1
|
Searfoss RM, Liu X, Garcia BA, Lin Z. Top-down Proteomics for the Characterization and Quantification of Calreticulin Arginylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607245. [PMID: 39149376 PMCID: PMC11326232 DOI: 10.1101/2024.08.08.607245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Arginylation installed by arginyltransferase 1 (ATE1) features an addition of arginine (Arg) to the reactive amino acids (e.g., Glu and Asp) at the protein N-terminus or side chain. Systemic removal of arginylation after ATE1 knockout (KO) in mouse models resulted in heart defects leading to embryonic lethality. The biological importance of arginylation has motivated the discovery of arginylation sites on proteins using bottom-up approaches. While bottom-up proteomics is powerful in localizing peptide arginylation, it lacks the ability to quantify proteoforms at the protein level. Here we developed a top-down proteomics workflow for characterizing and quantifying calreticulin (CALR) arginylation. To generate fully arginylated CALR (R-CALR), we have inserted an R residue after the signaling peptide (AA1-17). Upon overexpression in ATE1 KO cells, CALR and R-CALR were purified by affinity purification and analyzed by LCMS in positive mode. Both proteoforms showed charge states ranging from 27-68 with charge 58 as the most intense charge state. Their MS2 spectra from electron-activated dissociation (EAD) showed preferential fragmentation at the protein N-terminals which yielded sufficient c ions facilitating precise localization of the arginylation sites. The calcium-binding domain (CBD) gave minimum characteristic ions possibly due to the abundant presence of >100 D and E residues. Ultraviolet photodissociation (UVPD) compared with EAD and ETD significantly improved the sequence coverage of CBD. This method can identify and quantify CALR arginylation at absence, endogenous (low), and high levels. To our knowledge, our work is the first application of top-down proteomics in characterizing post-translational arginylation in vitro and in vivo.
Collapse
Affiliation(s)
- Richard M. Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Bonnet LV, Palandri A, Flores-Martin JB, Hallak ME. Arginyltransferase 1 modulates p62-driven autophagy via mTORC1/AMPk signaling. Cell Commun Signal 2024; 22:87. [PMID: 38297346 PMCID: PMC10832197 DOI: 10.1186/s12964-024-01499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Arginyltransferase (Ate1) orchestrates posttranslational protein arginylation, a pivotal regulator of cellular proteolytic processes. In eukaryotic cells, two interconnected systems-the ubiquitin proteasome system (UPS) and macroautophagy-mediate proteolysis and cooperate to maintain quality protein control and cellular homeostasis. Previous studies have shown that N-terminal arginylation facilitates protein degradation through the UPS. Dysregulation of this machinery triggers p62-mediated autophagy to ensure proper substrate processing. Nevertheless, how Ate1 operates through this intricate mechanism remains elusive. METHODS We investigated Ate1 subcellular distribution through confocal microscopy and biochemical assays using cells transiently or stably expressing either endogenous Ate1 or a GFP-tagged Ate1 isoform transfected in CHO-K1 or MEFs, respectively. To assess Ate1 and p62-cargo clustering, we analyzed their colocalization and multimerization status by immunofluorescence and nonreducing immunoblotting, respectively. Additionally, we employed Ate1 KO cells to examine the role of Ate1 in autophagy. Ate1 KO MEFs cells stably expressing GFP-tagged Ate1-1 isoform were used as a model for phenotype rescue. Autophagy dynamics were evaluated by analyzing LC3B turnover and p62/SQSTM1 levels under both steady-state and serum-starvation conditions, through immunoblotting and immunofluorescence. We determined mTORC1/AMPk activation by assessing mTOR and AMPk phosphorylation through immunoblotting, while mTORC1 lysosomal localization was monitored by confocal microscopy. RESULTS Here, we report a multifaceted role for Ate1 in the autophagic process, wherein it clusters with p62, facilitates autophagic clearance, and modulates its signaling. Mechanistically, we found that cell-specific inactivation of Ate1 elicits overactivation of the mTORC1/AMPk signaling hub that underlies a failure in autophagic flux and subsequent substrate accumulation, which is partially rescued by ectopic expression of Ate1. Statistical significance was assessed using a two-sided unpaired t test with a significance threshold set at P<0.05. CONCLUSIONS Our findings uncover a critical housekeeping role of Ate1 in mTORC1/AMPk-regulated autophagy, as a potential therapeutic target related to this pathway, that is dysregulated in many neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Laura V Bonnet
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| | - Anabela Palandri
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Jesica B Flores-Martin
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Marta E Hallak
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| |
Collapse
|
3
|
Galiano MR, Hallak ME. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells. Methods Mol Biol 2023; 2620:51-61. [PMID: 37010748 DOI: 10.1007/978-1-0716-2942-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Dpt. Quimica Biologica Ranwel Caputto, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, CIQUIBIC-CONICET, Córdoba, Argentina
| | - Marta E Hallak
- Dpt. Quimica Biologica Ranwel Caputto, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, CIQUIBIC-CONICET, Córdoba, Argentina.
| |
Collapse
|
4
|
Moorthy BT, Jiang C, Patel DM, Ban Y, O'Shea CR, Kumar A, Yuan T, Birnbaum MD, Gomes AV, Chen X, Fontanesi F, Lampidis TJ, Barrientos A, Zhang F. The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells. Dev Cell 2022; 57:654-669.e9. [PMID: 35247316 PMCID: PMC8957288 DOI: 10.1016/j.devcel.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
The response to oxygen availability is a fundamental process concerning metabolism and survival/death in all mitochondria-containing eukaryotes. However, the known oxygen-sensing mechanism in mammalian cells depends on pVHL, which is only found among metazoans but not in other species. Here, we present an alternative oxygen-sensing pathway regulated by ATE1, an enzyme ubiquitously conserved in eukaryotes that influences protein degradation by posttranslational arginylation. We report that ATE1 centrally controls the hypoxic response and glycolysis in mammalian cells by preferentially arginylating HIF1α that is hydroxylated by PHD in the presence of oxygen. Furthermore, the degradation of arginylated HIF1α is independent of pVHL E3 ubiquitin ligase but dependent on the UBR family proteins. Bioinformatic analysis of human tumor data reveals that the ATE1/UBR and pVHL pathways jointly regulate oxygen sensing in a transcription-independent manner with different tissue specificities. Phylogenetic analysis suggests that eukaryotic ATE1 likely evolved during mitochondrial domestication, much earlier than pVHL.
Collapse
Affiliation(s)
- Balaji T Moorthy
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Chunhua Jiang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Devang M Patel
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Corin R O'Shea
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Tan Yuan
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael D Birnbaum
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xi Chen
- Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Drazic A, Timmerman E, Kajan U, Marie M, Varland S, Impens F, Gevaert K, Arnesen T. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. J Mol Biol 2022; 434:167397. [PMID: 34896361 PMCID: PMC7613935 DOI: 10.1016/j.jmb.2021.167397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022]
Abstract
Actin is a hallmark protein of the cytoskeleton in eukaryotic cells, affecting a range of cellular functions. Actin dynamics is regulated through a myriad of actin-binding proteins and post-translational modifications. The mammalian actin family consists of six different isoforms, which vary slightly in their N-terminal (Nt) sequences. During and after synthesis, actins undergo an intricate Nt-processing that yields mature actin isoforms. The ubiquitously expressed cytoplasmic β-actin is Nt-acetylated by N-alpha acetyltransferase 80 (NAA80) yielding the Nt-sequence Ac-DDDI-. In addition, β-actin was also reported to be Nt-arginylated by arginyltransferase 1 (ATE1) after further peptidase-mediated processing, yielding RDDI-. To characterize in detail the Nt-processing of actin, we used state-of-the-art proteomics. To estimate the relative cellular levels of Nt-modified proteoforms of actin, we employed NAA80-lacking cells, in which actin was not Nt-acetylated. We found that targeted proteomics is superior to a commercially available antibody previously used to analyze Nt-arginylation of β-actin. Significantly, despite the use of sensitive mass spectrometry-based techniques, we could not confirm the existence of the previously claimed Nt-arginylated β-actin (RDDI-) in either wildtype or NAA80-lacking cells. A very minor level of Nt-arginylation of the initially cleaved β-actin (DDDI-) could be identified, but only in NAA80-lacking cells, not in wildtype cells. We also identified small fractions of cleaved and unmodified β-actin (DDI-) as well as cleaved and Nt-acetylated β-actin (Ac-DDI-). In sum, we show that the multi-step Nt-maturation of β-actin is terminated by NAA80, which Nt-acetylates the exposed Nt-Asp residues, in the virtual absence of previously claimed Nt-arginylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Ulrike Kajan
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Michaël Marie
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
6
|
Gadhavi J, Patel M, Bhatia D, Gupta S. Neurotoxic or neuroprotective: Post-translational modifications of α-synuclein at the cross-roads of functions. Biochimie 2021; 192:38-50. [PMID: 34582997 DOI: 10.1016/j.biochi.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease. The loss of dopaminergic neurons in the substantia nigra is one of the pathological hallmarks of PD. PD also belongs to the class of neurodegenerative disease known as 'Synucleinopathies' as α-synuclein is responsible for disease development. The presence of aggregated α-synuclein associated with other proteins found in the Lewy bodies and Lewy neurites in the substantia nigra and other regions of the brain including locus ceruleus, dorsal vagal nucleus, nucleus basalis of Meynert and cerebral cortex is one of the central events for PD development. The complete biological function of α-synuclein is still debated. Besides its ability to propagate, it undergoes various post-translational modifications which play a paramount role in PD development and progression. Also, the aggregation of α-synuclein is modulated by various post-translational modifications. Here, we present a summary of multiple PTMs involved in the modulation of α-synuclein directly or indirectly and to identify their neuroprotective or neurotoxic roles, which might act as potential therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Joshna Gadhavi
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Mohini Patel
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India; Center for Biomedical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India; Center for Biomedical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India.
| |
Collapse
|
7
|
Wiley DJ, D’Urso G, Zhang F. Posttranslational Arginylation Enzyme Arginyltransferase1 Shows Genetic Interactions With Specific Cellular Pathways in vivo. Front Physiol 2020; 11:427. [PMID: 32435206 PMCID: PMC7218141 DOI: 10.3389/fphys.2020.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
Arginyltransferase1 (ATE1) is a conserved enzyme in eukaryotes mediating posttranslational arginylation, the addition of an extra arginine to an existing protein. In mammals, the dysregulations of the ATE1 gene (ate1) is shown to be involved in cardiovascular abnormalities, cancer, and aging-related diseases. Although biochemical evidence suggested that arginylation may be involved in stress response and/or protein degradation, the physiological role of ATE1 in vivo has never been systematically determined. This gap of knowledge leads to difficulties for interpreting the involvements of ATE1 in diseases pathogenesis. Since ate1 is highly conserved between human and the unicellular organism Schizosaccharomyces pombe (S. pombe), we take advantage of the gene-knockout library of S. pombe, to investigate the genetic interactions between ate1 and other genes in a systematic and unbiased manner. By this approach, we found that ate1 has a surprisingly small and focused impact size. Among the 3659 tested genes, which covers nearly 75% of the genome of S. pombe, less than 5% of them displayed significant genetic interactions with ate1. Furthermore, these ate1-interacting partners can be grouped into a few discrete clustered categories based on their functions or their physical interactions. These categories include translation/transcription regulation, biosynthesis/metabolism of biomolecules (including histidine), cell morphology and cellular dynamics, response to oxidative or metabolic stress, ribosomal structure and function, and mitochondrial function. Unexpectedly, inconsistent to popular belief, very few genes in the global ubiquitination or degradation pathways showed interactions with ate1. Our results suggested that ATE1 specifically regulates a handful of cellular processes in vivo, which will provide critical mechanistic leads for studying the involvements of ATE1 in normal physiologies as well as in diseased conditions.
Collapse
Affiliation(s)
- David J. Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Gennaro D’Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Fernández-Irigoyen J, Corrales F, Santamaría E. The Human Brain Proteome Project: Biological and Technological Challenges. Methods Mol Biol 2019; 2044:3-23. [PMID: 31432403 DOI: 10.1007/978-1-4939-9706-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain proteomics has become a method of choice that allows zooming-in where neuropathophysiological alterations are taking place, detecting protein mediators that might eventually be measured in cerebrospinal fluid (CSF) as potential neuropathologically derived biomarkers. Following this hypothesis, mass spectrometry-based neuroproteomics has emerged as a powerful approach to profile neural proteomes derived from brain structures and CSF in order to map the extensive protein catalog of the human brain. This chapter provides a historical perspective on the Human Brain Proteome Project (HBPP), some recommendation to the experimental design in neuroproteomic projects, and a brief description of relevant technological and computational innovations that are emerging in the neurobiology field thanks to the proteomics community. Importantly, this chapter highlights recent discoveries from the biology- and disease-oriented branch of the HBPP (B/D-HBPP) focused on spatiotemporal proteomic characterizations of mouse models of neurodegenerative diseases, elucidation of proteostatic networks in different types of dementia, the characterization of unresolved clinical phenotypes, and the discovery of novel biomarker candidates in CSF.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory,, Proteored-ISCIII, CIBERehd, Madrid, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
9
|
Birnbaum MD, Zhao N, Moorthy BT, Patel DM, Kryvenko ON, Heidman L, Kumar A, Morgan WM, Ban Y, Reis IM, Chen X, Gonzalgo ML, Jorda M, Burnstein KL, Zhang F. Reduced Arginyltransferase 1 is a driver and a potential prognostic indicator of prostate cancer metastasis. Oncogene 2018; 38:838-851. [PMID: 30177837 PMCID: PMC6368462 DOI: 10.1038/s41388-018-0462-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Most prostate cancer cases remain indolent for long periods of time, but metastatic progression quickly worsens the prognosis and leads to mortality. However, little is known about what promotes the metastasis of prostate cancer and there is a lack of effective prognostic indicators, making it immensely difficult to manage options for treatment or surveillance. Arginyltransferase 1 (Ate1) is the enzyme mediating post-translational protein arginylation, which has recently been identified as a master regulator affecting many cancer-relevant pathways including stress response, cell cycle checkpoints, and cell migration/adhesion. However, the precise role of Ate1 in cancer remains unknown. In this study, we found the occurrence of metastasis of prostate cancer is inversely correlated with the levels of Ate1 protein and mRNA in the primary tumor. We also found that metastatic prostate cancer cell lines have a reduced level of Ate1 protein compared to non-metastatic cell lines, and that a depletion of Ate1 drives prostate cancer cells towards more aggressive pro-metastatic phenotypes without affecting proliferation rates. Furthermore, we demonstrated that a reduction of Ate1 can result from chronic stress, and that shRNA-reduced Ate1 increases cellular resistance to stress, and drives spontaneous and stress-induced genomic mutations. Finally, by using a prostate orthotropic xenograft mouse model, we found that a reduction of Ate1 was sufficient to enhance the metastatic phenotypes of prostate cancer cell line PC-3 in vivo. Our study revealed a novel role of Ate1 in suppressing prostate cancer metastasis, which has a profound significance for establishing metastatic indicators for prostate cancer, and for finding potential treatments to prevent its metastasis.
Collapse
Affiliation(s)
- Michael D Birnbaum
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ning Zhao
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Balaji T Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Devang M Patel
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laine Heidman
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Akhilesh Kumar
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - William M Morgan
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isildinha M Reis
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark L Gonzalgo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merce Jorda
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Wang J, Han X, Leu NA, Sterling S, Kurosaka S, Fina M, Lee VM, Dong DW, Yates JR, Kashina A. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Sci Rep 2017; 7:11323. [PMID: 28900170 PMCID: PMC5595787 DOI: 10.1038/s41598-017-11713-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Alpha synuclein (α-syn) is a central player in neurodegeneration, but the mechanisms triggering its pathology are not fully understood. Here we found that α-syn is a highly efficient substrate for arginyltransferase ATE1 and is arginylated in vivo by a novel mid-chain mechanism that targets the acidic side chains of E46 and E83. Lack of arginylation leads to increased α-syn aggregation and causes the formation of larger pathological aggregates in neurons, accompanied by impairments in its ability to be cleared via normal degradation pathways. In the mouse brain, lack of arginylation leads to an increase in α-syn’s insoluble fraction, accompanied by behavioral changes characteristic for neurodegenerative pathology. Our data show that lack of arginylation in the brain leads to neurodegeneration, and suggests that α-syn arginylation can be a previously unknown factor that facilitates normal α-syn folding and function in vivo.
Collapse
Affiliation(s)
- Junling Wang
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Xuemei Han
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicolae Adrian Leu
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Stephanie Sterling
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Satoshi Kurosaka
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Marie Fina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Virginia M Lee
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dawei W Dong
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - John R Yates
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anna Kashina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Kumar A, Birnbaum MD, Patel DM, Morgan WM, Singh J, Barrientos A, Zhang F. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response. Cell Death Dis 2016; 7:e2378. [PMID: 27685622 PMCID: PMC5059882 DOI: 10.1038/cddis.2016.284] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/06/2023]
Abstract
Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael D Birnbaum
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Devang M Patel
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - William M Morgan
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jayanti Singh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
12
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
13
|
Galiano MR, Hallak ME. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells. Methods Mol Biol 2016; 1337:49-58. [PMID: 26285880 DOI: 10.1007/978-1-4939-2935-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the (14)C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET), Universidad Nacional de Córdoba (X5000HUA), Córdoba, Argentina
| | | |
Collapse
|
14
|
Goitea VE, Hallak ME. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation. J Biol Chem 2015; 290:16403-14. [PMID: 25969538 DOI: 10.1074/jbc.m114.626127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Indexed: 12/31/2022] Open
Abstract
Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm.
Collapse
Affiliation(s)
- Victor E Goitea
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Marta E Hallak
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
15
|
Wong GTH, Chang RCC, Law ACK. A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Ageing Res Rev 2013; 12:67-75. [PMID: 22995339 DOI: 10.1016/j.arr.2012.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
Abstract
Depression is one of the most common psychiatric disorders with inadequately understood disease mechanisms. It has long been considered that dendritic regression and decrease in the number of dendritic spines are involved in depression. Dendrites made up of microtubules and actin filaments form synapses with neighboring neurons, which come together as an important communication network. Cytoskeletal proteins undergo post-translational modifications to define their structure and function. In depression and other psychiatric disorders, post-translational modifications may be disrupted that can result in altered cytoskeletal functions. The disruption of microtubule and actin in terms of morphology and functions may be a leading cause of dendritic regression and decrease in dendritic spine in depression.
Collapse
Affiliation(s)
- Ginger Tsz-Hin Wong
- Neurodysfunction Research Laboratory, Department of Psychiatry, LKS Faculty of Medicine, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
16
|
Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, Seo JW, Lee YS, Dorn GW, Oh U, Kim BY, Kwon YT. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J Biol Chem 2012; 287:24043-52. [PMID: 22577142 DOI: 10.1074/jbc.m112.364117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal amino acids of short lived proteins are recognized by recognition components (N-recognins) as an essential element of degrons, called N-degrons. In eukaryotes, the major way to generate N-degrons is through arginylation by ATE1 arginyl-tRNA-protein transferases, which transfer Arg from aminoacyl-tRNA to N-terminal Asp and Glu (and Cys as well in mammals). We have shown previously that ATE1-deficient mice die during embryogenesis with defects in cardiac and vascular development. Here, we characterized the arginylation-dependent N-end rule pathway in cardiomyocytes. Our results suggest that the cardiac and vascular defects in ATE1-deficient embryos are independent from each other and cell-autonomous. ATE1-deficient myocardium and cardiomyocytes therein, but not non-cardiomyocytes, showed reduced DNA synthesis and mitotic activity ~24 h before the onset of cardiac and vascular defects at embryonic day 12.5 associated with the impairment in the phospholipase C/PKC-MEK1-ERK axis of Gα(q)-mediated cardiac signaling pathways. Cardiac overexpression of Gα(q) rescued ATE1-deficient embryos from thin myocardium and ventricular septal defect but not from vascular defects, genetically dissecting vascular defects from cardiac defects. The misregulation in cardiovascular signaling can be attributed in part to the failure in hypoxia-sensitive degradation of RGS4, a GTPase-activating protein for Gα(q). This study is the first to characterize the N-end rule pathway in cardiomyocytes and reveals the role of its arginylation branch in Gα(q)-mediated signaling of cardiomyocytes in part through N-degron-based, oxygen-sensitive proteolysis of G-protein regulators.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sriram SM, Kim BY, Kwon YT. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 2011; 12:735-47. [PMID: 22016057 DOI: 10.1038/nrm3217] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin-proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate recognition. The N-end rule pathway is now emerging as a major cellular proteolytic system, in which the majority of proteins are born with or acquire specific N-terminal degradation determinants through protein-specific or global post-translational modifications.
Collapse
Affiliation(s)
- Shashikanth M Sriram
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
18
|
The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J 2010; 429:63-72. [PMID: 20423325 DOI: 10.1042/bj20091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-translational modifications of proteins are important for the regulation of cell functions; one of these modifications is post-translational arginylation. In the present study, we show that cytoplasmic CRT (calreticulin) is arginylated by ATE1 (arginyl-tRNA protein transferase). We also show that a pool of CRT undergoes retrotranslocation from the ER (endoplasmic reticulum) to the cytosol, because in CRT-knockout cells transfected with full-length CRT (that has the signal peptide), cytoplasmic CRT appears as a consequence of its expression and processing in the ER. After the cleavage of the signal peptide, an N-terminal arginylatable residue is revealed prior to retrotranslocation to the cytoplasm where arginylation takes place. SGs (stress granules) from ATE1-knockout cells do not contain CRT, indicating that CRT arginylation is required for its association to SGs. Furthermore, R-CRT (arginylated CRT) in the cytoplasm associates with SGs in cells treated with several stressors that lead to a reduction of intracellular Ca2+ levels. However, in the presence of stressors that do not affect Ca2+ levels, R-CRT is not recruited to these loci despite the fact that SGs are formed, demonstrating Ca2+-dependent R-CRT association to SGs. We conclude that post-translational arginylation of retrotranslocated CRT, together with the decrease in intracellular Ca2+, promotes the association of CRT to SGs.
Collapse
|
19
|
Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 2010; 6:e1000878. [PMID: 20300656 PMCID: PMC2837401 DOI: 10.1371/journal.pgen.1000878] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/09/2010] [Indexed: 11/19/2022] Open
Abstract
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration-dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2-3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.
Collapse
|
20
|
Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 2010; 21:1350-61. [PMID: 20181827 PMCID: PMC2854093 DOI: 10.1091/mbc.e09-09-0829] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin arginylation regulates lamella formation in motile fibroblasts, but the underlying molecular mechanisms are unknown. To understand how arginylation affects the actin cytoskeleton, we investigated the biochemical properties and the structural organization of actin filaments in wild-type and arginyltransferase (Ate1) knockout cells. We found that Ate1 knockout results in a dramatic reduction of the actin polymer levels in vivo accompanied by a corresponding increase in the monomer level. Purified nonarginylated actin has altered polymerization properties, and actin filaments from Ate1 knockout cells show altered interactions with several associated proteins. Ate1 knockout cells have severe impairment of cytoskeletal organization throughout the cell. Thus, arginylation regulates the ability of actin to form filaments in the whole cell rather than preventing the collapse of preformed actin networks at the cell leading edge as proposed in our previous model. This regulation is achieved through interconnected mechanisms that involve actin polymerization per se and through binding of actin-associated proteins.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 2009; 41:531-8. [DOI: 10.1016/j.biocel.2008.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
|
22
|
Rai R, Wong CCL, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR, Kashina A. Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 2008; 135:3881-9. [PMID: 18948421 DOI: 10.1242/dev.022723] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-translational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of the actin cytoskeleton and in cell motility. Here, we investigated the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analyses showed that alpha cardiac actin undergoes arginylation at four sites during development. Ultrastructural analysis of the myofibrils in wild-type and Ate1 knockout mouse hearts showed that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild-type and Ate1 knockout mouse embryos revealed that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of the actin cytoskeleton in cardiac myocytes.
Collapse
Affiliation(s)
- Reena Rai
- Department of Animal Biology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Funakoshi Y, Suzuki T. Glycobiology in the cytosol: the bitter side of a sweet world. Biochim Biophys Acta Gen Subj 2008; 1790:81-94. [PMID: 18952151 DOI: 10.1016/j.bbagen.2008.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/03/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
Abstract
Progress in glycobiology has undergone explosive growth over the past decade with more of the researchers now realizing the importance of glycan chains in various inter- and intracellular processes. However, there is still an area of glycobiology awaiting exploration. This is especially the case for the field of "glycobiology in the cytosol" which remains rather poorly understood. Yet evidence is accumulating to demonstrate that the glycoconjugates and their recognition molecules (i.e. lectins) are often present in this subcellular compartment.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | | |
Collapse
|
24
|
Meinnel T, Giglione C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 2008; 8:626-49. [DOI: 10.1002/pmic.200700592] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Wong CCL, Xu T, Rai R, Bailey AO, Yates JR, Wolf YI, Zebroski H, Kashina A. Global analysis of posttranslational protein arginylation. PLoS Biol 2007; 5:e258. [PMID: 17896865 PMCID: PMC1988855 DOI: 10.1371/journal.pbio.0050258] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/30/2007] [Indexed: 11/27/2022] Open
Abstract
Posttranslational arginylation is critical for embryogenesis, cardiovascular development, and angiogenesis, but its molecular effects and the identity of proteins arginylated in vivo are largely unknown. Here we report a global analysis of this modification on the protein level and identification of 43 proteins arginylated in vivo on highly specific sites. Our data demonstrate that unlike previously believed, arginylation can occur on any N-terminally exposed residue likely defined by a structural recognition motif on the protein surface, and that it preferentially affects a number of physiological systems, including cytoskeleton and primary metabolic pathways. The results of our study suggest that protein arginylation is a general mechanism for regulation of protein structure and function and outline the potential role of protein arginylation in cell metabolism and embryonic development. A common cellular mechanism for the regulation of proteins, once they have been translated from mRNA, is the addition and removal of chemical groups via enzymatic reactions. The posttranslational addition of arginyl groups is critical for the embryonic development and survival of an organism, but the molecular effects and the identity of proteins arginylated in vivo are largely unknown. We developed a technique to screen large numbers of proteins for this modification and identified 43 proteins arginylated in vivo on highly specific sites. Arginylation can occur on any exposed residue at the N-terminus of a protein and appears to require a specific structural recognition motif on the protein surface. It preferentially affects a number of physiological systems, including cytoskeleton and primary metabolic pathways and seems to be a general mechanism for regulation of protein structure and function. Our data provide insights into the previously unknown arginylation-dependent mechanisms of the regulation of embryonic development. A comprehensive study indicates that protein arginylation may be a general mechanism for regulation of protein structure and function, similar to other major posttranslational modifications.
Collapse
Affiliation(s)
- Catherine C. L Wong
- The Scripps Research Institute, LaJolla, California, United States of America
| | - Tao Xu
- The Scripps Research Institute, LaJolla, California, United States of America
| | - Reena Rai
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aaron O Bailey
- The Scripps Research Institute, LaJolla, California, United States of America
| | - John R Yates
- The Scripps Research Institute, LaJolla, California, United States of America
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Henry Zebroski
- Rockefeller University, New York, NewYork, United States of America
| | - Anna Kashina
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Tasaki T, Kwon YT. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 2007; 32:520-8. [PMID: 17962019 DOI: 10.1016/j.tibs.2007.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 12/30/2022]
Abstract
The N-end rule pathway is a ubiquitin-dependent proteolytic system, in which destabilizing N-terminal residues of short-lived proteins function as an essential determinant of an N-terminal degradation signal (N-degron). An N-degron can be created from a pre-N-degron through specific N-terminal modifications, providing a means conditionally to destabilize otherwise stable polypeptides. The pathway has been found in all organisms examined, from prokaryotes to eukaryotes. Recent biochemical and proteomic studies identified many components of the mammalian N-end rule pathway, including a family of substrate recognition ubiquitin ligases and their substrates. The genetic dissection in animals and humans revealed its essential role in various vital physiological processes, ranging from cardiovascular development and meiosis to the pathogenesis of human genetic diseases. These discoveries have provided new insights into the components, functions and mechanics of this unique proteolytic system.
Collapse
Affiliation(s)
- Takafumi Tasaki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
27
|
Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, Hallak ME. Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem 2007; 282:8237-45. [PMID: 17197444 PMCID: PMC2702537 DOI: 10.1074/jbc.m608559200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational arginylation consists of the covalent union of an arginine residue to a Glu, Asp, or Cys amino acid at the N-terminal position of proteins. This reaction is catalyzed by the enzyme arginyl-tRNA protein transferase. Using mass spectrometry, we have recently demonstrated in vitro the post-translational incorporation of arginine into the calcium-binding protein calreticulin (CRT). To further study arginylated CRT we raised an antibody against the peptide (RDPAIYFK) that contains an arginine followed by the first 7 N-terminal amino acids of mature rat CRT. This antibody specifically recognizes CRT obtained from rat soluble fraction that was arginylated in vitro and also recognizes endogenous arginylated CRT from NIH 3T3 cells in culture, indicating that CRT arginylation takes place in living cells. Using this antibody we found that arginylation of CRT is Ca2+-regulated. In vitro and in NIH 3T3 cells in culture, the level of arginylated CRT increased with the addition of a Ca2+ chelator to the medium, whereas a decreased arginine incorporation into CRT was found in the presence of Ca2+. The arginylated CRT was observed in the cytosol, in contrast to the non-arginylated CRT that is in the endoplasmic reticulum. Under stress conditions, arginylated CRT was found associated to stress granules. These results suggest that CRT arginylation occurs in the cytosolic pool of mature CRT (defined by an Asp acid N-terminal) that is probably retrotranslocated from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maria B. Decca
- Centro de Investigaciones en Quimica Biologica de Cordoba
Universidad Nacional de CordobaAR
| | - Marcos A. Carpio
- Centro de Investigaciones en Quimica Biologica de Cordoba
Universidad Nacional de CordobaAR
| | - Christophe Bosc
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Universite Joseph Fourier - Grenoble ICEA : DSV/IRTSVIFR2717, Rue Des Martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Mauricio R. Galiano
- Centro de Investigaciones en Quimica Biologica de Cordoba
Universidad Nacional de CordobaAR
| | - Didier Job
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Universite Joseph Fourier - Grenoble ICEA : DSV/IRTSVIFR2717, Rue Des Martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Annie Andrieux
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Universite Joseph Fourier - Grenoble ICEA : DSV/IRTSVIFR2717, Rue Des Martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Marta E. Hallak
- Centro de Investigaciones en Quimica Biologica de Cordoba
Universidad Nacional de CordobaAR
| |
Collapse
|