynoso-Noverón N, Gómez-Flores-Ramos L, Soto-Reyes E, Sánchez-Correa TE, Guerra-Calderas L, Castro-Hernandez C, Vidal-Millán S, Sánchez-Corona J, Taja-Chayeb L, Gutiérrez O, Cacho-Diaz B, Alvarez-Gomez RM, Gómez-Amador JL, Ostrosky-Wegman P, Corona T, Herrera-Montalvo LA, Wegman-Ostrosky T. Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma. PLoS One 2018; 13:e0206590. [PMID: 30383794 PMCID: PMC6211735 DOI: 10.1371/journal.pone.0206590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023] Open
Abstract
Introduction Renin-angiotensin system (RAS) in brain cancer represents a scarcely explored field in neuro-oncology. Recently, some pre- and clinical studies have reported that RAS components play a relevant role in the development and behavior of gliomas. The angiotensinogen (AGT) rs5050 genetic variant has been identified as a crucial regulator of the transcription of AGT mRNA, which makes it a logical and promising target of research. The aim of this study was to determine the relationship between the AGT rs5050 genetic variant in blood with prognosis in astrocytoma. Methods A prospective pilot study was performed on forty-eight astrocytoma patients, who received the standard-of-care treatment. Blood samples were taken prior to surgery and DNA was sequenced using Ion Torrent next-generation sequencing and analyzed by Ion Reporter software. Descriptive, bivariate, multivariate, and survival analyses were performed using SPSS v21, STATA 12 and GraphPad Prism 7. Results Median follow-up was 41 months (range 1–48). Survival analysis showed a significant difference between the rs5050 genotypes (p = .05). We found lower survival rates in individuals with the GG-genotype of rs5050 AGT compared to patients with the TT- and TG-genotype (2 months vs. 11.5 months, respectively [p = .01]). In bivariate and multivariate analyses, GG-genotype was negatively associated with survival. Conclusions In patients with astrocytoma, AGT rs5050 GG-genotype was associated with poor prognosis. We propose this germline genetic variant as a complementary biomarker, which can be detected practically and safely in blood samples or saliva.
Collapse
Affiliation(s)
- Alexander Perdomo-Pantoja
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sonia Iliana Mejía-Pérez
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | | | | | - Ernesto Soto-Reyes
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | - Clementina Castro-Hernandez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Silvia Vidal-Millán
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Lucia Taja-Chayeb
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Olga Gutiérrez
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Bernardo Cacho-Diaz
- Unidad de Neuro-oncologia, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Juan Luis Gómez-Amador
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurologia y Neurocirugia, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Luis Alonso Herrera-Montalvo
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
17
|
Lu Y, Lian S, Ye Y, Yu T, Liang H, Cheng Y, Xie J, Zhu Y, Xie X, Yu S, Gao Y, Jia L. S-Nitrosocaptopril prevents cancer metastasis in vivo by creating the hostile bloodstream microenvironment against circulating tumor cells. Pharmacol Res 2018; 139:535-549. [PMID: 30366102 DOI: 10.1016/j.phrs.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/17/2023]
Abstract
A perfect microenvironment facilitates the activated circulating tumor cells (CTCs) to spark the adhesion-invasion-extravasation metastatic cascade in their premetastatic niche. Platelet-CTC interaction contributes to the progression of tumor malignancy by protecting CTCs from shear stress and immunological assault, aiding CTCs entrapment in the capillary bed, enabling CTCs to successfully exit the bloodstream and enter the tissue, inducing epithelial-mesenchymal-like transition (EMT), and assisting in the establishment of metastatic foci. To prevent the cascade from sparking, we show that, the multifunctional S-nitrosocaptopril (CapNO) acts on both CTCs and platelets to interrupt platelet/CTCs interplay and adhesion to endothelium, thus inhibiting CTC-based pulmonary metastasis in vivo. The activated platelets cloak cancer HT29 cells, resulting in HT29-exhibiting platelet biomarkers CD61 and P-selectin positive. CapNO inhibits both sialyl Lewisx (Slex) expression on HT29 and ADP-induced activation of platelets through P-selectin- and GPIIb/IIIa-dependent mechanisms, confirmed by the corresponding antibody assay. CapNO inhibits platelet- or interleukin (IL)-1β-mediated adhesion between HT29 and endothelial cells, and micrometastatic formation in the lungs of immunocompetent syngeneic mouse models. CapNO have also shown the effects of vasodilation, anticoagulation, inhibition of matrix metalloproteinase-2 (MMP2) expression on cancer cells, and inhibition of cell adhesion molecules (CAMs) expression on vascular endothelium. Due to a series of the beneficial effects of CapNO, CTCs remain exposed to the hostile bloodstream environment and are vulnerable to death induced by shear stress and immune elimination. This new discovery provides a basis for CapNO used for cancer metastatic chemoprevention, and might suggest regulation of the CTCs bloodstream microenvironment as a new avenue for cancer metastatic prevention.
Collapse
Affiliation(s)
- Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Yuying Ye
- Fujian Provincial People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Ting Yu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Haiyan Liang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, China
| | - Yewei Zhu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
18
|
Zhang C, Chen S, Zhou G, Jin Y, Zhang R, Yang H, Xi Y, Ren J, Duan G. Involvement of the renin-angiotensin system in the progression of severe hand-foot-and-mouth disease. PLoS One 2018; 13:e0197861. [PMID: 29791486 PMCID: PMC5965884 DOI: 10.1371/journal.pone.0197861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hand-foot-and-mouth disease (HFMD) is generally considered as a mild exanthematous disease to infants and young children worldwide. HFMD cases are usually mild and self-limiting but for few cases leads to complicated severe clinical outcomes, and even death. Previous studies have indicated that serum Ang II levels in patients with H7N9 infection were related to the severity of infection. However, the mechanisms underlying the pathogenesis of severe HFMD remain unclear. This study was undertaken to clarify the role of the renin-angiotensin system (RAS) in the progression of severe HFMD. METHODS In the present study, 162 children including HFMD patients and healthy controls were recruited. The data was analyzed by time-series fashion. Concentrations of angiotensin II (Ang II) and noradrenaline (NA) in serum of patients were measured with ELISA. We established a mouse model for enterovirus 71 (EV71) infection and determined concentrations of Ang II, NA in tissue lysates at 3, 5 and 7 days post infection (dpi). RESULTS The concentrations of Ang II and NA in serum of the HFMD patients with mild or severe symptoms were significantly higher than that in healthy controls. Additionally, the concentrations of Ang II and NA in serum of severe cases were significantly higher than those mild cases and the increased concentrations of Ang II and NA showed the same time trend during the progression of HFMD in the severe cases. Furthermore, the concentrations of Ang II and NA in target organs of EV71-infected mice including brains, skeletal muscle, and lungs were increased with the progression of EV71 infection in mice. Histopathological alterations were observed in the brains, skeletal muscle and lungs of EV71-infected mice. CONCLUSION Our study suggested that activation of the RAS is implicated in the pathogenesis of severe HFMD.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangyuan Zhou
- Department of Epidemiology, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingchao Ren
- Department of Epidemiology, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- * E-mail:
| |
Collapse
|