1
|
Dorotan MKC, Tobochnik S. Patient-Centered Management of Brain Tumor-Related Epilepsy. Curr Neurol Neurosci Rep 2024; 24:413-422. [PMID: 39017829 DOI: 10.1007/s11910-024-01360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Brain tumor-related epilepsy is a heterogenous syndrome involving variability in incidence, timing, pathophysiology, and clinical risk factors for seizures across different brain tumor pathologies. Seizure risk and disability are dynamic over the course of disease and influenced by tumor-directed treatments, necessitating individualized patient-centered management strategies to optimize quality of life. RECENT FINDINGS Recent translational findings in diffuse gliomas indicate a dynamic bidirectional relationship between glioma growth and hyperexcitability. Certain non-invasive measures of hyperexcitability are correlated with survival outcomes, however it remains uncertain how to define and measure clinically relevant hyperexcitability serially over time. The extent of resection, timing of pre-operative and/or post-operative seizures, and the likelihood of tumor progression are critical factors impacting the risk of seizure recurrence. Newer anti-seizure medications are generally well-tolerated with similar efficacy in this population, and several rapid-onset seizure rescue agents are in development and available. Seizures in patients with brain tumors are strongly influenced by the underlying tumor biology and treatment. An improved understanding of the interactions between tumor cells and the spectrum of hyperexcitability will facilitate targeted therapies. Multidisciplinary management of seizures should occur with consideration of tumor-directed therapy and prognosis, and anti-seizure medication decision-making tailored to the individual priorities and quality of life of the patient.
Collapse
Affiliation(s)
| | - Steven Tobochnik
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, VA Boston Healthcare System, 150 S. Huntington Ave., 6th Floor, Neurology Service, Boston, MA, 02130, USA.
| |
Collapse
|
2
|
Röttgering JG, Varkevisser TMCK, Gorter M, Belgers V, De Witt Hamer PC, Reijneveld JC, Klein M, Blanken TF, Douw L. Symptom networks in glioma patients: understanding the multidimensionality of symptoms and quality of life. J Cancer Surviv 2024; 18:1032-1041. [PMID: 36922442 PMCID: PMC11082018 DOI: 10.1007/s11764-023-01355-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To comprehend the complex relationship between symptoms and health-related quality of life (HRQoL) in patients with diffuse glioma, we applied symptom network analysis to identify patterns of associations between depression, cognition, brain tumor-related symptoms, and HRQoL. Additionally, we aimed to compare global strength between symptom networks to understand if symptoms are more tightly connected in different subgroups of patients. METHODS We included 256 patients and stratified the sample based on disease status (preoperative vs. postoperative), tumor grade (grade II vs. III/IV), and fatigue status (non-fatigued vs. fatigued). For each subgroup of patients, we constructed a symptom network. In these six networks, each node represented a validated subscale of a questionnaire and an edge represented a partial correlation between two nodes. We statistically compared global strength between networks. RESULTS Across the six networks, nodes were highly correlated: fatigue severity, depression, and social functioning in particular. We found no differences in GS between the networks based on disease characteristics. However, global strength was lower in the non-fatigued network compared to the fatigued network (5.51 vs. 7.49, p < 0.001). CONCLUSIONS Symptoms and HRQoL are highly interrelated in patients with glioma. Interestingly, nodes in the network of fatigued patients were more tightly connected compared to non-fatigued patients. IMPLICATIONS FOR CANCER SURVIVORS We introduce symptom networks as a method to understand the multidimensionality of symptoms in glioma. We find a clear association between multiple symptoms and HRQoL, which underlines the need for integrative symptom management targeting fatigue in particular.
Collapse
Affiliation(s)
- J G Röttgering
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands.
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Medical Psychology, Boelelaan 1117, Amsterdam, The Netherlands.
| | - T M C K Varkevisser
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, The Netherlands
| | - M Gorter
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, The Netherlands
| | - V Belgers
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Neurology, Boelelaan 1117, Amsterdam, The Netherlands
| | - P C De Witt Hamer
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Neurosurgery, Boelelaan 1117, Amsterdam, The Netherlands
| | - J C Reijneveld
- Department of Neurology, SEIN, Heemstede, The Netherlands
| | - M Klein
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Medical Psychology, Boelelaan 1117, Amsterdam, The Netherlands
| | - T F Blanken
- Department of Psychological Methods, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - L Douw
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
4
|
Zimmermann MLM, Breedt LC, Centeno EGZ, Reijneveld JC, Santos FAN, Stam CJ, van Lingen MR, Schoonheim MM, Hillebrand A, Douw L. The relationship between pathological brain activity and functional network connectivity in glioma patients. J Neurooncol 2024; 166:523-533. [PMID: 38308803 PMCID: PMC10876827 DOI: 10.1007/s11060-024-04577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE Glioma is associated with pathologically high (peri)tumoral brain activity, which relates to faster progression. Functional connectivity is disturbed locally and throughout the entire brain, associating with symptomatology. We, therefore, investigated how local activity and network measures relate to better understand how the intricate relationship between the tumor and the rest of the brain may impact disease and symptom progression. METHODS We obtained magnetoencephalography in 84 de novo glioma patients and 61 matched healthy controls. The offset of the power spectrum, a proxy of neuronal activity, was calculated for 210 cortical regions. We calculated patients' regional deviations in delta, theta and lower alpha network connectivity as compared to controls, using two network measures: clustering coefficient (local connectivity) and eigenvector centrality (integrative connectivity). We then tested group differences in activity and connectivity between (peri)tumoral, contralateral homologue regions, and the rest of the brain. We also correlated regional offset to connectivity. RESULTS As expected, patients' (peri)tumoral activity was pathologically high, and patients showed higher clustering and lower centrality than controls. At the group-level, regionally high activity related to high clustering in controls and patients alike. However, within-patient analyses revealed negative associations between regional deviations in brain activity and clustering, such that pathologically high activity coincided with low network clustering, while regions with 'normal' activity levels showed high network clustering. CONCLUSION Our results indicate that pathological activity and connectivity co-localize in a complex manner in glioma. This insight is relevant to our understanding of disease progression and cognitive symptomatology.
Collapse
Affiliation(s)
- Mona L M Zimmermann
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Lucas C Breedt
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduarda G Z Centeno
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Jaap C Reijneveld
- Department of Neurology, Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Fernando A N Santos
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Dutch Institute for Emergent Phenomena (DIEP), Institute for Advanced Studies, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marike R van Lingen
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
7
|
Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales. Neurooncol Pract 2023; 10:506-517. [PMID: 38026586 PMCID: PMC10666814 DOI: 10.1093/nop/npad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Network neuroscience refers to the investigation of brain networks across different spatial and temporal scales, and has become a leading framework to understand the biology and functioning of the brain. In neuro-oncology, the study of brain networks has revealed many insights into the structure and function of cells, circuits, and the entire brain, and their association with both functional status (e.g., cognition) and survival. This review connects network findings from different scales of investigation, with the combined aim of informing neuro-oncological healthcare professionals on this exciting new field and also delineating the promising avenues for future translational and clinical research that may allow for application of network methods in neuro-oncological care.
Collapse
Affiliation(s)
- Dorien A Maas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Linda Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kumaria A, Ashkan K. Novel therapeutic strategies in glioma targeting glutamatergic neurotransmission. Brain Res 2023; 1818:148515. [PMID: 37543066 DOI: 10.1016/j.brainres.2023.148515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | |
Collapse
|
9
|
Kulik SD, Douw L, van Dellen E, Steenwijk MD, Geurts JJG, Stam CJ, Hillebrand A, Schoonheim MM, Tewarie P. Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model. Netw Neurosci 2023; 7:950-965. [PMID: 37781149 PMCID: PMC10473283 DOI: 10.1162/netn_a_00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/24/2022] [Indexed: 10/03/2023] Open
Abstract
Computational models are often used to assess how functional connectivity (FC) patterns emerge from neuronal population dynamics and anatomical brain connections. It remains unclear whether the commonly used group-averaged data can predict individual FC patterns. The Jansen and Rit neural mass model was employed, where masses were coupled using individual structural connectivity (SC). Simulated FC was correlated to individual magnetoencephalography-derived empirical FC. FC was estimated using phase-based (phase lag index (PLI), phase locking value (PLV)), and amplitude-based (amplitude envelope correlation (AEC)) metrics to analyze their goodness of fit for individual predictions. Individual FC predictions were compared against group-averaged FC predictions, and we tested whether SC of a different participant could equally well predict participants' FC patterns. The AEC provided a better match between individually simulated and empirical FC than phase-based metrics. Correlations between simulated and empirical FC were higher using individual SC compared to group-averaged SC. Using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants' own SC. This work underlines the added value of FC simulations using individual instead of group-averaged SC for this particular computational model and could aid in a better understanding of mechanisms underlying individual functional network trajectories.
Collapse
Affiliation(s)
- S. D. Kulik
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - L. Douw
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
| | - E. van Dellen
- University Medical Center Utrecht, Department of Psychiatry, Brain Center, Utrecht, The Netherlands
| | - M. D. Steenwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - J. J. G. Geurts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - C. J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - A. Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - M. M. Schoonheim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - P. Tewarie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| |
Collapse
|
10
|
Park G, Jin Z, Ge Q, Pan Y, Du J. Neuronal acid-sensing ion channel 1a regulates neuron-to-glioma synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555794. [PMID: 37693494 PMCID: PMC10491214 DOI: 10.1101/2023.08.31.555794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Neuronal activity promotes high-grade glioma progression via secreted proteins and neuron-to-glioma synapses, and glioma cells boost neuronal activity to further reinforce the malignant cycle. Whereas strong evidence supports that the activity of neuron-to-glioma synapses accelerates tumor progression, the molecular mechanisms that modulate the formation and function of neuron-to-glioma synapses remain largely unknown. Our recent findings suggest that a proton (H + ) signaling pathway actively mediates neuron-to-glioma synaptic communications by activating neuronal acid-sensing ion channel 1a (Asic1a), a predominant H + receptor in the central nervous system (CNS). Supporting this idea, our preliminary data revealed that local acid puff on neurons in high-grade glioma-bearing brain slices induces postsynaptic currents of glioma cells. Stimulating Asic1a knockout (Asic1a -/- ) neurons results in lower AMPA receptor-dependent excitatory postsynaptic currents (EPSCs) in glioma cells than stimulating wild-type (WT) neurons. Moreover, glioma-bearing Asic1a -/- mice exhibited reduced tumor size and survived longer than the glioma-bearing WT mice. Finally, pharmacologically targeting brain Asic1a inhibited high-grade glioma progression. In conclusion, our findings suggest that the neuronal H + -Asic1a axis plays a key role in regulating the neuron-glioma synapse. The outcomes of this study will greatly expand our understanding of how this deadly tumor integrates into the neuronal microenvironment.
Collapse
|
11
|
D'Alessandris QG, Menna G, Izzo A, D'Ercole M, Della Pepa GM, Lauretti L, Pallini R, Olivi A, Montano N. Neuromodulation for Brain Tumors: Myth or Reality? A Narrative Review. Int J Mol Sci 2023; 24:11738. [PMID: 37511496 PMCID: PMC10380317 DOI: 10.3390/ijms241411738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, research on brain cancers has turned towards the study of the interplay between the tumor and its host, the normal brain. Starting from the establishment of a parallelism between neurogenesis and gliomagenesis, the influence of neuronal activity on the development of brain tumors, particularly gliomas, has been partially unveiled. Notably, direct electrochemical synapses between neurons and glioma cells have been identified, paving the way for new approaches for the cure of brain cancers. Since this novel field of study has been defined "cancer neuroscience", anticancer therapeutic approaches exploiting these discoveries can be referred to as "cancer neuromodulation". In the present review, we provide an up-to-date description of the novel findings and of the therapeutic neuromodulation perspectives in cancer neuroscience. We focus both on more traditional oncologic approaches, aimed at modulating the major pathways involved in cancer neuroscience through drugs or genetic engineering techniques, and on electric stimulation proposals; the latter is at the cutting-edge of neuro-oncology.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Grazia Menna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Izzo
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Manuela D'Ercole
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Olivi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Nicola Montano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
12
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Higginbottom SL, Tomaskovic-Crook E, Crook JM. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer Metastasis Rev 2023; 42:507-541. [PMID: 37004686 PMCID: PMC10348989 DOI: 10.1007/s10555-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.
Collapse
Affiliation(s)
- Sarah L Higginbottom
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Eva Tomaskovic-Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Jeremy M Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
14
|
Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, Cao C, Nava Gonzales C, Sudharshan R, Egladyous A, Almeida N, Zhang Y, Molinaro AM, Venkatesh HS, Daniel AGS, Shamardani K, Hyer J, Chang EF, Findlay A, Phillips JJ, Nagarajan S, Raleigh DR, Brang D, Monje M, Hervey-Jumper SL. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023; 617:599-607. [PMID: 37138086 PMCID: PMC10191851 DOI: 10.1038/s41586-023-06036-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kyounghee Seo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Galina Popova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Lipkin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Caroline Cao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rasika Sudharshan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Egladyous
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nyle Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andy G S Daniel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jeanette Hyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Mandal AS, Brem S, Suckling J. Brain network mapping and glioma pathophysiology. Brain Commun 2023; 5:fcad040. [PMID: 36895956 PMCID: PMC9989143 DOI: 10.1093/braincomms/fcad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Adult diffuse gliomas are among the most difficult brain disorders to treat in part due to a lack of clarity regarding the anatomical origins and mechanisms of migration of the tumours. While the importance of studying networks of glioma spread has been recognized for at least 80 years, the ability to carry out such investigations in humans has emerged only recently. Here, we comprehensively review the fields of brain network mapping and glioma biology to provide a primer for investigators interested in merging these areas of inquiry for the purposes of translational research. Specifically, we trace the historical development of ideas in both brain network mapping and glioma biology, highlighting studies that explore clinical applications of network neuroscience, cells-of-origin of diffuse glioma and glioma-neuronal interactions. We discuss recent research that has merged neuro-oncology and network neuroscience, finding that the spatial distribution patterns of gliomas follow intrinsic functional and structural brain networks. Ultimately, we call for more contributions from network neuroimaging to realize the translational potential of cancer neuroscience.
Collapse
Affiliation(s)
- Ayan S Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| |
Collapse
|
16
|
Toya A, Fukada M, Aoki E, Matsuki T, Ueda M, Eda S, Hashizume Y, Iio A, Masaki S, Nakayama A. The distribution of neuroligin4, an autism-related postsynaptic molecule, in the human brain. Mol Brain 2023; 16:20. [PMID: 36747195 PMCID: PMC9903511 DOI: 10.1186/s13041-023-00999-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
NLGN4X was identified as a single causative gene of rare familial nonsyndromic autism for the first time. It encodes the postsynaptic membrane protein Neuroligin4 (NLGN4), the functions and roles of which, however, are not fully understood due to the lack of a closely homologous gene in rodents. It has been confirmed only recently that human NLGN4 is abundantly expressed in the cerebral cortex and is localized mainly to excitatory synapses. However, the detailed histological distribution of NLGN4, which may have important implications regarding the relationships between NLGN4 and autistic phenotypes, has not been clarified. In this study, we raised specific monoclonal and polyclonal antibodies against NLGN4 and examined the distribution of NLGN4 in developing and developed human brains by immunohistochemistry. We found that, in the brain, NLGN4 is expressed almost exclusively in neurons, in which it has a widespread cytoplasmic pattern of distribution. Among various types of neurons with NLGN4 expression, we identified consistently high expression of NLGN4 in hypothalamic oxytocin (OXT)/vasopressin (AVP)-producing cells. Quantitative analyses revealed that the majority of OXT/AVP-producing neurons expressed NLGN4. NLGN4 signals in other large neurons, such as pyramidal cells in the cerebral cortex and hippocampus as well as neurons in the locus coeruleus and the raphe nucleus, were also remarkable, clearly contrasting with no or scarce signals in Purkinje cells. These data suggest that NLGN4 functions in systems involved in intellectual abilities, social abilities, and sleep and wakefulness, impairments of which are commonly seen in autism.
Collapse
Affiliation(s)
- Akie Toya
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560 Japan
| | - Masahide Fukada
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Eiko Aoki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Masashi Ueda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Yoshio Hashizume
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, 480-1195 Japan
| | - Akio Iio
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Shigeo Masaki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560 Japan
| |
Collapse
|
17
|
Douw L, Breedt LC, Zimmermann MLM. Cancer meets neuroscience: the association between glioma occurrence and intrinsic brain features. Brain 2023; 146:803-805. [PMID: 36732287 PMCID: PMC9976956 DOI: 10.1093/brain/awad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
This scientific commentary refers to ‘Transcriptomic and connectomic correlates of differential spatial patterning among gliomas’ by Romero-Garcia et al. (https://doi.org/10.1093/brain/awac378)
Collapse
Affiliation(s)
| | - Lucas C Breedt
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam University Medical Centers location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mona L M Zimmermann
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam University Medical Centers location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Numan T, Breedt LC, Maciel BDAPC, Kulik SD, Derks J, Schoonheim MM, Klein M, de Witt Hamer PC, Miller JJ, Gerstner ER, Stufflebeam SM, Hillebrand A, Stam CJ, Geurts JJG, Reijneveld JC, Douw L. Regional healthy brain activity, glioma occurrence and symptomatology. Brain 2022; 145:3654-3665. [PMID: 36130310 PMCID: PMC9586543 DOI: 10.1093/brain/awac180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients’ tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients’ individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients’ individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients’ individual tumour locations may capture both tumour biology and patients’ performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of ‘cancer neuroscience’.
Collapse
Affiliation(s)
- Tianne Numan
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Lucas C Breedt
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Bernardo de A P C Maciel
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Shanna D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Jolanda Derks
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Martin Klein
- Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Department of Medical Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Philip C de Witt Hamer
- Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Julie J Miller
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jaap C Reijneveld
- Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Department of Neurology, Stichting Epilepsie Instellingen Nederland, Heemstede 2103 SW, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Brain Tumor Center Amsterdam, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081 HV, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
19
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
20
|
Tobochnik S, Lapinskas E, Vogelzang J, Ligon KL, Lee JW. Early EEG hyperexcitability is associated with decreased survival in newly diagnosed IDH-wildtype glioma. J Neurooncol 2022; 159:211-218. [PMID: 35715666 PMCID: PMC9329255 DOI: 10.1007/s11060-022-04059-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The relationship between peritumoral neuronal activity, early onset clinical seizures, and glioma survival outcomes remains poorly understood. Hyperexcitability on continuous EEG in the peri-operative period was studied as a prognostic biomarker in patients with newly diagnosed IDH-wildtype diffuse glioma. METHODS A retrospective observational cohort study was performed including adults with newly diagnosed diffuse glioma, absence of IDH1/2 mutations, and continuous EEG monitoring prior to chemoradiation and within 1 month of initial resection. EEG hyperexcitability was defined by the presence of lateralized periodic discharges and/or electrographic seizures. The primary outcome of overall survival was estimated using the Kaplan-Meier method and compared between groups using multivariate Cox proportional hazards model. RESULTS There were 424 patients without continuous EEG and 32 with continuous EEG, of whom lateralized periodic discharges and/or electrographic seizures were seen in 17 (53%). Peri-operative EEG hyperexcitability was associated with decreased overall survival in multivariate analysis [median 12.5 (95% CI 6.2-25.6] months with hyperexcitability versus median 19.9 [95% CI 8.9-53.5] months without hyperexcitability, p = 0.043). Compared to patients without continuous EEG, overall survival was decreased in patients with hyperexcitability (p < 0.0001) and similar in patients without hyperexcitability (p = 0.193). Patients with and without hyperexcitability had similar rates of exposure to anti-seizure medication at baseline, and in long-term follow-up had no difference in number of medications required for seizure control. CONCLUSIONS These findings indicate the potential prognostic value of a clinical EEG biomarker of glioma aggressiveness prior to the initiation of chemoradiation.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,VA Boston Healthcare System, Boston, MA, USA.
| | - Emily Lapinskas
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Li J, Xu Y, Zhu H, Wang Y, Li P, Wang D. The dark side of synaptic proteins in tumours. Br J Cancer 2022; 127:1184-1192. [PMID: 35624299 DOI: 10.1038/s41416-022-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Research in the past decade has uncovered the essential role of the nervous system in the tumour microenvironment. The recent advances in cancer neuroscience, especially the discovery of neuron-tumour synaptic/perisynaptic structures, have revealed the dark side of synaptic proteins in the progression of brain tumours. Here, we provide an overview of the synaptic proteins expressed by tumour cells and analyse their molecular functions and organisation by comparing them with neuronal synaptic proteins. We focus on the studies of neuroligin-3, the glutamate receptors AMPAR and NMDAR and the synaptic scaffold protein DLGAP1, for their newly discovered regulatory role in the proliferation and progression of tumours. Progress in cancer neuroscience has brought novel insights into the treatment of cancers. In the last part of this review, we discuss the therapeutical strategies targeting synaptic proteins and the current challenges and possible toolkits regarding their clinical application in cancer treatment. Our understanding of cancer neuroscience is still in its infancy; deeper investigation of how tumour cells co-opt synaptic signaling will help fulfil the therapeutical potential of the synaptic proteins as promising anti-tumour targets.
Collapse
Affiliation(s)
- Jing Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China.
| | - Yalan Xu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, 266011, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| |
Collapse
|
22
|
Kulik SD, Nauta IM, Tewarie P, Koubiyr I, van Dellen E, Ruet A, Meijer KA, de Jong BA, Stam CJ, Hillebrand A, Geurts JJG, Douw L, Schoonheim MM. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Netw Neurosci 2021; 6:339-356. [PMID: 35733434 PMCID: PMC9208024 DOI: 10.1162/netn_a_00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Multiple sclerosis (MS) features extensive connectivity changes, but how structural and functional connectivity relate, and whether this relation could be a useful biomarker for cognitive impairment in MS is unclear.
This study included 79 MS patients and 40 healthy controls (HCs). Patients were classified as cognitively impaired (CI) or cognitively preserved (CP). Structural connectivity was determined using diffusion MRI and functional connectivity using resting-state magnetoencephalography (MEG) data (theta, alpha1 and alpha2 bands). Structure-function coupling was assessed by correlating modalities, and further explored in frequency bands that significantly correlated with whole-brain structural connectivity. Functional correlates of short- and long-range structural connections (based on tract length) were then specifically assessed. ROC analyses were performed on coupling values to identify biomarker potential.
Only the theta band showed significant correlations between whole-brain structural and functional connectivity (rho = −0.26, p = 0.023, only in MS). Long-range structure-function coupling was higher in CI patients compared to HCs (p = 0.005). Short-range coupling showed no group differences. Structure-function coupling was not a significant classifier of cognitive impairment for any tract length (short-range AUC = 0.498, p = 0.976, long-range AUC = 0.611, p = 0.095).
Long-range structure-function coupling was higher in CI-MS compared to HC, but more research is needed to further explore this measure as biomarkers in MS.
Collapse
Affiliation(s)
- Shanna D. Kulik
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ilse M. Nauta
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Prejaas Tewarie
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail Koubiyr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Edwin van Dellen
- University Medical Center Utrecht, Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Aurelie Ruet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Kim A. Meijer
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen J. G. Geurts
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Numan T, Kulik SD, Moraal B, Reijneveld JC, Stam CJ, de Witt Hamer PC, Derks J, Bruynzeel AME, van Linde ME, Wesseling P, Kouwenhoven MCM, Klein M, Würdinger T, Barkhof F, Geurts JJG, Hillebrand A, Douw L. Non-invasively measured brain activity and radiological progression in diffuse glioma. Sci Rep 2021; 11:18990. [PMID: 34556701 PMCID: PMC8460818 DOI: 10.1038/s41598-021-97818-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
Non-invasively measured brain activity is related to progression-free survival in glioma patients, suggesting its potential as a marker of glioma progression. We therefore assessed the relationship between brain activity and increasing tumor volumes on routine clinical magnetic resonance imaging (MRI) in glioma patients. Postoperative magnetoencephalography (MEG) was recorded in 45 diffuse glioma patients. Brain activity was estimated using three measures (absolute broadband power, offset and slope) calculated at three spatial levels: global average, averaged across the peritumoral areas, and averaged across the homologues of these peritumoral areas in the contralateral hemisphere. Tumors were segmented on MRI. Changes in tumor volume between the two scans surrounding the MEG were calculated and correlated with brain activity. Brain activity was compared between patient groups classified into having increasing or stable tumor volume. Results show that brain activity was significantly increased in the tumor hemisphere in general, and in peritumoral regions specifically. However, none of the measures and spatial levels of brain activity correlated with changes in tumor volume, nor did they differ between patients with increasing versus stable tumor volumes. Longitudinal studies in more homogeneous subgroups of glioma patients are necessary to further explore the clinical potential of non-invasively measured brain activity.
Collapse
Affiliation(s)
- T Numan
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - B Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J C Reijneveld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - P C de Witt Hamer
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Derks
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - A M E Bruynzeel
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Radiotherapy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M E van Linde
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - P Wesseling
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M C M Kouwenhoven
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Klein
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - T Würdinger
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - F Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - J J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - L Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands. .,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Derks J, Kulik SD, Numan T, de Witt Hamer PC, Noske DP, Klein M, Geurts JJG, Reijneveld JC, Stam CJ, Schoonheim MM, Hillebrand A, Douw L. Understanding Global Brain Network Alterations in Glioma Patients. Brain Connect 2021; 11:865-874. [PMID: 33947274 DOI: 10.1089/brain.2020.0801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction: Glioma patients show increased global brain network clustering related to poorer cognition and epilepsy. However, it is unclear whether this increase is spatially widespread, localized in the (peri)tumor region only, or decreases with distance from the tumor. Materials and Methods: Weighted global and local brain network clustering was determined in 71 glioma patients and 53 controls by using magnetoencephalography. Tumor clustering was determined by averaging local clustering of regions overlapping with the tumor, and vice versa for non-tumor regions. Euclidean distance was determined from the tumor centroid to the centroids of other regions. Results: Patients showed higher global clustering compared with controls. Clustering of tumor and non-tumor regions did not differ, and local clustering was not associated with distance from the tumor. Post hoc analyses revealed that in the patient group, tumors were located more often in regions with higher clustering in controls, but it seemed that tumors of patients with high global clustering were located more often in regions with lower clustering in controls. Conclusions: Glioma patients show non-local network disturbances. Tumors of patients with high global clustering may have a preferred localization, namely regions with lower clustering in controls, suggesting that tumor localization relates to the extent of network disruption. Impact statement This work uses the innovative framework of network neuroscience to investigate functional connectivity patterns associated with brain tumors. Glioma (primary brain tumor) patients experience cognitive deficits and epileptic seizures, which have been related to brain network alterations. This study shows that glioma patients have a spatially widespread increase in global network clustering, which cannot be attributed to local effects of the tumor. Moreover, tumors occur more often in brain regions with higher network clustering in controls. This study emphasizes the global character of network alterations in glioma patients and suggests that preferred tumor locations are characterized by particular network profiles.
Collapse
Affiliation(s)
- Jolanda Derks
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Shanna D Kulik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tianne Numan
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip C de Witt Hamer
- Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Overarching Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - David P Noske
- Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Overarching Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Klein
- Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Psychology, and Overarching Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Overarching Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging/Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
25
|
Venkataramani V, Tanev DI, Kuner T, Wick W, Winkler F. Synaptic input to brain tumors: clinical implications. Neuro Oncol 2021; 23:23-33. [PMID: 32623467 DOI: 10.1093/neuonc/noaa158] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recent discovery of synaptic connections between neurons and brain tumor cells fundamentally challenges our understanding of gliomas and brain metastases and shows how these tumors can integrate into complex neuronal circuits. Here, we provide an overview of glutamatergic neuron-to-brain tumor synaptic communication (NBTSC) and explore novel therapeutic avenues. First, we summarize current concepts of direct synaptic interactions between presynaptic neurons and postsynaptic glioma cells, and indirect perisynaptic input to metastatic breast cancer cells. We explain how these novel structures drive brain tumor growth and invasion. Second, a vicious cycle of enhanced neuronal activity, including tumor-related epilepsy, and glioma progression is described. Finally, we discuss which future avenues to target NBTSC appear most promising. All in all, further characterization of NBTSC and the exploration of NBTSC-inhibiting therapies have the potential to reveal critical vulnerabilities of yet incurable brain tumors.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dimitar Ivanov Tanev
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Belgers V, Numan T, Kulik SD, Hillebrand A, de Witt Hamer PC, Geurts JJG, Reijneveld JC, Wesseling P, Klein M, Derks J, Douw L. Postoperative oscillatory brain activity as an add-on prognostic marker in diffuse glioma. J Neurooncol 2020; 147:49-58. [PMID: 31953611 PMCID: PMC7075827 DOI: 10.1007/s11060-019-03386-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Introduction Progression-free survival (PFS) in glioma patients varies widely, even when stratifying for known predictors (i.e. age, molecular tumor subtype, presence of epilepsy, tumor grade and Karnofsky performance status). Neuronal activity has been shown to accelerate tumor growth in an animal model, suggesting that brain activity may be valuable as a PFS predictor. We investigated whether postoperative oscillatory brain activity, assessed by resting-state magnetoencephalography is of additional value when predicting PFS in glioma patients. Methods We included 27 patients with grade II–IV gliomas. Each patient’s oscillatory brain activity was estimated by calculating broadband power (0.5–48 Hz) in 56 epochs of 3.27 s and averaged over 78 cortical regions of the Automated Anatomical Labeling atlas. Cox proportional hazard analysis was performed to test the predictive value of broadband power towards PFS, adjusting for known predictors by backward elimination. Results Higher broadband power predicted shorter PFS after adjusting for known prognostic factors (n = 27; HR 2.56 (95% confidence interval (CI) 1.15–5.70); p = 0.022). Post-hoc univariate analysis showed that higher broadband power also predicted shorter overall survival (OS; n = 38; HR 1.88 (95% CI 1.00–3.54); p = 0.038). Conclusions Our findings suggest that postoperative broadband power is of additional value in predicting PFS beyond already known predictors. Electronic supplementary material The online version of this article (10.1007/s11060-019-03386-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Belgers
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Tianne Numan
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Shanna D Kulik
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Philip C de Witt Hamer
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Jeroen J G Geurts
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Pieter Wesseling
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Martin Klein
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Medical Psychology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Jolanda Derks
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Linda Douw
- Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th street, Charlestown, MA, USA.
| |
Collapse
|
27
|
Wang H, Jiang D, Li W, Xiang X, Zhao J, Yu B, Wang C, He Z, Zhu L, Yang Y. Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 2019; 9:5347-5358. [PMID: 31410219 PMCID: PMC6691576 DOI: 10.7150/thno.33114] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma.
Collapse
Affiliation(s)
- Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Dengzhi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Wenzhe Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Bin Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
28
|
Derks J, Kulik S, Wesseling P, Numan T, Hillebrand A, van Dellen E, de Witt Hamer PC, Geurts JJG, Reijneveld JC, Stam CJ, Klein M, Douw L. Understanding cognitive functioning in glioma patients: The relevance of IDH-mutation status and functional connectivity. Brain Behav 2019; 9:e01204. [PMID: 30809977 PMCID: PMC6456787 DOI: 10.1002/brb3.1204] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cognitive deficits occur frequently in diffuse glioma patients, but are limitedly understood. An important marker for survival in these patients is isocitrate dehydrogenase (IDH) mutation (IDH-mut). Patients with IDH-mut glioma have a better prognosis but more often suffer from epilepsy than patients with IDH-wildtype (IDH-wt) glioma, who are generally older and more often have cognitive deficits. We investigated whether global brain functional connectivity differs between patients with IDH-mut and IDH-wt glioma, and whether this measure reflects variations in cognitive functioning in these subpopulations beyond the associated differences in age and presence of epilepsy. METHODS We recorded magnetoencephalography and tested cognitive functioning in 54 diffuse glioma patients (31 IDH-mut, 23 IDH-wt). Global functional connectivity between 78 atlas regions spanning the entire cortex was calculated in two frequency bands (theta and alpha). Group differences in global functional connectivity were tested, as was their association with cognitive functioning, controlling for age, education, and presence of epilepsy. RESULTS Patients with IDH-wt glioma had lower functional connectivity in the alpha band than patients with IDH-mut glioma (p = 0.040, corrected for age and presence of epilepsy). Lower alpha band functional connectivity was associated with poorer cognitive performance (p < 0.034), corrected for age, education, and presence of epilepsy. CONCLUSION Global functional connectivity is lower in patients with IDH-wt diffuse glioma compared to patients with IDH-mut diffuse glioma. Moreover, having lower functional alpha connectivity relates to poorer cognitive performance in patients with diffuse glioma, regardless of age, education, and presence of epilepsy.
Collapse
Affiliation(s)
- Jolanda Derks
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Shanna Kulik
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Pieter Wesseling
- VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tianne Numan
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip C de Witt Hamer
- VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin Klein
- VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.,Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,VUmc CCA Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.,Athinoula A. Martinos Center for Biomedical Imaging/Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|