1
|
Ismaiel MMS, Piercey-Normore MD, Rampitsch C. Biochemical and proteomic response of the freshwater green alga Pseudochlorella pringsheimii to iron and salinity stressors. BMC PLANT BIOLOGY 2024; 24:42. [PMID: 38195399 PMCID: PMC10777535 DOI: 10.1186/s12870-023-04688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Pseudochlorella pringsheimii (Ppr) is a green unicellular alga rich with chlorophyll, carotenoids, and antioxidants. As a widespread organism, Ppr must face, and adapt to, many environmental stresses and these are becoming more frequent and more extreme under the conditions of climate change. We therefore focused on salinity induced by NaCl and iron (Fe) variation stresses, which are commonly encountered by algae in their natural environment. RESULTS The relatively low stress levels improved the biomass, growth rate, and biochemical components of Ppr. In addition, the radical-scavenging activity, reducing power, and chelating activity were stimulated by lower iron concentrations and all NaCl concentrations. We believe that the alga has adapted to the stressors by increasing certain biomolecules such as carotenoids, phenolics, proteins, and carbohydrates. These act as antioxidants and osmoregulators to protect cell membranes and other cellular components from the harmful effects of ions. We have used SDS-PAGE and 2D-PAGE in combination with tandem mass spectrometry to identify responsive proteins in the proteomes of stressed vs. non-stressed Ppr. The results of 2D-PAGE analysis showed a total of 67 differentially expressed proteins, and SDS-PAGE identified 559 peptides corresponding to 77 proteins. Of these, 15, 8, and 17 peptides were uniquely identified only under the control, iron, and salinity treatments, respectively. The peptides were classified into 12 functional categories: energy metabolism (the most notable proteins), carbohydrate metabolism, regulation, photosynthesis, protein synthesis, stress proteins, oxido-reductase proteins, transfer proteins, ribonucleic-associated proteins, hypothetical proteins, and unknown proteins. The number of identified peptides was higher under salinity stress compared to iron stress. CONCLUSIONS A proposed mechanism for the adaptation of Ppr to stress is discussed based on the collected data. This data could serve as reference material for algal proteomics and the mechanisms involved in mediating stress tolerance.
Collapse
Affiliation(s)
- Mostafa M S Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | | | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| |
Collapse
|
2
|
Scheuffele H, Todd EV, Donald JA, Clark TD. Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111532. [PMID: 37816418 DOI: 10.1016/j.cbpa.2023.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Global warming is leading to an increase in the frequency and intensity of extreme weather events, magnifying the breadth of temperatures faced by ectotherms across days and seasons. Despite the importance and ecological relevance of diurnal thermal variability, the vast majority of knowledge on gene expression patterns and physiology stems from animals acclimated to constant temperatures or in the early stages of exposure to a new temperature regime. If heterothermal environments modulate responses differently from constant thermal environments, our existing capacity to forecast impacts of climate warming may be compromised. To address this knowledge gap, we acclimated barramundi (Lates calcarifer) to 23 °C, 29 °C (optimal), 35 °C and to thermal cycling conditions (23-35 °C daily with a mean of 29 °C) and sampled liver and white muscle tissue before acclimation and after 2 and 17 weeks of acclimation. NanoString nCounter technologies were used to measure expression of 20 genes related to metabolism, growth and maintenance of cellular homeostasis. Acclimation to cool and warm conditions caused predictable changes in whole-animal performance (metabolism and growth) and the underlying gene expression patterns. Acclimation to a cycling temperature regime did not change the molecular regulation of metabolism or growth compared with barramundi acclimated to constant 29 °C, nor did it cause any discernible effects on whole-animal performance. However, the heat shock response was higher in the former group, suggesting that barramundi under a daily temperature cycle have an increased need for cellular chaperoning to minimise detrimental effects of temperature on proteins. We conclude that the genetic regulation of metabolism and growth may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/JohnDon17043551
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/Timothy_D_Clark
| |
Collapse
|
3
|
Adebayo AA, Ademosun AO, Oboh G. Chemical composition, antioxidant, and enzyme inhibitory properties of Rauwolfia vomitoria extract. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:597-603. [PMID: 37216495 DOI: 10.1515/jcim-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Rauwolfia vomitoria is one ethno-botanicals in Nigeria used by traditional health practitioners in managing several human diseases. However, necessary information regarding its effect on enzymes implicated in the development and progression of erectile dysfunction is missing in the literature. Thus, this study investigated the antioxidant property and impact of Rauwolfia vomitoria extract on erectile dysfunction-related enzymes in vitro. METHODS High performance liquid chromatography was used to identify and quantify Rauwolfia vomitoria's phenolic components. Then, utilizing common antioxidant assays, the extract's antioxidant properties were evaluated and finally the effect of the extract on some enzymes (AChE, arginase and ACE) implicated in erectile dysfunction was investigated in vitro. RESULTS The results showed that the extract inhibited AChE (IC50=388.72 μg/mL), arginase (IC50=40.06 μg/mL) and ACE (IC50=108.64 μg/mL) activities. In addition, phenolic rich extract of Rauvolfia vomitoria scavenged radicals and chelated Fe2+ in concentration dependent manner. Furthermore, rutin, chlorogenic acid, gallic acid, and kaempferol were found in large quantities by HPLC analysis. CONCLUSIONS Therefore, one of the potential reasons driving Rauwolfia vomitoria's use in folk medicine for the treatment of erectile dysfunction could be its antioxidant and inhibitory activities on several enzymes linked to erectile dysfunction in vitro.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Chemical Science Department (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
4
|
Ibrahim M, Nabi HU, Muhammad N, Ikram M, Khan M, Ibrahim M, AlAsmari AF, Alharbi M, Alshammari A. Synthesis, Antioxidant, Molecular Docking and DNA Interaction Studies of Metal-Based Imine Derivatives. Molecules 2023; 28:5926. [PMID: 37570896 PMCID: PMC10421135 DOI: 10.3390/molecules28155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, numerous ongoing studies are investigating the interaction of free radicals with biological systems, such as lipids, DNA and protein. In the present work, synthesis, characterization, antioxidant, DNA binding and molecular docking studies of Schiff base ligand and its Ni(II), Co(II), Cu(II) and Zn(II) were evaluated. The metal complexes have shown significant dose-dependent antioxidant activities higher than those of the free ligand but lesser than those of the standard antioxidant, ascorbic acid. The DNA binding constants (Kb) were found in the order Zn(pimp)2 {9.118 × 105 M-1} > H-pimp {3.487 × 105 M-1} > Co(pimp)2 {3.090 × 105 M-1} > Ni(pimp)2 {1.858 × 105 M-1} > Cu(pimp)2 {1.367 × 105 M-1}. Binding constants (Kb) values calculated from the molecular docking analysis were found to be in close agreement with the experimental results. The obtained results indicate the importance of synthesis complexes as a source of synthetic antioxidants and anticancer drugs.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Hazrat Un Nabi
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Niaz Muhammad
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan; (H.U.N.); (N.M.); (M.I.); (M.K.)
| | - Musadiq Ibrahim
- Department of Chemistry, Division of Biochemistry and Life Science, University of Glasgow, Glasgow G12 8QQ, UK;
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.A.); (A.A.)
| |
Collapse
|
5
|
Akande OA, Oluwamukomi M, Osundahunsi OF, Ijarotimi OS, Mukisa IM. Evaluating the potential for utilising migratory locust powder ( Locusta migratoria) as an alternative protein source in peanut-based ready-to-use therapeutic foods. FOOD SCI TECHNOL INT 2023; 29:204-216. [PMID: 35040705 DOI: 10.1177/10820132211069773] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed at exploring the possibility of substituting powdered milk (PM) with migratory locust powder (MLP) as a cheap and sustainable alternative protein source in peanut-based ready-to-use therapeutic foods used in treatment of malnutrition. The migratory locust is a wide spread and underutilised high protein edible insect. Peanut-based ready-to-use therapeutic foods (RUTFs) were formulated according to the MSF/UNICEF 2013 nutritional standards. Milk powder was substituted with MLP at 5-30% levels. RUTF containing 30% milk powder was used as the control. Nutritional, antioxidant and antinutrients composition of the insect-enriched RUTFs were compared with RUTF containing milk powder only and a standard. The protein content of the insect-enriched RUTFs ranged from 19.58-26.38% exceeding the MSF/UNICEF minimum standard for protein. RUTF with 10% PM and 20% MLP had the highest (p < 0.05) mineral contents. All formulations had more thiamine (vitamin B1) than the recommended level of 0.5 mg/100 g. Niacin (Vitamin B3) was the most abundant vitamin in the formulations with considerable amounts of vitamin D and E. All MLP-enriched RUTFs met the FAO 2011 standard requirements for amino acids for children aged six months to three years. Therapeutic food with 30% MLP had the highest radical scavenging ability against DPPH, and iron chelating activity. Levels of phytate and tannin were below the tolerable limits. Therefore, MLP can be used as a low-cost substitute for milk powder in producing ready-to-use therapeutic foods.
Collapse
Affiliation(s)
- Olamide Abigael Akande
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology, 107738Federal University of Technology, Akure, Ondo State, Nigeria
| | - Matthew Oluwamukomi
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology, 107738Federal University of Technology, Akure, Ondo State, Nigeria
| | - Oluwatooyin Faramade Osundahunsi
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology, 107738Federal University of Technology, Akure, Ondo State, Nigeria
| | - Oluwole Steve Ijarotimi
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology, 107738Federal University of Technology, Akure, Ondo State, Nigeria
| | - Ivan Muzira Mukisa
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bioengineering, 58588Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Ademiluyi AO, Ogunsuyi OB, Akinduro JO, Aro OP, Oboh G. Evaluating Water bitter leaf ( Struchium sparganophora) and Scent Leaf ( Ocimum gratissimum) extracts as sources of nutraceuticals against manganese-induced toxicity in fruit fly model. Drug Chem Toxicol 2023; 46:236-246. [PMID: 35315297 DOI: 10.1080/01480545.2021.2021928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tropical vegetables remain one of the major sources of functional foods and nutraceuticals, while their constituent phytochemicals, especially alkaloids, have been reported to exhibit neuroprotective properties. Here, the protective effect of alkaloid extracts from Scent leaf (Ocimum gratissimum) and Water bitter leaf (Struchium sparganophora) on manganese (Mn)- induced toxicity in wild type fruit fly (Drosophila melanogaster) model was investigated. Flies were exposed to 30 mM of Mn, the alkaloid extracts (20 and 200 µg/g) and co-treatment of Mn plus extracts, respectively. The survival rate and locomotor performance of the flies were assessed 7 days post-treatment, after which the flies were homogenized and assayed for activities of acetylcholinesterase (AChE), monoamine oxidase (MAO), glutathione-S transferase (GST), catalase, superoxide dismutase SOD), as well as total thiol, reactive oxygen species (ROS) and neural L-DOPA levels. Results showed that the extract significantly reversed Mn-induced reduction in the survival rate and locomotor performance of the flies. Furthermore, both extracts counteracted the Mn-induced elevation in AChE and MAO activities, as well as reduced antioxidant enzyme activities, with a concomitant mitigation of Mn-induced elevated ROS and neural L-DOPA level. The HPLC characterization of the extracts revealed the presence of N-propylamine, Vernomine and Piperidine as predominant in Water bitter leaf extract, while 2, 6-dimethylpyrazine and sesbanimide were found in scent leaf extract. Therefore, the alkaloid extract of these leaves may thus be sources of useful nutraceuticals for the management of pathological conditions associated with manganese toxicity.
Collapse
Affiliation(s)
- Adedayo Oluwaseun Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Josephine Oluwaseun Akinduro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
7
|
Ogidi CO, Ogunlade AO, Bodunde RS, Aladejana OM. Evaluation of Nutrient Contents and Antioxidant Activity of Wheat Cookies Fortified with Mushroom ( Termitomyces robustus) and Edible Insects. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2023. [DOI: 10.1080/15428052.2023.2181253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Clement Olusola Ogidi
- Department of Food Science and Technology, School of Agriculture, Food and Natural Resources, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria
| | | | - Rachael Seun Bodunde
- African Centre of Excellence for Mycotoxin and Food Safety, Department of Biochemistry, Federal University of Technology, Minna, Nigeria
| | | |
Collapse
|
8
|
Corrêa PG, Moura LGS, Amaral ACF, Almeida MMHD, Souza FDCDA, Aguiar JPL, Aleluia RL, Silva JRDA. Evaluation of the Amazonian fruit Ambelania acida: Chemical and nutritional studies. J Food Sci 2023; 88:757-771. [PMID: 36633002 DOI: 10.1111/1750-3841.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Ambelania acida is native to the Amazon region, with few published studies of its fruits. We examined the proximate composition of its fruits, including minerals, fatty acids, volatile organic compounds (VOCs), as well as its antioxidant capacity. The protein contents (2.61%) of the pulp and seeds (13.6%) were higher than observed in other taxa of the family or in other tropical fruits. Peel and pulp showed high contents of potassium, calcium, and magnesium, and the potassium content in the pulp was 1125 mg/100 g. The peel had higher contents of total phenolics, tannins, and ortho-diphenols than the pulp, as well as better antioxidant activity as evidenced by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Fe2+ chelating activity assays. GC-MS analyses identified 42 VOCs in the peel and pulp, with more than 90% being classified as terpenes. Eleven types of fatty acids were identified in the lipid fractions of the peel, pulp, and seeds. Linoleic acid, an essential fatty acid for humans, was the principal fatty acid in the edible portion of the fruit, therefore, evidencing its nutritionally significant profile for the fruits when considering the relationship among polyunsaturated, saturated, and monounsaturated fatty acids. The information gathered here indicates that this native fruit is a healthy food source and its cultivation and consumption should be stimulated.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maíra Martins H de Almeida
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
9
|
Ogunro OB, Yakubu MT. Fadogia agrestis (Schweinf. Ex Hiern) Stem Extract Restores Selected Biomolecules of Erectile Dysfunction in the Testicular and Penile Tissues of Paroxetine-Treated Wistar Rats. Reprod Sci 2023; 30:690-700. [PMID: 35969364 DOI: 10.1007/s43032-022-01050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Inadequate release of nitric oxide (NO) by the penile tissue impacts negatively on penile erection causing erectile dysfunction (ED). Fadogia agrestis has been implicated in the management of ED without information on key biomolecules associated with ED in male rats. Therefore, this study evaluated the influence of aqueous extract of Fadogia agrestis stem (AEFAS) on key biomolecules associated with ED in the penile and testicular tissues of male Wistar rats induced with ED by paroxetine. Thirty male rats were assigned into 6 groups (I, II, III, IV, V and VI) of 5. Group I (sham control, without ED) was administered distilled water orally. Paroxetine-induced ED rats in groups II (negative control), III (positive control), IV, V and VI received distilled water, sildenafil citrate (SC, 50 mg/kg body weight) and AEFAS at 18, 50 and 100 mg/kg body weight respectively. Paroxetine lowered/reduced (p < 0.05) the MF, IF, EF, NO, cGMP, catalase, SOD, T-SH, GSH and GST whilst it prolonged/increased ML, IL, EL, PEI, AChE, PDE5, arginase, ACE, TBARS and H2O2. Contrastingly, AEFAS like sildenafil citrate increased (p < 0.05) the penile and testicular NO, cGMP, catalase, SOD, T-SH, GSH and GST and reduced AChE, PDE5, arginase, ACE, TBARS and H2O2 to levels that compared favourably (p > 0.05) with those of sham control. The study concluded that AEFAS restored the NO/cGMP pathway and ED-associated key enzymes in the penile and testicular tissues of male rats via antioxidant means. The study recommended the use of aqueous extract of Fadogia agrestis stem in managing ED after clinical trials.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Reproductive & Endocrinology, Toxicology, and Bioinformatics Research Laboratory, Department of Biological Sciences, Faculty of Applied Sciences, Koladaisi University, Ibadan, Oyo State, Nigeria. .,Phytomedicine, Biochemical Toxicology, Reproductive and Developmental Biochemistry Research Laboratory, Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.
| | - Musa Toyin Yakubu
- Phytomedicine, Biochemical Toxicology, Reproductive and Developmental Biochemistry Research Laboratory, Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
10
|
Asejeje FO, Ogunro OB, Asejeje GI, Adewumi OS, Abolaji AO. An assessment of the ameliorative role of hesperidin in Drosophila melanogaster model of cadmium chloride-induced toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109500. [PMID: 36347494 DOI: 10.1016/j.cbpc.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
Cadmium chloride (CdCl2) is an important heavy metal widely regarded as an environmental contaminant. Hesperidin, a flavanone glycoside found in citrus fruits, has an established properties against free radicals, apoptosis, and inflammation. The present study investigated the protective actions of hesperidin on CdCl2-induced oxidative damage and inflammation in Drosophila melanogaster. For 7 consecutive days via their diet regimen, the flies were exposed to CdCl2 alone (0.05 mM) or in combination with hesperidin (50 and 100 μM). Exposure to CdCl2 significantly (p < 0.05) increased mortality rate of flies, whereas the survived flies demonstrated significant oxidative toxicity from decreased activities of catalase and Glutathione S-transferase (GST) and Total Thiol (T-SH) and Non-Protein Thiols (NPSH) levels as well as accumulation of Nitric Oxide (NO (nitrite/nitrate)), protein carbonyl and Hydrogen Peroxide (H2O2). However, hesperidin-supplemented diet improved Acetylcholinesterase (AChE) activity, mitochondrial metabolic rate (cell viability), locomotor activity, and amelioration of oxidative damage and lipid peroxidation induced by CdCl2. The hesperidin diet supplement boosted the antioxidant milieu and ameliorated the oxidative damage in the treated flies. Overall, the findings revealed that hesperidin improved antioxidative protective capacity in Drosophila melanogaster model of CdCl2-induced toxicity. This suggests hesperidin as a potential therapeutic agent against oxidative stress disorders due to exposure to CdCl2 and or related toxicants.
Collapse
Affiliation(s)
| | | | - Gbolahan Iyiola Asejeje
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria; Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Off Iyaniwura Bus Stop, Basorun, Ibadan, Oyo State, Nigeria
| | | | - Amos Olalekan Abolaji
- Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Off Iyaniwura Bus Stop, Basorun, Ibadan, Oyo State, Nigeria; Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
11
|
Corrêa PG, Moura LGS, Amaral ACF, do Amaral Souza FDC, Aguiar JPL, Aleluia RL, de Andrade Silva JR. Chemical and nutritional characterization of Ambelania duckei (Apocynaceae) an unexplored fruit from the Amazon region. Food Res Int 2023; 163:112290. [PMID: 36596195 DOI: 10.1016/j.foodres.2022.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ambelania duckei Markgr is a species of the Apocynaceae family, native to the Amazon region that is unexplored from a nutritional point of view and studied in relation to its chemical constituents. This work presents an unprecedented study of the proximate composition, lipid profile, a chromatographic analysis, and the antioxidant activity of extracts obtained from the pulp, peel and seeds of the fruit. The results showed that potassium, calcium, and magnesium stood out as the most abundant key minerals in the fruit peel and pulp, with an emphasis on the potassium present in the fruit pulp at 1750.0 mg/100 g. The peel had the highest content of total phenolics (374.86 mg/g), flavonoids (15.54 mg/g), tannins (27.45 mg/g) and O-diphenols (379.36 mg/g; 645.71 mg/g). The antioxidant activity (AA) was highest in the peel compared to the pulp in the DPPH, ABTS, and ORAC tests showing: IC50 of 29.82; 43.67; and 407.13 µg/mL, respectively but a lower activity for the Fe2+ chelator. The analysis of the lipid fractions from the peel, pulp, and seeds of the A. duckei fruit resulted in 14 types of fatty acids. The major fatty acids found in the three parts of the fruit were oleic acid (peel, 22.52 %), palmitic acid (pulp, 17.34 %), and linoleic acid (seeds, 47.99 %). The lipid profile and nutritional aspects had a PUFA/SFA ratio (0.4-1.8) in the different parts of the A. duckei fruit; the atherogenic and thrombogenic indexes were higher in the peel (1.23) and pulp (0.62), respectively. The ratio between the hypocholesterolemic and hypercholesterolemic fatty acids (0.5 - 3.8) calculated for the fruit are within the desirable range for a nutritious food. The chromatographic analysis of the volatile organic compounds (VOCs) from the peel and pulp of the fruit, identified 74 VOCs, of which 60.9 % are related to terpenes, and emit notes such as cucumber, green, fatty, floral, and mint, due to the presence of substances with OAVs > 10, especially α-ionone, 1,8-cineole, 2,4-decadienal, and dodecanal. The analysis of the MS and MS/MS spectra of the chromatograms obtained by LC- QTOF-HRMS led to the identification of 26 compounds in the peel, seeds and pulp of A. duckei, such as fatty acids, phenolic acid, flavonoids, proanthocyanidins, alkaloids, and terpenoids. The results show that the pulp of A. duckei has potential as nourishing food and the nutritional and chemical aspects of the peel can be applied to commercial applications.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
12
|
Ogidi CO, Oyebode KO. Assessment of nutrient contents and bio-functional activities of edible fungus bio-fortified with copper, lithium and zinc. World J Microbiol Biotechnol 2022; 39:56. [PMID: 36572785 DOI: 10.1007/s11274-022-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Bio-enrichment of edible mushrooms is an outstanding strategy to deliver essential nutrients to human. In this study, an edible fungus; Pleurotus pulmonarius was cultivated on spent mushroom substrate (SMS) supplemented with copper, lithium, and zinc. Proximate and mineral analysis of cultivated mushroom was determined using methods of AOAC. Antimicrobial activity of cultivated mushroom was assessed against microorganisms using agar well diffusion. Antioxidant property of mushroom was assessed against free radicals. Similar (p ≤ 0.05) protein contents of 18.93%, 18.80% and 17.90% were respectively obtained in P. pulmonarius biofortified with Cu + Li + Zn, Cu + Zn and Zn. Crude fibre in element fortified-mushroom ranged from 9.02 to 10.11%, while non-fortified mushroom was 8.66%. Copper content of P. pulmonarius fortified with Cu alone and Cu + Zn were 96.12 mg/100 g and 98.09 mg/100 g, respectively. Mushroom fortified with Zn has the highest zinc content of 520.15 mg/100 g. Mushroom fortified with Li and Li + Zn have a similar (p ≤ 0.05) Li content of 106.02 mg/100 g and 104.30 mg/100 g, respectively. Extract from mushroom-fortified with copper has the highest zone of inhibition (15.1 mm) against Klebsiella pneumoniae at 1.0 mg/ml. Mushroom fortified with Cu + Li + Zn and Li + Zn, respectively have similar (p ≤ 0.05) scavenging activities of 79.10 and 81.0% against DPPH. Mushroom fortified with Zn or Zn + Cu enhanced the growth of Lactobacillus acidophilus and Lactobacillus plantarum. Antimicrobial, antioxidant and prebiotic activities of fortified-mushroom could be attributed to arrays of phytochemicals and bio-accumulated elements. Hence, bio-fortified mushrooms can be used as functional foods and as biopharmaceuticals to treat ailments associated with nutrient deficient.
Collapse
Affiliation(s)
- Clement Olusola Ogidi
- Department of Food Science and Technology, School of Agriculture, Food and Natural Resources, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria.
| | | |
Collapse
|
13
|
Adebayo AA, Oboh G, Ademosun AO. Almond and date fruits enhance antioxidant status and have erectogenic effect: Evidence from in vitro and in vivo studies. J Food Biochem 2022; 46:e14255. [PMID: 35644948 DOI: 10.1111/jfbc.14255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
This study was designed to investigate the efficacies of almond and date fruits on redox imbalance and enzymes relevant to the pathogenesis of erectile dysfunction. The total polyphenol contents, ferric reducing antioxidant power, and vitamin C content were determined spectrophotometrically. Phenolic and amino acid compositions were quantified using HPLC; meanwhile, the antioxidant activities were determined using DPPH, ABTS, FRAP, and metal chelation. Also, the effect of almond and date extract on advanced glycated end-products (AGEs) formation, arginase, and phosphodiesterase-5 activities was evaluated in vitro. Thereafter, the influence of almond and date supplemented diets on copulatory behaviors in normal rats was assessed, followed by arginase and phosphodiesterase-5 activities determination in vivo. The results revealed that date and almond extracts exerted antioxidant properties, prevented AGEs formation in vitro, and inhibited arginase and phosphodiesterase-5 activities in vitro and in vivo. Besides, almond and date supplemented diets significantly enhance sexual behaviors in normal rats when compared with the control. Among the active compounds identified were gallic acid, ellagic acid, quercetin, and rutin. All the 20 basic amino acids were identified. Given the aforementioned, date and almond could represent a reliable source of functional foods highly rich in compounds with antioxidant activity, and arginase and PDE-5 inhibitory properties. PRACTICAL APPLICATIONS: Fruits are essential part of the human diet that furnish the body with important nutrients. Despite the crucial roles of fruits in human diets, some fruits like almond and date are underutilized among Nigerians. However, we characterized the important compounds present in these fruits and how their presence contributes to the biological activities of the fruits. Finally, we relate the chemical composition and the observed biological activities to the overall health and wellness of the consumers.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria.,Chemical Sciences Department (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
14
|
Kostiuchenko O, Lushnikova I, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA ADVANCES 2022; 2:100066. [PMID: 37082603 PMCID: PMC10074856 DOI: 10.1016/j.bbadva.2022.100066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral disorders are largely associated with impaired cellular metabolism, despite the regulatory mechanisms designed to ensure cell viability and adequate brain function. Mechanistic target of rapamycin (mTOR) signaling is one of the most crucial factors in the regulation of energy homeostasis and its imbalance is linked with a variety of neurodegenerative diseases. Recent advances in the metabolic pathways' modulation indicate the role of α-ketoglutarate (AKG) as a major signaling hub, additionally highlighting its anti-aging and neuroprotective properties, but the mechanisms of its action are not entirely clear. In this review, we analyzed the physiological and pathophysiological aspects of mTOR in the brain. We also discussed AKG's multifunctional properties, as well as mTOR/AKG-mediated functional communications in cellular metabolism. Thus, this article provides a broad overview of the mTOR/AKG-mediated signaling pathways, in the context of neurodegeneration and endogenous neuroprotection, with the aim to find novel therapeutic strategies.
Collapse
|
15
|
Comparative analysis of chemical profiles and antioxidant activities of essential oils obtained from species of Lippia L. by chemometrics. Food Chem 2022; 384:132614. [DOI: 10.1016/j.foodchem.2022.132614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/31/2023]
|
16
|
Cash A, Kaufman DL. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID fatigue patients: a non-randomized controlled clinical trial. J Transl Med 2022; 20:295. [PMID: 35764955 PMCID: PMC9238249 DOI: 10.1186/s12967-022-03488-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is no approved pharmaceutical intervention for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS). Fatigue in these patients can last for decades. Long COVID may continue to ME/CFS, and currently, it is estimated that up to 20 million Americans have significant symptoms after COVID, and the most common symptom is fatigue. Anhydrous Enol-Oxaloacetate, (AEO) a nutritional supplement, has been anecdotally reported to relieve physical and mental fatigue and is dimished in ME/CFS patients. Here, we examine the use of higher dosage AEO as a medical food to relieve pathological fatigue. METHODS ME/CFS and Long-COVID patients were enrolled in an open label dose escalating "Proof of Concept" non-randomized controlled clinical trial with 500 mg AEO capsules. Control was provided by a historical ME/CFS fatigue trial and supporting meta-analysis study, which showed average improvement with oral placebo using the Chalder Scale of 5.9% improvement from baseline. At baseline, 73.7% of the ME/CFS patients were women, average age was 47 and length of ME/CFS from diagnosis was 8.9 years. The Long-COVID patients were a random group that responded to social media advertising (Face Book) with symptoms for at least 6 months. ME/CFS patients were given separate doses of 500 mg BID (N = 23), 1,000 mg BID (N = 29) and 1000 mg TID (N = 24) AEO for six weeks. Long COVID patients were given 500 mg AEO BID (N = 22) and 1000 mg AEO (N = 21), again over a six-week period. The main outcome measure was to compare baseline scoring with results at 6 weeks with the Chalder Fatigue Score (Likert Scoring) versus historical placebo. The hypothesis being tested was formulated prior to data collection. RESULTS 76 ME/CFS patients (73.7% women, median age of 47) showed an average reduction in fatigue at 6 weeks as measured by the "Chalder Fatigue Questionnaire" of 22.5% to 27.9% from baseline (P < 0.005) (Likert scoring). Both physical and mental fatigue were significantly improved over baseline and historical placebo. Fatigue amelioration in ME/CFS patients increased in a dose dependent manner from 21.7% for 500 mg BID to 27.6% for 1000 mg Oxaloacetate BID to 33.3% for 1000 mg TID. Long COVID patients' fatigue was significantly reduced by up to 46.8% in 6-weeks. CONCLUSIONS Significant reductions in physical and metal fatigue for ME/CFS and Long-COVID patients were seen after 6 weeks of treatment. As there has been little progress in providing fatigue relief for the millions of ME/CFS and Long COVID patients, anhydrous enol oxaloacetate may bridge this important medical need. Further study of oxaloacetate supplementation for the treatment of ME/CFS and Long COVID is warranted. Trial Registration https://clinicaltrials.gov/ct2/show/NCT04592354 Registered October 19, 2020. 1,000 mg BID Normalized Fatigue Data for Baseline, 2-weeks and 6-weeks evaluated by 3 Validated Fatigue Scoring Questionnaires.
Collapse
Affiliation(s)
- Alan Cash
- Terra Biological LLC, 3830 Valley Centre Drive, Ste 705 PMB 561, San Diego, CA, USA.
| | | |
Collapse
|
17
|
Awolu O, Iwambe V, Oluwajuyitan T, Bukola Adeloye J, Ifesan B. Quality Evaluation of ‘ Fufu’ Produced from Sweet Cassava ( Manihot Esculenta) and Guinea Corn ( Sorghum Bicolor) Flour. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2020.1821858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Olugbenga Awolu
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Victoria Iwambe
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Timilehin Oluwajuyitan
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Jumoke Bukola Adeloye
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Beatrice Ifesan
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
18
|
Irondi EA, Adewuyi AE, Aroyehun TM. Effect of Endogenous Lipids and Proteins on the Antioxidant, in vitro Starch Digestibility, and Pasting Properties of Sorghum Flour. Front Nutr 2022; 8:809330. [PMID: 35096949 PMCID: PMC8792437 DOI: 10.3389/fnut.2021.809330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effect of endogenous lipids and proteins on the antioxidants, starch digestibility, and pasting properties of sorghum (Sorghum bicolor) flour (SF). Endogenous lipids and/or proteins were removed from different portions of SF to obtain defatted (DF), deproteinized (DP), and defatted and deproteinized (DF-DP) flours. Bioactive constituents (total phenolics, tannins, flavonoids, saponins, and anthocyanins), antioxidant activities [2,2-Azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation (ABTS*+) and 2, 2-Diphenyl-2-picrylhydrazyl radical (DPPH*) scavenging activities, reducing power, and Fe2+ chelating capacity], starch, amylose, starch hydrolysis index (HI), estimated glycemic index (eGI), and pasting properties of treated and control (untreated) flours were determined. The control flour (SF) had significantly higher (p < 0.05) levels of all the bioactive constituents and antioxidant activity tested than the DF, DP, and DF-DP flours, while the DF-DP flour had the least levels of bioactive constituents and antioxidant activity. In contrast, the starch, amylose, HI, and eGI were consistently in the order of DF-DP > DF > DP > control flour (p < 0.05). The control flour had the highest (p < 0.05) peak viscosity, and the least peak time and pasting temperature, while the DF flour had the highest final viscosity. Therefore, endogenous lipids and proteins contribute to the antioxidant, starch digestibility, and pasting properties of sorghum flour.
Collapse
|
19
|
Leite DOD, Camilo CJ, Nonato CDFA, de Carvalho NKG, Salazar GJT, de Morais SM, da Costa JGM. Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts. Foods 2021; 10:foods10102343. [PMID: 34681391 PMCID: PMC8535769 DOI: 10.3390/foods10102343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study presents the chemical profile of extracts from the pulp and seed of Annona squamosa L., as well as the evaluation of their antioxidant and acetylcholinesterase inhibition activities. In the chemical prospection, qualitative assays were performed, and the contents of total phenols, flavonoids, vitamin C, and carotenoids were quantified. For the compounds identification, analyses of the extracts were performed by liquid chromatography coupled to mass spectrometry. Antioxidant evaluation was performed using the DPPH, ABTS, Fe3+ reduction, 2-DR protection, and β-carotene protection methods. The assay for inhibition of acetylcholinesterase activity was determined using the method described by Ellman. The secondary metabolites identified were anthocyanidins, flavones, flavonols, and alkaloids. Phenol analysis showed a higher quantitative value of total phenols and flavonoids for the seed extract, and the vitamin C content was higher in the pulp extract. There was no significant difference in relation to the carotenoids quantification. The best results obtained for antioxidant activity, for both seed and pulp extracts, were with the ABTS method with IC50 of 0.14 ± 0.02 and 0.38 ± 0.02 mg/mL, respectively. Compared to A. squamosa seed extract, the pulp extract demonstrates higher AChE inhibitory activity with IC50 of 18.82 ± 0.17 µg/mL. A. squamosa is a nutritious food source. The continuity of the studies is fundamental to relate the consumption of this food and its effects on neurodegenerative diseases.
Collapse
Affiliation(s)
- Débora Odília Duarte Leite
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, CE, Brazil; (D.O.D.L.); (S.M.d.M.)
| | - Cicera Janaine Camilo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.J.C.); (C.d.F.A.N.); (N.K.G.d.C.); (G.J.T.S.)
| | - Carla de Fatima Alves Nonato
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.J.C.); (C.d.F.A.N.); (N.K.G.d.C.); (G.J.T.S.)
| | - Natália Kelly Gomes de Carvalho
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.J.C.); (C.d.F.A.N.); (N.K.G.d.C.); (G.J.T.S.)
| | - Gerson Javier Torres Salazar
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.J.C.); (C.d.F.A.N.); (N.K.G.d.C.); (G.J.T.S.)
| | - Selene Maia de Morais
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, CE, Brazil; (D.O.D.L.); (S.M.d.M.)
| | - José Galberto Martins da Costa
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, CE, Brazil; (D.O.D.L.); (S.M.d.M.)
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.J.C.); (C.d.F.A.N.); (N.K.G.d.C.); (G.J.T.S.)
- Correspondence:
| |
Collapse
|
20
|
Syntheses, crystal structures, antioxidant, in silico DNA and SARS-CoV-2 interaction studies of triorganotin(IV) carboxylates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Rocha JE, Guedes TTAM, Bezerra CF, Costa MDS, Campina FF, de Freitas TS, Sousa AK, Sobral Souza CE, Silva MKN, Lobo YM, Pereira-Junior FN, da Silva JH, Menezes IRA, Teixeira RNP, Colares AV, Coutinho HDM. FTIR analysis of pyrogallol and phytotoxicity-reductive effect against mercury chloride. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2433-2442. [PMID: 32488795 DOI: 10.1007/s10653-020-00607-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Human activities, especially in industry, have contributed to soil contamination with heavy or toxic metals. The objective of this study was to determine the chelating effect and antioxidant activity of pyrogallol, as well as to evaluate its cytoprotective activity in prokaryotic and eukaryotic models, animal and plant, respectively, against toxic mercury chloride action. Antioxidant activity was determined by DPPH where pyrogallol showed considerable action, chelating even iron ions. For the microbiologic activity assays, microdilution was performed to obtain the minimal inhibitory concentration, minimum bactericidal and minimum fungicide concentration, from which the sub-inhibitory concentrations were determined. The product did not conferred cytoprotection to the tested bacteria and fungi. To evaluate plant cytoprotection, Lactuta sativa seeds were used together with the product at a sub-allelopathic concentration with different HgCl2 concentrations. In this case, the tannin conferred cytoprotection to the plant model, allowing the best growth and development of caulicles and radicles, thus preserving tissues necessary for plant survival. From the results, it is observable that pyrogallol possesses cytoprotective action in the eukaryotic plant model, this action being useful as an alternative which favors the growth of plants in contaminated areas, as the recovering of crop fields or reforestation projects.
Collapse
Affiliation(s)
- Janaina E Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Tássia T A M Guedes
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Camila F Bezerra
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Maria do S Costa
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Fabia F Campina
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Thiago S de Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Amanda K Sousa
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Celestina E Sobral Souza
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Maria K N Silva
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | - Yedda M Lobo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil
| | | | | | - Irwin R A Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo N P Teixeira
- Laboratory of Research in Natural Products, Regional University of Cariri, Crato, CE, Brazil
| | | | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.
| |
Collapse
|
22
|
Carvalho NKG, Camilo CJ, Nonato CFA, Leite DOD, Rodrigues FFG, Alves DR, Morais SM, Costa JGM. Essential Oil of Cynophalla flexuosa and its Cytotoxicity, Antioxidant, and Anti-Acetylcholinesterase Effect. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
da Silva JP, do S Costa M, Campina FF, Bezerra CF, de Freitas TS, Sousa AK, Sobral Souza CE, de Matos YMLS, Pereira-Junior FN, Menezes IRA, Coutinho HDM, Rocha JE. Evaluation of chelating and cytoprotective activity of vanillin against the toxic action of mercuric chloride as an alternative for phytoremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1609-1616. [PMID: 32130595 DOI: 10.1007/s10653-020-00538-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Mercury is widely found in nature, however, in low concentrations, but anthropological activities have increased its concentration considerably. This causes various environmental hazards and human health. Many substances are capable of reversing the toxicity of mercuric chloride in the environment. The aim of the present study was to determine the chelating effect of vanillin, as well as to evaluate its capacity for cytoprotection in prokaryotic and eukaryotic plant models. Chelating activity was determined from vanillin's ability to reduce iron III ions. To evaluate cytoprotection in a unicellular prokaryotic and eukaryotic model, Escherichia coli and Candida albicans, respectively, were used. And to evaluate the cytoprotective activity in vegetables, lettuce seeds were submitted to different concentrations of mercuric chloride and its association with the sub-allelopathic concentration of vanillin (32 µg/mL). Vanillin has been found to have antioxidant activity as it can reduce iron III ions. The use of vanillin also allows for better growth and development of Lactuca sativa seed root and stem, also allowing better preservation of its biochemical structures. These results are quite important, as environmental contamination by heavy metals has increased dramatically and finding a viable alternative to grow vegetables in contaminated areas is very valid.
Collapse
Affiliation(s)
- Joelma P da Silva
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Maria do S Costa
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Fabia F Campina
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Camila F Bezerra
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Thiago S de Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Amanda K Sousa
- University Center UNILEAO, Juazeiro do Norte, CE, Brazil
| | | | - Yedda M L S de Matos
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | | | - Irwim R A Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil
| | - Janaína E Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil.
| |
Collapse
|
24
|
Antioxidant and antibacterial properties of Monodora myristica (Calabash nutmeg) seed protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00871-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Oyeniran OH, Ademiluyi AO, Oboh G. African mistletoe (
Tapinanthus bangwensis
Lor.) infestation improves the phenolic constituents, antioxidative and antidiabetic effects of almond (
Terminalia catappa
Linn.) host leaf in sucrose‐rich diet‐induced diabetic‐like phenotypes in fruit fly (
Drosophila melanogaster
Meigen). FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Olubukola H. Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biochemistry Federal University Oye, Ekiti Ekiti State Nigeria
| | - Adedayo O. Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
26
|
Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res Rev 2021; 66:101237. [PMID: 33340716 DOI: 10.1016/j.arr.2020.101237] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
An intermediate of tricarboxylic acid cycle alpha-ketoglutarate (AKG) is involved in pleiotropic metabolic and regulatory pathways in the cell, including energy production, biosynthesis of certain amino acids, collagen biosynthesis, epigenetic regulation of gene expression, regulation of redox homeostasis, and detoxification of hazardous substances. Recently, AKG supplement was found to extend lifespan and delay the onset of age-associated decline in experimental models such as nematodes, fruit flies, yeasts, and mice. This review summarizes current knowledge on metabolic and regulatory functions of AKG and its potential anti-ageing effects. Impact on epigenetic regulation of ageing via being an obligate substrate of DNA and histone demethylases, direct antioxidant properties, and function as mimetic of caloric restriction and hormesis-induced agent are among proposed mechanisms of AKG geroprotective action. Due to influence on mitochondrial respiration, AKG can stimulate production of reactive oxygen species (ROS) by mitochondria. According to hormesis hypothesis, moderate stimulation of ROS production could have rather beneficial biological effects, than detrimental ones, because of the induction of defensive mechanisms that improve resistance to stressors and age-related diseases and slow down functional senescence. Discrepancies found in different models and limitations of AKG as a geroprotective drug are discussed.
Collapse
|
27
|
Muzaffar H, Faisal MN, Anwar H, Hussain A, Khan JA, Muhammad F, Aslam B, Mahmood A, Abdelsadik A, Aslam J, Manzoor MF, Ahmad N, Karrar E. Fish protein intake is a novel dietary approach for managing diabetes-associated complications in diabetic Wistar rat model. Food Sci Nutr 2021; 9:1017-1024. [PMID: 33598184 PMCID: PMC7866565 DOI: 10.1002/fsn3.2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/14/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with short term as well as long-term undesirable complications caused by persistent hyperglycemia. Recently, there has been emerging evidence that natural foods and their bioactive compounds are the key contributors to the treatment of diabetes and associated complications. This study was designed to explore the therapeutic efficacy of a fish protein-rich diet for managing diabetes and associated complications in the diabetic Wistar rat model. A high-protein (HP) diet (45% and 55% fish protein rich in ω3 fatty acids) was given to alloxan-induced diabetic rats for 28 days. Blood samples were collected for monitoring serum glucose, oxidative stress markers, lipid profile, kidney function markers, serum proteins, and liver function markers. Results indicated that there was a noteworthy control (p < .05) of serum glucose, oxidative stress, and lipid profile in HP diet treated diabetic rats. Treatment with 45% and 55% fish diet appreciably improved the concentration of serum creatinine, urea, uric acid and exhibited a vibrant improvement in renal functions. Our results confirmed that the HP diet restored total protein and albumin concentration in blood. The HP diet treatment also restored the normal serum aspartate transaminase and alanine aminotransferase concentration.
Collapse
Affiliation(s)
- Humaira Muzaffar
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| | - Haseeb Anwar
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Junaid Ali Khan
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| | - Faqir Muhammad
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| | - Bilal Aslam
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| | - Aisha Mahmood
- Department of Physiology and BiochemistryCholistan University of Veterinary and Animal Sciences BahawalpurBahawalpurPakistan
| | | | - Jawad Aslam
- Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| | | | - Nazir Ahmad
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Emad Karrar
- Department of Food EngineeringFaculty of EngineeringUniversity of GeziraWad MedaniSudan
| |
Collapse
|
28
|
Oboh G, Oladun FL, Ademosun AO, Ogunsuyi OB. Anticholinesterase activity and antioxidant properties of Heinsia crinita and Pterocarpus soyauxii in Drosophila melanogaster model. J Ayurveda Integr Med 2021; 12:254-260. [PMID: 33514461 PMCID: PMC8185959 DOI: 10.1016/j.jaim.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Background Plant alkaloids have become important sources of nutraceuticals owing to their pharmacological importance especially in the management of neurodegenerative diseases such as Alzheimer’s disease. In assessing the therapeutic potentials of plant phytochemicals, the fruit fly (Drosophila melanogaster) has emerged as a very veritable tool and has been largely accepted as an alternative model in biomedical research. Objectives In this study, alkaloid extracts from bush apple (Heinsia crinita (Afzel.) G. Taylor and padauk (Pterocarpus soyauxii Taub.) leaves were assessed on D. melanogaster exposed to aluminum toxicity. Materials and methods Alkaloid extracts were prepared by solvent extraction method. Thereafter, the extracts were evaluated for their in vitro antioxidant properties, Fe2+-chelating abilities and inhibitory effects on drosophila acetylcholinesterase (AChE) activity. The samples were also characterized for their constituent alkaloids via HPLC. Thereafter, effective safe dose of the extracts were determined in D. melanogaster (Harwich strain). Subsequently, flies assaulted with AlCl3 were co-treated with the extracts (8.3 and 16.6 μg/g) for seven days, during which their survival rate was monitored. This was followed by assaying for the activities of AChE, antioxidant enzymes [superoxide dismutase (SOD), catalase and glutathione-S-transferase (GST)]. Also, the flies were assayed for levels of thiobarbituric acid reaction substance (TBARS) and reactive oxygen species (ROS). Results The results revealed that both extracts showed in vitro antioxidant properties with Padauk showing significantly higher antioxidant properties in vitro. However, there was no significant difference in their in vitro AChE inhibition. In vivo, Al-induced toxicity reduced survival rate, elevated AChE, SOD and GST activities, as well as TBARS and ROS levels which were ameliorated by the extracts. It was also revealed that piperine was predominant in PA, while 1-cyclohexen-1-yl-pyrrolidine was predominant in BA. Conclusion Our data suggest that the protective abilities of these extracts against Al-induced toxicity can be primarily associated with their anticholinesterase and metal chelating abilities. Thus, these vegetables can be potential sources of nutraceuticals against aluminum toxicity and associated diseases.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Federal University of Technology, Department of Biochemistry, P.M.B. 704, Akure, Nigeria.
| | - Folasade L Oladun
- Federal University of Technology, Department of Biochemistry, P.M.B. 704, Akure, Nigeria
| | - Ayokunle O Ademosun
- Federal University of Technology, Department of Biochemistry, P.M.B. 704, Akure, Nigeria
| | - Opeyemi B Ogunsuyi
- Federal University of Technology, Department of Biochemistry, P.M.B. 704, Akure, Nigeria; Federal University of Technology, Department of Biomedical Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
29
|
Adefegha SA, Oboh G, Okeke BM. Comparative effects of berberine and piperine on the neuroprotective potential of neostigmine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:491-497. [PMID: 33544523 DOI: 10.1515/jcim-2020-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study examined effect of berberine and piperine on neuroprotective potential of neostigmine in the management of neurological disorders. METHODS Berberine and neostigmine were weighed (30 g), dissolved in distilled water (30 mL) separately, while, 30 mg piperine was dissolved in ethanol (0.45 mL), made up to 30 mL with distilled water. Antioxidant activities in 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonate) radical (ABTS), Fe-chelation, ferric reducing properties (FRAP), nitric oxide (NO) and hydroxyl (OH) radical scavenging abilities and Fe2+, cisplatin and sodium nitroprusside (SNP) induced lipid peroxidation (LPO), and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activities were assessed in vitro. RESULTS The result revealed that tested compounds inhibited enzymes activities dose-dependently. However, berberine (IC50=0.17 mg/mL) had slight higher AChE inhibitory effect than piperine and neostigmine (p<0.05). Also, berberine had the highest BChE inhibitory effect (IC50=0.16 mg/mL) while piperine exhibited the highest MAO inhibitory effect (IC50=0.21 mg/mL). Berberine, piperine and neostigmine exhibited high antioxidant properties and inhibited Fe2+, cisplatin and SNP induced LPO. CONCLUSIONS Both alkaloids demonstrated antiradical scavenging ability comparable to neostigmine action against Alzheimer's disease (AD). The modulatory and antioxidant berberine and piperine properties on these enzymes (AChE, BChE and MAO) could be possible underlying mechanisms in employing these compounds as a complementary therapy in neurodegenerative diseases (NDDs) management.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
30
|
Ogidi CO, Abioye SA, Akinyemi DD, Fadairo FB, Bolaniran T, Akinyele BJ. Bioactivity assessment of ethanolic extracts from Theobroma cacao and Cola spp. wastes after solid state fermentation by Pleurotus ostreatus and Calocybe indica. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00543-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Gul Z, Buyukuysal RL. Glutamate-induced modulation in energy metabolism contributes to protection of rat cortical slices against ischemia-induced damage. Neuroreport 2021; 32:157-162. [PMID: 33323837 DOI: 10.1097/wnr.0000000000001572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Glutamate excitotoxicity contributes to neurodegeneration during cerebral ischemia. Recent studies in the protective effect of glutamate against ischemia and hypoxia have shown the need for questioning the role of glutamate in energy metabolism during ischemia. Current study investigates the effect of glutamate on energy substrate metabolites such as alpha-ketoglutarate, lactate, and pyruvate release during control, oxygen-glucose deprivation (OGD), and reoxygenation (REO) conditions. METHODS The effects of 0.5 and 2 mM glutamate on spontaneous alpha-ketoglutarate, lactate, and pyruvate release were tested in vitro, on acute rat cortical slices. Alpha-ketoglutarate, lactate, and pyruvate levels were determined by HPLC with UV detector. RESULTS We observed that glutamate added into medium significantly increased alpha-ketogluarate release under control conditions. Although OGD and REO also had a glutamate-like effect, only REO-induced rise further enhanced by glutamate. In contrast to alpha-ketoglutarate, both OGD and REO conditions caused significant declines in pyruvate and lactate outputs. While OGD and REO-induced declines in pyruvate outputs were further potentiated, lactate output was not altered by glutamate added into the medium. Glutamate and alpha-ketoglutarate, moreover, also ameliorated OGD- and REO-induced losses in 2,3,5-triphenyltetrazolium chloride staining with a similar degree. CONCLUSION These results indicate that glutamate probably increases alpha-ketoglutarate production as an alternative energy source for use in the TCA cycle under energy-depleted conditions. Thus, increasing the alpha-ketoglutarate production may represent a new therapeutic intervention for neurodegenerative disorders, including cerebral ischemia.
Collapse
Affiliation(s)
- Zulfiye Gul
- Department of Medical Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul
| | - R Levent Buyukuysal
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
32
|
Pedroso da Fontoura L, Puntel R, Pinton S, Silva de Ávila D, Teixeira da Rocha JB, Onofre de Souza D, Roos DH. A toxicological comparison between two uranium compounds in Artemia salina: Artificial seawater containing CaCO 3. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105221. [PMID: 33341237 DOI: 10.1016/j.marenvres.2020.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Uranium (U) mining is an aquatic environmental concern because most of these harmful compounds are discharged into freshwater, reaching the saline environment as the final destination of this contaminated water. Carbonates are present in ocean waters and are essential for benthic organisms, however they may influence the U-induced toxicity. Thus, the aim of this study was to compare the toxicity of uranium nitrate (UN) and uranium acetate (UA) in Artemia salina (AS), which is one of the leading representatives of the marine biota. The cultures of AS (instar II) maintained in artificial seawater containing CaCO3 were exposed for 24 h to different concentrations of U compounds. The results showed that AS were more sensitive to UN (LC50 ≈ 15 μM) when compared with UA (LC50 ≈ 245 μM) indicating higher toxicity of this U compound. Calculated U speciation indicated that Ca2UO2(CO3)3 and (UO2)2CO3(OH)3- complexes predominated under our experimental conditions. The immobilization/lethality was observed after 9 h of exposure for both U compounds. However, only UN caused a significant decrease (≈40%) in the acetylcholinesterase (AChE) activity when compared with control. In order to observe preliminary toxicity effects, we evaluated oxidative stress parameters, such as catalase (CAT) activity, TBARS formation, radical species (RS) generation and cell membrane injury and/or apoptosis (CMI). In this study, we demonstrate that U compounds caused a significant decrease in CAT activity. Similarly, we also observed that UN increased TBARS levels in AS at concentrations 5 times lower than AU (10 μM and 50 μM, respectively). Furthermore, RS generation and CMI were enhanced only on AS treated with UN. Overall, the effects observed here were remarkably significant in AS exposed to UN when compared with AU. In this study, we showed different profiles of toxicity for both U compounds, contributing significantly to the current and scarce understanding of the aquatic ecotoxicity of this heavy metal.
Collapse
Affiliation(s)
- Lara Pedroso da Fontoura
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Robson Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Daiana Silva de Ávila
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - João Batista Teixeira da Rocha
- Universidade Federal de Santa Maria, Departamento de bioquímica e biologia celular/CCNE/UFSM, Laboratório de Bioquímica Toxicológica, Farmacologia e Organocalcogênios, ZIP code: 97105900, Santa Maria, RS, Brazil
| | - Diogo Onofre de Souza
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica. Rua Ramiro Barcelos, 2.600 - Anexo Laboratorio 28 Santana, ZIP code: 90035003, Porto Alegre, RS, Brazil
| | - Daniel Henrique Roos
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil.
| |
Collapse
|
33
|
Ogidi CO, Ubaru AM, Ladi-Lawal T, Thonda OA, Aladejana OM, Malomo O. Bioactivity assessment of exopolysaccharides produced by Pleurotus pulmonarius in submerged culture with different agro-waste residues. Heliyon 2020; 6:e05685. [PMID: 33336098 PMCID: PMC7734227 DOI: 10.1016/j.heliyon.2020.e05685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Pleurotus spp. are white-rot fungi that utilize different agro-wastes to produce useful biologically active compounds. In this study, exopolysaccharides (EPS) were produced by Pleurotus pulmonarius in submerged culture supplemented with different agro-wastes. Functional groups in EPS were revealed using Fourier Transform-Infrared (FT-IR) spectroscopy. Antimicrobial activity of EPS was tested against microorganisms using agar well diffusion. Scavenging potentials of EPS was tested against 1, 1- diphenyl-2-picryhydrazyl (DPPH), hydroxyl (OH), iron (Fe2+) and nitric oxide (NO) radicals. In vitro prebiotic activity of EPS was carried out. The highest yield (5.60 g/L) of EPS was produced by P. pulmonarius in submerged culture supplemented with groundnut shell (20.0 g/L). The functional groups in EPS were hydroxyl (-OH), methyl (-CH3), ketone (-RCOH) and carbonyl group (-C=O). EPS displayed zones of inhibition (5.00-14.00 mm) against tested microorganisms. Scavenging activity of EPS ranged from 65.70-81.80% against DPPH. EPS supported the growth of Lactobacillus delbrueckii and Streptococcus thermophiles with values ranged from 3.04 × 104-3.40 × 104 cfu/ml and 2.50 × 104-2.81 × 104 cfu/ml, respectively. Submerged culture of P. pulmonarius with addition of agro-wastes enhanced yield of EPS. The EPS exhibited bio-functional properties like antimicrobial, antioxidant and prebiotic activities. Hence, agrowastes can be recycled in submerged fermentation with fungi to produce promising biomaterials for biopharmaceutical applications.
Collapse
Affiliation(s)
- Clement Olusola Ogidi
- Biotechnology Unit, Department of Biological Sciences, Kings University, PMB 555, Odeomu, Nigeria
| | - Adaeze Mascot Ubaru
- Microbiology Unit, Department of Biological Sciences, Kings University, PMB 555, Odeomu, Nigeria
| | - Temilayo Ladi-Lawal
- Biotechnology Unit, Department of Biological Sciences, Kings University, PMB 555, Odeomu, Nigeria
| | - Oluwakemi Abike Thonda
- Microbiology Unit, Department of Biological Sciences, Kings University, PMB 555, Odeomu, Nigeria
| | | | - Olu Malomo
- Biotechnology Unit, Department of Biological Sciences, Kings University, PMB 555, Odeomu, Nigeria
| |
Collapse
|
34
|
Agu KC, Ayevbuomwan M, Imade RO, Okolie PN, Elekofehinti OO, Falodun A, Eluehike LN, Tasie MC, Ovie JJ, Obiajuru SK, Enakeno OR, Otsupius JA, Kashetu AI, Akeiti FO. Biochemical investigation of the upstream anti-sickling mechanisms of soursop ( Annona muricata): 15-acetyl guanacone as an inhibitor of deoxyhaemoglobin polymerisation. J Biomol Struct Dyn 2020; 40:1503-1520. [PMID: 33016836 DOI: 10.1080/07391102.2020.1828171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Current sickle cell disease (SCD) therapies are limited and inefficient. The ethnomedicinal values of Annona muricata in the treatment of SCD, leading to this present research. Leaves and fruits of Annona muricata were processed using solvent extraction and partitioning; aqueous, chloroform and ethyl acetate fractions. In vitro (anti-oxidant and anti-sickling), in silico, quantitative (amino acids) and kinetic simulation experiments were done. 15-acetyl guanacone, was used, in silico against 2,3-bisphosphoglycerate (2, 3-BPG) mutase and deoxyhaemoglobin. The ethyl acetate and chloroform fractions better NO● scavengers, iron-chelators and ferric reducing. In vitro unsickling (UT50) had ethyl acetate = 5 h and methanol = 7 h. Chloroform fraction had EC50 1.00 mg/mL (EC50 = 546 mg/mL) to 10.00 mg/mL (EC50 = 99 mg/mL). EC50 and IC50 of ethyl acetate fraction had steady-decrease. At higher concentration, chloroform fraction had higher Bmax (1.48 × 1021 U/mL) and higher Kd (3.66 × 1019 mg/mL), whereas, at a lower concentration, the ethyl acetate fraction demonstrated higher Bmax (7.23 × 1012 U/mL) and lower Kd (2.12 × 1011 mg/mL); The relative affinity (BP) of chloroform fraction increased progressively with concentration. The amino acid profile revealed rich concentrations glycine, valine, leucine, lysine, phenylalanine, histidine, arginine, and tryptophan. From the in silico experiments, 15-acetyl guanacone specifically targeted the A and B chains, with greater affinity for the beta subunit. This suggested that 15-acetyl guanacone might be able to prevent the polymerisation of deoxyHbSS, induce an allosteric conformational change that increases the oxygen affinity, and decrease the cellular 2, 3-BPG concentration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kingsley Chukwunonso Agu
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Merit Ayevbuomwan
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Rose Osarieme Imade
- Department of Pharmacognosy, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Paulinus Ngozi Okolie
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Olusola Olalekan Elekofehinti
- Department of Department of Biochemistry, Bioinformatics and Molecular Biology Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Abiodun Falodun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Lauretta Nkeiruka Eluehike
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Mercy Chinaza Tasie
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - John Jatto Ovie
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Sarah Kelechi Obiajuru
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Oghenebrozie Reke Enakeno
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Joyce Amiosinor Otsupius
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Amina Isimenmen Kashetu
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Faith Ofure Akeiti
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
35
|
Omoba OS, Oyewole GO, Oloniyo RO. Chemical Compositions and Antioxidant Properties of Orange Fleshed Sweet Potato Leaves and the Consumer Acceptability in Vegetable Soup. Prev Nutr Food Sci 2020; 25:293-300. [PMID: 33083379 PMCID: PMC7541923 DOI: 10.3746/pnf.2020.25.3.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/18/2020] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study is to determine the chemical compositions, anti-nutrient compositions, antioxidant properties, and phenolic profile of the leaves of orange fleshed sweet potato varieties [King J (UMUSPO1) and mother's delight (UMUSPO2)] in Nigeria and their suitabilities in soup preparation. Freshly harvested leaves of the two varieties of orange fleshed sweet potato were sorted, cleaned, dried, and milled into powder. The dried leaves were assessed for their chemical compositions viz proximate and mineral compositions, the anti-nutrient compositions, antioxidant properties, and phenolic profile. The overall acceptability of the leafy vegetables in the preparation of a local soup (Edikang Ikong) was evaluated. The ash, fat, and protein contents of UMUSPO1 leaves were higher than UMUSPO2, similarly UMUSPO1 leaves had higher mineral contents. Phytate and saponin contents were higher in UMUSPO2, however, the calculated molar ratios were below critical levels. The 2,2-diphenyl-1-picrylhydrazyl hydrate radical scavenging activity and ferric reducing antioxidant power assay were higher in UMUSPO1. Seven phenolic compounds were identified and quantified in both leaves with gallic acid being the most abundant. The taste of soup prepared with UMUSPO2 was rated higher, however, no significant difference was observed in the overall acceptability of the soups. The two leaves are good sources of nutritional antioxidants and can be suitable for the management of some disease conditions linked to oxidative stress.
Collapse
Affiliation(s)
- Olufunmilayo Sade Omoba
- Department of Food Science and Technology, Federal University of Technology, Akure 34002, Nigeria
| | - Ganiyat Ololade Oyewole
- Department of Food Science and Technology, Federal University of Technology, Akure 34002, Nigeria
| | | |
Collapse
|
36
|
Ademiluyi AO, Oyeniran OH, Oboh G. Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). J Food Biochem 2020; 44:e13451. [PMID: 32851688 DOI: 10.1111/jfbc.13451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
Monosodium Glutamate (MSG) is the most commonly utilized food additive in the world. However, data on possible biochemical reasons underlying the neurotoxic effects of dietary MSG is limited. Therefore, this study investigated the effects of dietary supplementation of MSG on redox status and neurochemical indices in lobster cockroach nymph. These were evaluated via assessment of enzymatic and nonenzymatic antioxidants, acetylcholinesterase and monoamine oxidase activities, and dopamine content in the cockroach nymph head homogenate. MSG supplemented diet caused dose-dependent significant (p < .05) reduction in % survival, thiol, GSH, dopamine contents, and GST activity, increased ROS, NO, Fe2+ , MDA contents, and MAO activity but no significant (p < .05) difference was obtained in GSH and TBARS contents, and AChE activity. Increased oxidative, cholinergic, and monoaminergic activities coupled with decreased dopamine level might be the plausible biochemical explanation for the neurotoxic effects observed during sub-chronic consumption of large amounts of MSG in diet. PRACTICAL APPLICATIONS: This study suggests that consumption of monosodium glutamate should be reduced to the barest minimum due to its capability to induce oxidative stress and nervous toxicological effects at high dosage.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olubukola H Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University Oye - Ekiti, Ekiti, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
37
|
Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J Food Biochem 2020; 45:e13395. [PMID: 32720328 DOI: 10.1111/jfbc.13395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50 = 147.40 µg/ml) and OH (IC50 = 493.90 µg/ml) radical scavenging and metal chelating (IC50 = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50 = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
38
|
Oyeniran OH, Ademiluyi AO, Oboh G. Comparative study of the phenolic profile, antioxidant properties, and inhibitory effects of Moringa (Moringa oleifera Lam.) and Almond (Terminalia catappa Linn.) leaves on acetylcholinesterase and monoamine oxidase activities in the head region of Fruitfly (Drosophila melanogaster Meigen) in vitro. J Food Biochem 2020; 45:e13401. [PMID: 32691858 DOI: 10.1111/jfbc.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Moringa and Almond are medicinal plants used traditionally as food and medicine to prevent and/or treat a wide array of metabolic and neurodegenerative diseases, however, Almond leaf is underutilized. Therefore, this study investigated and compared the polyphenol constituents, antioxidant capacities, and neurochemical indices of the aqueous extracts of Moringa and Almond leaves in fruitfly head tissue homogenate in vitro. The polyphenols were evaluated by characterization using HPLC-DAD, antioxidant properties were assessed through extracts ability to inhibit ABTS, DPPH, OH, and NO radicals, reduce Fe3+ and MDA, and chelate Fe2+ . The neurochemical indices were evaluated through AChE and MAO inhibitory activities. Almond leaf had significant (p < .05) higher polyphenols and antioxidant properties. However, Moringa leaf had significant (p < .05) higher AChE inhibition and no significant (p < .05) difference was obtained in MAO inhibitory activities. Thus, Almond leaf might be more effective in managing diseases related with oxidative stress and neurodegeneration. PRACTICAL APPLICATIONS: This present study has shown that Almond leaf might offer better health promotion due to its higher phenolic constituents and antioxidant activities when compared with Moringa leaf, however, both Moringa and Almond leaves could be taken as functional foods to alleviate the symptoms of oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Olubukola H Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University Oye, Oye-Ekiti, Nigeria
| | - Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
39
|
Oyeniran OH, Ademiluyi AO, Oboh G. Modulatory effects of moringa (Moringa oleifera L.) leaves infested with African mistletoe (Tapinanthus bangwensis L.) on the antioxidant, antidiabetic, and neurochemical indices in high sucrose diet-induced diabetic-like phenotype in fruit flies (Drosophila melanogaster M.). J Food Biochem 2020; 45:e13318. [PMID: 32524642 DOI: 10.1111/jfbc.13318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022]
Abstract
Moringa is a common medicinal plant tree with mistletoe infestation and its leaf is widely used as food and traditional medication in alleviating several metabolic and neurodegenerative diseases. Hence, this study investigated the influence of African mistletoe on the antioxidant, antidiabetic, and neuroprotective activities of infested moringa leaf in sucrose induced diabetes in Drosophila melanogaster model. Glucose and triglycerides were evaluated in the flies' hemolymph and all other parameters were evaluated in the tissues. A significant (p < .05) decrease in survival rate and increase in the level of glucose and triglycerides in flies fed with 30% of sucrose when compared with control was obtained. Treated flies had significant (p < .05) positive alteration in the level of glucose, triglycerides, antioxidants (both enzymatic and nonenzymatic), and enzyme activities when compared with normal and sucrose control flies. This study suggests that mistletoe infestation did not alter the antioxidant, antidiabetic, and neuroprotective effects of the moringa leaf. PRACTICAL APPLICATIONS: This present study has shown that mistletoe infestation did not alter the protective activities of moringa leaf, hence, moringa with or without mistletoe infestation could be taken as functional food to mitigate several metabolic diseases.
Collapse
Affiliation(s)
- Olubukola H Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University Oye, Oye, Nigeria
| | - Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
40
|
Ribeiro DA, Camilo CJ, de Fátima Alves Nonato C, Rodrigues FFG, Menezes IRA, Ribeiro-Filho J, Xiao J, de Almeida Souza MM, da Costa JGM. Influence of seasonal variation on phenolic content and in vitro antioxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chem 2020; 315:126277. [PMID: 32004983 DOI: 10.1016/j.foodchem.2020.126277] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
|
41
|
Barkaoui T, Hamimed S, Bellamine H, Bankaji I, Sleimi N, Landoulsi A. Alleviated Actions of Plantago albicans Extract on Lead Acetate-Produced Hepatic Damage in Rats Through Antioxidant and Free Radical Scavenging Capacities. J Med Food 2020; 23:1201-1215. [PMID: 32316841 DOI: 10.1089/jmf.2019.0246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the possible protective mechanisms and to determine the antioxidant capacity of phenolic compounds extracted from Plantago albicans against lead acetate-induced hepatic injury. High performance liquid chromatography-photo diode array/electrospray ionization-mass spectrometry (HPLC-PDA/ESI-MS) assay was used to identify the P. albicans extract phenolic compounds. Animals received 100 mg of lead acetate/kg of body weight (bw) in the drinking water for a period of 30 days. The other groups of rats were orally administered with silymarin (300 mg/kg bw) or the P. albicans extract at two doses (100 and 300 mg/kg of bw), once daily, by gastric gavage for the same time. The P. albicans exhibited high total phenolic, flavonoid, and anthocyanin contents. The antioxidant in vitro activity demonstrated that the P. albicans exhibits an important effect against deleterious reactive species. The in vivo results showed that P. albicans prevented the lead acetate-induced significant changes on serum and liver lipid levels. In contrast, P. albicans succeeded in improving the biochemical parameters of serum and liver bringing them closer to the normal values of the control group. It also significantly promoted (P < .05) pro-inflammatory cytokines (TNF-α, IL-6, and NF-κB) in the liver of the experimental animals. The evaluated sample with HPLC-PDA/ESI-MS method showed to contain 10 dominant polyphenols, 2 hydroxycinnamic acids (p-coumaric acid and chlorogenic acids), 4 flavones (Apigenin, Luteolin, Cirsiliol, and Luteolin-7-O-rutinoside), and an anthocyanin (cyanidin-3-glucoside). Hence, it can be concluded that P. albicans could be a potent source of health-beneficial phytochemicals providing a novel therapy to protect liver against lead exposure.
Collapse
Affiliation(s)
- Taha Barkaoui
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | - Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | - Houda Bellamine
- Pathological Anatomy Service, Regional Hospital of Menzel Bourguiba, Menzel Bourguiba, Republic of Tunisia
| | - Insaf Bankaji
- RME - Laboratory of Resources, Materials, Valorisation and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Noomene Sleimi
- RME - Laboratory of Resources, Materials, Valorisation and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| |
Collapse
|
42
|
Ogunsuyi OB, Oboh G, Özek G, Göger F. Solanum vegetable-based diets improve impairments in memory, redox imbalance, and altered critical enzyme activities in Drosophila melanogaster model of neurodegeneration. J Food Biochem 2020; 45:e13150. [PMID: 31950517 DOI: 10.1111/jfbc.13150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
The effects of two Solanum vegetables, S. macrocarpon L. (African eggplant), and S. nigrum L. (black nightshade) on aluminum model of neurodegeneration in Drosophila melanogaster was investigated. Flies were treated with AlCl3 alone or in combination with the leaves from both samples in their diets for 7 days. Thereafter, locomotor performance and aversive phototaxic suppression test for learning and memory were carried out. This was followed by assay for reactive oxygen species, antioxidant properties, and enzyme (monoamine oxidase and cholinesterase) activities. Also, the in vitro antioxidant properties and chromatographic phenolic and alkaloid characterization of the samples were determined. Results showed that impaired behavioral physiology, antioxidant status, and enzyme activities observed in Al-treated flies were ameliorated in flies treated with both samples. In addition, both samples exhibited in vitro antioxidant effects. The protective effects from these samples against Al-induced toxicity can be associated with their antioxidant, antimonoaminergic, and anticholinergic properties. PRACTICAL APPLICATIONS: In the quest for a holistic prevention/management approach to neurodegenerative diseases, functional foods are becoming prominent. The use of Drosophila melanogaster to study human diseases is gaining huge recognition due to the high homologue between disease-causing genes between the two organisms. Consequently, this study presents African eggplant and black nightshade leafy vegetables as sources of polyphenols and alkaloids which are able to ameliorate impaired learning and memory, redox status, and enzyme activities in Al-induced D. melanogaster model of neurodegeneration.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Gulmira Özek
- Faculty of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir, Turkey
| | - Fatih Göger
- Faculty of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir, Turkey.,Medicinal Plant, Drug and Scientific Research Center (AUBIBAM), Anadolu University, Eskişehir, Turkey.,Department of Pharmacy, Yunus Emre Vocational School, Eskişehir, Turkey
| |
Collapse
|
43
|
Hepatic Mitochondrial Oxidative Metabolism and Lipogenesis Synergistically Adapt to Mediate Healthy Embryonic-to-Neonatal Transition in Chicken. Sci Rep 2019; 9:20167. [PMID: 31882889 PMCID: PMC6934531 DOI: 10.1038/s41598-019-56715-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
During the normal embryonic-to-neonatal development, the chicken liver is subjected to intense lipid burden from high rates of yolk-lipid oxidation and also from the accumulation of the yolk-derived and newly synthesized lipids from carbohydrates. High rates of hepatic lipid oxidation and lipogenesis are also central features of non-alcoholic fatty liver disease (NAFLD) in both rodents and humans, but is associated with impaired insulin signaling, dysfunctional mitochondrial energetics and oxidative stress. However, these adverse effects are not apparent in the liver of embryonic and neonatal chicken, despite lipid burden. Utilizing comprehensive metabolic profiling, we identify that steady induction of hepatic mitochondrial tricarboxylic acid (TCA) cycle and lipogenesis are central features of embryonic-to-neonatal transition. More importantly, the induction of TCA cycle and lipogenesis occurred together with the downregulation of hepatic β-oxidation and ketogenesis in the neonatal chicken. This synergistic remodeling of hepatic metabolic networks blunted inflammatory onset, prevented accumulation of lipotoxic intermediates (ceramides and diacylglycerols) and reduced reactive oxygen species production during embryonic-to-neonatal development. This dynamic remodeling of hepatic mitochondrial oxidative flux and lipogenesis aids in the healthy embryonic-to-neonatal transition in chicken. This natural physiological system could help identify mechanisms regulating mitochondrial function and lipogenesis, with potential implications towards treatment of NAFLD.
Collapse
|
44
|
Olasehinde TA, Olaniran AO, Okoh AI. Phenolic composition, antioxidant activity, anticholinesterase potential and modulatory effects of aqueous extracts of some seaweeds on β-amyloid aggregation and disaggregation. PHARMACEUTICAL BIOLOGY 2019; 57:460-469. [PMID: 31335235 PMCID: PMC6691876 DOI: 10.1080/13880209.2019.1634741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 05/03/2023]
Abstract
Context: Seaweeds contain bioactive compounds with different biological activities. They are used as functional ingredients for the development of therapeutic agents to combat degenerative diseases. Objective: This study investigated the phenolic composition, antioxidant activity, cholinesterase inhibitory and anti-amyloidogenic activities of aqueous extracts of Gracilaria beckeri (J.Agardh) Papenfuss (Gracilariaceae) (RED-AQ), Ecklonia maxima (Osbeck) Papenfuss (Lessoniaceae) (ECK-AQ), Ulva rigida (C.Agardh) Linnaeus (Ulvaceae) (URL-AQ) and Gelidium pristoides (Turner) Kützing (Gelidiaceae) (GEL-AQ). Materials and methods: Phenolic composition of the seaweed extracts was determined using liquid chromatography mass spectrometry. Radical scavenging and metal chelating activities were assessed in vitro. The effect of the extracts (21-84 µg/mL) on acetylcholinesterase and butyrylcholinesterase activities were also investigated using an in vitro colorimetric assay. Transmission electron microscope and thioflavin-T fluorescence assay were used to examine the anti-amyloidogenic activities of the extracts. Results: Phloroglucinol, catechin, epicatechin 3-glucoside were identified in the extracts. ECK-AQ (IC50=30.42 and 280.47 µg/mL) exhibited the highest OH• scavenging and metal chelating activities, while RED-AQ (41.23 and 334.45 µg/mL) exhibited the lowest. Similarly, ECK-AQ (IC50 = 49.41 and 52.11 µg/mL) exhibited higher inhibitory effects on acetylcholinesterase and butyrylcholinesterase activities, while RED-AQ (64.56 and 63.03 µg/mL) showed the least activities. Rapid formation of β-amyloid (Aβ1-42) fibrils and aggregates was observed in electron micrographs of the control after 72 and 96 h. The reduction of Aβ1-42 aggregates occurred after co-treatment with the seaweed extracts. Discussion and conclusion: ECK-AQ, GEL-AQ, URL-AQ and RED-AQ may possess neuroprotective potential and could be explored for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Food Technology Department, Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I. Okoh
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
45
|
Oboh G, Ogunsuyi OB, Adegbola DO, Ademiluyi AO, Oladun FL. Influence of gallic and tannic acid on therapeutic properties of acarbose in vitro and in vivo in Drosophila melanogaster. Biomed J 2019; 42:317-327. [PMID: 31783992 PMCID: PMC6889231 DOI: 10.1016/j.bj.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background In this study, gallic acid (GA) and its polymeric form-tannic acid (TA) which are two phenolic acids found abundantly distributed in plant food sources were investigated for their influence on therapeutic properties of acarbose (AC) in vitro and in vivo in Drosophila melanogaster. Methods Combinations of AC and GA or TA were assessed for their alpha-glucosidase and alpha-amylase inhibitory effects as markers of anti-hyperglycemic properties, as well as their free radicals scavenging, Fe2+ chelating and malondialdehyde (MDA) inhibitory effects (in vitro). Furthermore, wild type D. melanogaster cultures were raised on diets containing AC, GA, TA and their various combinations for seven days. Thereafter, flies were homogenized and glucose concentrations, alpha-glucosidase and alpha-amylase activities, as well as reactive oxygen species (ROS) and total thiol levels were determined. Results The results showed that GA and TA up to 5 mg/ml significantly (p < 0.05) increased the enzymes' inhibitory effects and antioxidant properties of AC in vitro. Also, there was significant reduction in glucose concentration, enzyme activities and ROS level in D. melanogaster fed diets supplemented with phenolic acids and acarbose. Conclusions These bioactive compounds–drug interactions provide useful information on improving the therapeutic properties of acarbose especially in its use as an antidiabetic drug.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | - Opeyemi Babatunde Ogunsuyi
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria; Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | | | | | | |
Collapse
|
46
|
Ademiluyi AO, Oyeniran OH, Jimoh TO, Oboh G, Boligon AA. Fluted pumpkin (Telfairia occidentalis) seed modulates some markers of erectile function in isolated rat's corpus cavernosum: Influence of polyphenol and amino acid constituents. J Food Biochem 2019; 43:e13037. [PMID: 31502274 DOI: 10.1111/jfbc.13037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
Pumpkin seeds are often used in traditional medicine in the management of erectile dysfunction. However, there is insufficient information about the possible biochemical rationale behind this practice. Hence, this study investigated the influence of fluted pumpkin seed on critical enzymes involved in erectile function in isolated rats' corpus cavernosum in vitro. The phenolics and amino acid contents of fluted pumpkin seed were determined using HPLC-DAD and GC-PFPD analyses respectively. The aqueous extract of the fluted pumpkin seed significantly (p < .05) scavenged free radicals and inhibited PDE-5, arginase, AChE, and ACE in rats' corpus cavernosum in a concentration-dependent pattern. Quercitrin and luteolin were the most dominant phenolics, while arginine, aspartate, and cysteine were the most aboundant amino acid constituents. The positive modulatory effect of the fluted pumpkin seed on these critical markers of erectile function could be attributed to its polyphenolics and amino acid constituents. PRACTICAL APPLICATIONS: This study brought to limelight the medicinal importance of fluted pumpkin seed in erectile functions. Therefore, this seed could be used as a functional food ingredient in the management of erectile dysfunctions and also in improving erectile functions in men. In addition, the dominant phenolics and amino acid constituents of this seed might be an effective nutraceutical in enhancing erections in men.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Olubukola H Oyeniran
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Tajudeen O Jimoh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Aline A Boligon
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Maria, Camobi, Santa Maria, Brazil
| |
Collapse
|
47
|
Olasehinde TA, Olaniran AO, Okoh AI. Aqueous-ethanol extracts of some South African seaweeds inhibit beta-amyloid aggregation, cholinesterases, and beta-secretase activities in vitro. J Food Biochem 2019; 43:e12870. [PMID: 31353743 DOI: 10.1111/jfbc.12870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
Abstract
In this study, we evaluated the anti-amyloidogenic, anticholinesterase, and antioxidant potentials of hydroethanolic extracts of Ecklonia maxima (ECK), Gelidium pristoides (GLD), Gracilaria gracilis (GCL), and Ulva lactuca (ULT). The effect of the extracts on β-amyloid (Aβ1-42 ) peptide were determined using electron microscope. The effects of the extracts on β-secretase and cholinesterase activities, as well as their radical scavenging and metal chelating activities were also assessed. Electron micrographs revealed that ECK, GLD, GCL, and ULT incubated with Aβ1-42 at different intervals (0-96 hr) showed very low levels of fibrils compared to the control. The extracts also inhibited β-secretase, acetylcholinesterase, and butyrylcholinesterase activities in a dose-dependent manner. Furthermore, the extracts scavenged hydroxyl radicals and were able to chelate Fe2+ in a dose-dependent manner. Our findings suggest that the seaweed extracts are potential sources of lead compounds and novel inhibitors of β-amyloid aggregation, β-secretase, and cholinesterases for the management of Alzheimer's diseases. PRACTICAL APPLICATIONS: Seaweeds have been identified as good sources of naturally occurring bioactive compounds with several medicinal properties. They are commonly used as functional foods and development of nutraceuticals, dietary supplements, and cosmeceuticals. However, the neuroprotective effects of many species of seaweeds have not been fully explored. The findings of this study suggests that Gracilaria gracilis, Ulva lactuca, Ecklonia maxima, and Gelidium pristoides are potential sources of cholinesterase, beta-secretase, and amyloid protein aggregation inhibitors. Hence, this support the use of these seaweeds as alternative sources of antioxidants and natural compounds with neuroprotective potentials for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
48
|
Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
49
|
Irondi EA, Adegoke BM, Effion ES, Oyewo SO, Alamu EO, Boligon AA. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Sobral-Souza CE, Silva ARP, Leite NF, Costa JGM, Menezes IRA, Cunha FAB, Rolim LA, Coutinho HDM. LC-MS analysis and cytoprotective effect against the mercurium and aluminium toxicity by bioactive products of Psidium brownianum Mart. ex DC. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:54-62. [PMID: 29602643 DOI: 10.1016/j.jhazmat.2018.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/24/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to verify the chelating, antioxidant and cytoprotective activities of Psidium brownianum Mart. Ex DC against mercury and aluminum. The ethanolic extract, as well as the tannic and flavonoid fractions, were prepared and subjected to liquid chromatography-mass spectrometry analysis. Ferric ion reduction and antioxidant activity measurement using the FRAP method were performed with P. brownianum. After determining the sub-allelopathic doses, germination tests using Lactuca sativa (lettuce) seeds were performed. The main compounds identified in the extract and fractions were: quercetin and its derivatives; myricetin and its derivatives; gallic acid; ellagic acid; quinic acid and gallocatechin. The Minimum Inhibitory Concentration (MIC) for all samples were ≥ 1024 μg/mL. The flavonoid fraction in association with mercury chloride demonstrated cytoprotection (p < 0.001). The sub-allelopathic concentration used was 64 μg/mL. The extract and fractions were cytoprotective for radicles and caulicles when assayed in association with mercury and against aluminum for radicles. This suggests that the P. brownianum extract and its fractions present cytoprotective activity, possibly related to the antioxidant effect of secondary metabolites, especially flavonoids.
Collapse
Affiliation(s)
- Celestina E Sobral-Souza
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, Brazil; Faculdade Vale do Salgado, Icó CE, Brazil
| | - Ana R P Silva
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, Brazil
| | - Nadghia F Leite
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, Brazil
| | - José G M Costa
- Laboratory of Natural Products Research, Regional University of Cariri, Crato CE, Brazil
| | - Irwin R A Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri, Crato CE, Brazil
| | - Francisco A B Cunha
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, Brazil
| | - Larissa A Rolim
- Center of Drug, Remedies and Food Analysis, Federal University of the São Francisco Valley, Petrolina PE, Brazil
| | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, Brazil.
| |
Collapse
|