1
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Ye J, Fan H, Shi R, Song G, Wu X, Wang D, Xia B, Zhao Z, Zhao B, Liu X, Wang Y, Dai X. Dietary lipoic acid alleviates autism-like behavior induced by acrylamide in adolescent mice: the potential involvement of the gut-brain axis. Food Funct 2024; 15:3395-3410. [PMID: 38465655 DOI: 10.1039/d3fo05078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ge Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Lin C, He C, Li L, Liu Y, Tang L, Ni Z, Zhang N, Lai T, Chen X, Wang X. Alpha-lipoic acid (ALA) ameliorates early brain injury after subarachnoid hemorrhage in Sprague-Dawley (SD) rats via inhibiting STING-NLRP3 inflammatory signaling. Neuroreport 2024; 35:250-257. [PMID: 38305103 PMCID: PMC10852041 DOI: 10.1097/wnr.0000000000001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Neuroinflammation is intimately associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). Alpha-lipoic acid (ALA), a disulfide antioxidant, has been shown to be neuroprotective in an in vivo model of neurological injury; however, the role of ALA in SAH has never been evaluated. In this study, the Sprague-Dawley rats SAH model was induced by endovascular perforation method. ALA was transplanted intravenously into rats, and SR-717, a stimulator of interferon genes (STING) agonist, was injected intraperitoneally. The effects of ALA on early brain injury were assayed by neurological score, hematoxylin and eosin staining and Nissl staining. Immunohistochemistry staining and Western blotting were used to analyze various proteins. ALA significantly reduced STING- NLRP3 protein expression and decreased cell death, which in turn mitigated the neurobehavioral dysfunction following SAH. Furthermore, coadministration of ALA and SR-717 promoted STING-NLRP3 signaling pathway activation following SAH, which reversed the inhibitory effect of ALA on STING-NLRP3 protein activation and increased the neurological deficits. In conclusion, ALA may be a promising therapeutic strategy for alleviating early brain injury after SAH.
Collapse
Affiliation(s)
- Chunnan Lin
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Chunliu He
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Liuqing Li
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Yongqiang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Liangang Tang
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Zepeng Ni
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Naichong Zhang
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Tinghai Lai
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Xiaohong Chen
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
| |
Collapse
|
4
|
Kim M, Jeon H, Chung Y, Lee SU, Park W, Park JC, Ahn JS, Lee S. Efficacy of Acetylcysteine and Selenium in Aneurysmal Subarachnoid Hemorrhage Patients: A Prospective, Multicenter, Single Blind Randomized Controlled Trial. J Korean Med Sci 2023; 38:e161. [PMID: 37270916 DOI: 10.3346/jkms.2023.38.e161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/16/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) patients have oxidative stress results in inflammation, tissue degeneration and neuronal damage. These deleterious effects cause aggravation of the perihematomal edema (PHE), vasospasm, and even hydrocephalus. We hypothesized that antioxidants may have a neuroprotective role in acute aneurysmal SAH (aSAH) patients. METHODS We conducted a prospective, multicenter randomized (single blind) trial between January 2017 and October 2019, investigating whether antioxidants (acetylcysteine and selenium) have the potential to improve the neurologic outcome in aSAH patients. The antioxidant patient group received antioxidants of acetylcysteine (2,000 mg/day) and selenium (1,600 µg/day) intravenously (IV) for 14 days. These drugs were administrated within 24 hours of admission. The non-antioxidant patient group received a placebo IV. RESULTS In total, 293 patients were enrolled with 103 patients remaining after applying the inclusion and exclusion criteria. No significant differences were observed in the baseline characteristics between the antioxidant (n = 53) and non-antioxidant (n = 50) groups. Among clinical factors, the duration of intensive care unit (ICU) stay was significantly shortened in patients who received antioxidants (11.2, 95% confidence interval [CI], 9.7-14.5 vs. 8.3, 95% CI, 6.2-10.2 days, P = 0.008). However, no beneficial effects were observed on radiological outcomes. CONCLUSION In conclusion, antioxidant treatment failed to show the reduction of PHE volume, mid-line shifting, vasospasm and hydrocephalus in acute SAH patients. A significant reduction in ICU stay was observed but need more optimal dosing schedule and precise outcome targets are required to clarify the clinical impacts of antioxidants in these patients. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0004628.
Collapse
Affiliation(s)
- Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Zhou K, Enkhjargal B, Mo J, Zhang T, Zhu Q, Wu P, Reis C, Tang J, Zhang JH, Zhang J. Dihydrolipoic acid enhances autophagy and alleviates neurological deficits after subarachnoid hemorrhage in rats. Exp Neurol 2021; 342:113752. [PMID: 33974879 DOI: 10.1016/j.expneurol.2021.113752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Autophagy is a crucial pathological process in early brain injury (EBI) after subarachnoid hemorrhage (SAH). In this study, we investigated the role of dihydrolipoic acid (DHLA) on enhancing autophagy and alleviating neurological deficits after SAH. SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA (30 mg/kg) was administered intraperitoneally 1 h (h) after SAH. Small interfering ribonucleic acid (siRNA) for lysosome-associated membrane protein-1 (LAMP1) was administered through intracerebroventricular (i.c.v) route 48 h before SAH induction. SAH grading score, neurological score, immunofluorescence staining, Fluoro-Jade C (FJC) staining, and Western blot were examined. DHLA treatment increased autophagy-related protein expression and downregulated the apoptosis-related protein expression 24 h after SAH. In addition, the DHLA treatment reduced neuronal cell death and alleviated neurological deficits after SAH. Furthermore, knockdown of LAMP1 abolished the neuroprotective effects of DHLA. These results indicate that LAMP1 may participate in autophagy after SAH. DHLA treatment can enhance autophagy, attenuate apoptosis, and alleviate neurofunctional deficits in EBI after SAH. It may provide an effective alternative method for the treatment of EBI after SAH.
Collapse
Affiliation(s)
- Keren Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain research institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain research institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10030367. [PMID: 33671015 PMCID: PMC7997428 DOI: 10.3390/antiox10030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The complex network of malfunctioning pathways occurring in the pathogenesis of neurodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compromising of organism’s natural defense systems and subsequently, in the instauration of deleterious OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts in drug discovery programs, the identification process of new therapeutic agents able to counteract the relentless progress of neurodegenerative processes has produced low or no effective therapies. Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occurring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim of this review is to provide an overview of the main pharmacological features of most promising nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.
Collapse
Affiliation(s)
- Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
- Correspondence:
| |
Collapse
|
7
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
8
|
Toklu HZ, Yang Z, Ersahin M, Wang KKW. Neurological Exam in Rats Following Stroke and Traumatic Brain Injury. Methods Mol Biol 2019; 2011:371-381. [PMID: 31273710 DOI: 10.1007/978-1-4939-9554-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using the appropriate model for testing neurological symptoms in rats is essential for the assessment of functional outcome. A number of tests have been developed to quantify the severity of neurological deficits. These tests should meet criteria such as validity, specificity, sensitivity, and utility. Although analysis of motor function shows homology in primates and rodents, the total neurological exam scores may not always reflect the clinical outcome. Therefore, the selection of the appropriate tests has critical importance when evaluating therapeutic strategies. This chapter describes Toklu's modified neurological exam score method which can be used practically to assess neurological symptoms following traumatic brain injury (TBI) and stroke. The method is a combination of balance, muscle strength, coordination, and reflex.
Collapse
Affiliation(s)
- Hale Z Toklu
- University of Central Florida College of Medicine, Department of Clinical Sciences, Gainesville, FL, USA.
- HCA North Florida Division, Graduate Medical Education, Tallahassee, FL, USA.
| | - Zhiui Yang
- University of Florida, Department of Emergency Medicine, Gainesville, FL, USA
| | - Mehmet Ersahin
- Istanbul Medeniyet University, Department of Neurosurgery, Istanbul, Turkey
| | - Kevin K W Wang
- University of Florida, Department of Emergency Medicine, Gainesville, FL, USA
| |
Collapse
|
9
|
Guo ZN, Jin H, Sun H, Zhao Y, Liu J, Ma H, Sun X, Yang Y. Antioxidant Melatonin: Potential Functions in Improving Cerebral Autoregulation After Subarachnoid Hemorrhage. Front Physiol 2018; 9:1146. [PMID: 30174621 PMCID: PMC6108098 DOI: 10.3389/fphys.2018.01146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and morbidity. Impaired cerebral autoregulation following SAH has been reported owing to effects on sympathetic control, endothelial function, myogenic response, and cerebral metabolism. Impaired cerebral autoregulation is associated with early brain injury, cerebral vasospasm/delayed cerebral ischemia, and SAH prognosis. However, few drugs have been reported to improve cerebral autoregulation after SAH. Melatonin is a powerful antioxidant that is effective (easily crosses the blood brain barrier) and safe (tolerated in large doses without toxicity). Theoretically, melatonin may impact the control mechanisms of cerebral autoregulation via antioxidative effects, protection of endothelial cell integrity, suppression of sympathetic nerve activity, increase in nitric oxide bioavailability, mediation of the myogenic response, and amelioration of hypoxemia. Furthermore, melatonin may have a comprehensive effect on cerebral autoregulation. This review discusses the potential effects of melatonin on cerebral autoregulation following SAH, in terms of the association between pharmacological activities and the mechanisms of cerebral autoregulation.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Huijie Sun
- Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Yingkai Zhao
- Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, Chen S, Tang J, Zhang J, Zhang JH. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke 2018; 49:175-183. [PMID: 29273596 PMCID: PMC5744882 DOI: 10.1161/strokeaha.117.018593] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE The NLRP3 (nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a crucial component of the inflammatory response in early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated a role of dihydrolipoic acid (DHLA) in lysosomal rupture, NLRP3 activation, and determined the underlying pathway. METHODS SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA was administered intraperitoneally 1 hour after SAH. Small interfering RNA for lysosome-associated membrane protein-1 and CaMKIIα (calcium/calmodulin-dependent protein kinase II α) was administered through intracerebroventricular 48 hours before SAH induction. SAH grade evaluation, short- and long-term neurological function testing, Western blot, and immunofluorescence staining experiments were performed. RESULTS DHLA treatment increased the expression of lysosome-associated membrane protein-1 and decreased phosphorylated CaMKIIα and NLRP3 inflammasome, thereby alleviating neurological deficits after SAH. Lysosome-associated membrane protein-1 small interfering RNA abolished the neuroprotective effects of DHLA and increased the level of phosphorylated CaMKIIα, p-TAK1 (phosphorylated transforming growth factor-β-activated kinase), p-JNK (phosphorylated c-Jun-N-terminal kinase), and NLRP3 inflammasome. CaMKIIα small interfering RNA downregulated the expression of p-TAK1, p-JNK, and NLRP3 and improved the neurobehavior after SAH. CONCLUSIONS DHLA treatment improved neurofunction and alleviated inflammation through the lysosome-associated membrane protein-1/CaMKII/TAK1 pathway in early brain injury after SAH. DHLA may provide a promising treatment to alleviate early brain injury after SAH.
Collapse
Affiliation(s)
- Keren Zhou
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Budbazar Enkhjargal
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Zhiyi Xie
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Chengmei Sun
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Lingyun Wu
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jay Malaguit
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Sheng Chen
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jiping Tang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jianmin Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| | - John H Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| |
Collapse
|
11
|
Saleh HM, El-Sayed YS, Naser SM, Eltahawy AS, Onoda A, Umezawa M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24593-24601. [PMID: 28913608 DOI: 10.1007/s11356-017-0158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the protective efficacy of α-lipoic acid (ALA) against Cd-prompted neurotoxicity, young male New Zealand rabbits (Oryctolagus cuniculus) were divided randomly into four groups. Group 1 (control) received demineralized water. Group 2 (Cd) administered cadmium chloride (CdCl2) 3 mg/kg bwt. Group 3 (ALA) administered ALA 100 mg/kg bwt. Group 4 (Cd + ALA) administered ALA 1 h after Cd. The treatments were administered orally for 30 consecutive days. Cd-induced marked disturbances in neurochemical parameters were indicated by the reduction in micro- and macro-elements (Zn, Fe, Cu, P, and Ca), with the highest reduction in Cd-exposed rabbits, followed by Cd + ALA group and then ALA group. In the brain tissues, Cd has significantly augmented the lipid hydroperoxides (LPO) and reduced the glutathione (GSH) and total antioxidant capacity (TAC), and glutathione peroxidase and glutathione S-transferase enzyme activities but had an insignificant effect on the antioxidant redox enzymes. Administration of ALA effectively restored LPO and sustained GSH and TAC contents. Moreover, Cd downregulated the transcriptional levels of Nrf2, MT3, and SOD1 genes, and upregulated that of Keap1 gene. ALA treatment, shortly following Cd exposure, downregulated Keap1, and upregulated Nrf2 and GPx1, while maintained MT3 and SOD1 mRNA gene expression in the rabbits' brain. These data indicated the ALA effectiveness in protecting against Cd-induced oxidative stress and the depletion of cellular antioxidants in the brain of rabbits perhaps due to its antioxidant, free radical scavenging, and chelating properties.
Collapse
Affiliation(s)
- Hamida M Saleh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Sherif M Naser
- Department of Veterinary Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdelgawad S Eltahawy
- Department of Veterinary Economics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| |
Collapse
|
12
|
Lipoic acid prevents acrylamide-induced neurotoxicity in CD-1 mice and BV2 microglial cells via maintaining redox homeostasis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
13
|
Ekiz A, Özdemir-Kumral ZN, Erşahin M, Tuğtepe H, Öğünç AV, Akakın D, Kıran D, Özsavcı D, Biber N, Hakan T, Yeğen BÇ, Şener G, Toklu HZ. Functional and structural changes of the urinary bladder following spinal cord injury; treatment with alpha lipoic acid. Neurourol Urodyn 2016; 36:1061-1068. [PMID: 27490041 DOI: 10.1002/nau.23083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/09/2016] [Indexed: 11/05/2022]
Abstract
BACKGROUND & AIM Alpha lipoic acid (LA) was shown to exert neuroprotection in trauma-induced spinal cord injury (SCI), which is frequently associated with urinary bladder complaints in patients with SCI. Accordingly, the protective effects of LA on biochemical and histological changes in bladder as well as functional studies were assessed. METHODS Wistar albino rats were divided as control, SCI, and LA (50 mg/kg/day, ip) treated SCI groups (SCI+LA). The standard weight-drop (100 g/cm force at T10) method was used to induce a moderately severe SCI. One week after the injury, neurological examination was performed and the rats were decapitated. Bladder samples were taken for histological examination, functional (isolated tissue bath) studies, and for the measurement of biochemical parameters (malondialdehyde, MDA; gluthathione, GSH; nerve growth factor, NGF; caspase-3, luminol and lucigenin chemiluminescences). RESULTS SCI caused a significant (P < 0.001) increase in the detrusor muscle thickness. It increased the contractility responses to carbachol and relaxation responses to papaverine (P < 0.05-0.001). There were also significant alterations in MDA, caspase-3, luminol, and lucigenin chemiluminescences with concomitant decreases in NGF and GSH (P < 0.05). LA treatment reversed histological and functional (contraction and relaxation responses) changes induced by SCI (P < 0.05-0.001), but no significant recovery was observed in the impaired neurological functions. CONCLUSION These results indicate that LA have a beneficial effect in improving the bladder tonus via its antioxidant and anti-inflammatory actions following SCI.
Collapse
Affiliation(s)
- Arif Ekiz
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | | | - Mehmet Erşahin
- Department of Neurosurgery, School of Medicine, Medeniyet University, Istanbul, Turkey
| | - Halil Tuğtepe
- Department of Pediatric Surgery, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ayliz Velioğlu Öğünç
- Vocational School of Health Related Professions, Marmara University, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Demir Kıran
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Derya Özsavcı
- Department of Biochemistry, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Necat Biber
- Department of Neurosurgery, Haydarpasa Numune Teaching and Research Hospital, Istanbul, Turkey
| | - Tayfun Hakan
- Department of Neurosurgery, Okan University, Vocational School of Health Services, Kolan International Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Göksel Şener
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Hale Z Toklu
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida.,Geriatric Research Education and Clinical Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| |
Collapse
|
14
|
The effect of subarachnoid erythrocyte lysate on brain injury: a preliminary study. Biosci Rep 2016; 36:BSR20160100. [PMID: 27279653 PMCID: PMC4945991 DOI: 10.1042/bsr20160100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/08/2016] [Indexed: 02/01/2023] Open
Abstract
We found that more severe brain injury was caused by subarachnoid erythrocyte lysate, and inflammation associated with Prx2 might be involved in mechanism of brain injury. Abundant erythrocytes remain and lyse partially in the subarachnoid space after severe subarachnoid haemorrhage (SAH). But the effect of subarachnoid erythrocyte lysate on brain injury is still not completely clear. In this study, autologous erythrocytes (the non-lysate group) and their lysate (the lysate group) were injected separately into the cistern magna of rabbits to induce a model of experimental SAH, although the control group received isotonic sodium chloride solution instead of erythrocyte solution. Results showed that vasospasm of the basilar artery was observed at 72 h after experimental SAH, but there was no significant difference between the non-lysate group and the lysate group. Brain injury was more severe in the lysate group than in the non-lysate group. Meanwhile, the levels of peroxiredoxin 2 (Prx2), IL-6 and TNF-α in brain cortex and in CSF were significantly higher in the lysate group than those in the non-lysate group. These results demonstrated that brain injury was more likely to be caused by erythrocyte lysate than by intact erythrocytes in subarachnoid space, and inflammation response positively correlated with Prx2 expression might be involved in mechanism of brain injury after SAH.
Collapse
|
15
|
Kaisar MA, Prasad S, Cucullo L. Protecting the BBB endothelium against cigarette smoke-induced oxidative stress using popular antioxidants: Are they really beneficial? Brain Res 2015; 1627:90-100. [PMID: 26410779 DOI: 10.1016/j.brainres.2015.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023]
Abstract
Blood Brain Barrier (BBB) exposed to realistic concentrations (comparable to a chronic heavy smoker) of Cigarette Smoke Extract (CSE) triggers a strong endothelial inflammatory response which can lead to the onset of neurological disorders. The involvement of Reactive Oxygen Species (ROS) in this inflammatory cascade is evident from the up-regulation of nuclear factor erythroid 2 related factor 2 (Nrf-2), a transcription factor involved in anti-oxidant response signaling in CSE exposed endothelial cells. We have shown that pre-treatment with α-tocopherol and/or ascorbic acid is highly protective for the BBB, thus suggesting that, prophylactic administration of antioxidants can reduce CSE and/or inflammatory-dependent BBB damage. We have assessed and ranked the protective effects of 5 popular OTC antioxidants (Coenzyme Q10, melatonin, glutathione, lipoic acid and resveratrol) against CSE-induced BBB endothelial damage using hCMEC/D3 cells. The analysis of pro-inflammatory cytokines release by ELISA revealed that resveratrol, lipoic acid melatonin and Co-Q10 inhibited the BBB endothelial release of pro-inflammatory cytokines IL-6 and IL-8, reduced (not Co-Q10) CSE-induced up-regulation of Platelet Cell Adhesion Molecule-1 (PECAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1) & E-selectin and inhibited monocytes-endothelial cell adhesion. The anti-inflammatory effects correlated with the anti-oxidative protection endowed by these compounds as evidenced by upregulation of NADPH: Quinone Oxidoreductase 1 (NQO1) and reduced cellular oxidative stress. CSE-induced release of Vascular Endothelial Growth Factor (VEGF) was inhibited by all tested compounds although the effect was not strictly dose-dependent. Further in vivo studies are required to validate our results and expand our current study to include combinatorial treatments.
Collapse
Affiliation(s)
- Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Shikha Prasad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States.
| |
Collapse
|
16
|
Lebda MA, Gad SB, Rashed RR. The effect of lipoic acid on acrylamide-induced neuropathy in rats with reference to biochemical, hematological, and behavioral alterations. PHARMACEUTICAL BIOLOGY 2015; 53:1207-1213. [PMID: 25853975 DOI: 10.3109/13880209.2014.970288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Acrylamide (ACR) is a well-known neurotoxicant and carcinogenic agent which poses a greater risk for human and animal health. OBJECTIVE The present study evaluates the beneficial effects of α-lipoic acid (LA) on ACR-induced neuropathy. MATERIALS AND METHODS A total of 40 male rats were divided into four groups: a placebo group; LA-treated group, administered orally 1% (w/w) LA mixed with diet; ACR-treated group, given 0.05% (w/v) ACR dissolved in drinking water; and LA + ACR-treated group, given LA 1% 7 d before and along with ACR 0.05% for 21 d. After 28 d, blood samples were collected, the rats were decapitated, and the tissues were excised for the measurement of brain biomarkers, antioxidant status, and hematological analysis. Also, the gait score of rats was evaluated. RESULTS ACR-exposed rats exhibited abnormal gait deficits with significant (p < 0.05) decline in acetylcholine esterase (AChE) and creatine kinase in serum and brain tissues, respectively. However, the lactate dehydrogenase activity was increased in serum by 123%, although it decreased in brain tissues by -74%. ACR significantly (p < 0.05) increased the malondialdehyde level by 273% with subsequent depletion of glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and reduced the glutathione (GSH) level in brain tissue. Interestingly, LA significantly (p < 0.05) improved brain enzymatic biomarkers, attenuated lipid peroxidation (LPO), and increased antioxidant activities compared with the ACR-treated group. DISCUSSION AND CONCLUSION These results suggested that LA may have a role in the management of ACR-induced oxidative stress in brain tissues through its antioxidant activity, attenuation of LPO, and improvement of brain biomarkers.
Collapse
|
17
|
Effects of alpha-lipoic acid on spatial learning and memory, oxidative stress, and central cholinergic system in a rat model of vascular dementia. Neurosci Lett 2015; 587:113-9. [DOI: 10.1016/j.neulet.2014.12.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
|
18
|
Kaisar MA, Cucullo L. OTC Antioxidant Products for the Treatment of Cardiovascular and other Disorders: Popular Myth or Fact? ACTA ACUST UNITED AC 2015; 3. [PMID: 26052537 PMCID: PMC4457383 DOI: 10.4172/2329-6887.1000e136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohammad A Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA ; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
19
|
Ozbal S, Cankurt U, Tugyan K, Pekcetin C, Sisman A, Gunduz K, Micili S. The effects of α-lipoic acid on immature rats with traumatic brain injury. Biotech Histochem 2014; 90:206-15. [DOI: 10.3109/10520295.2014.977950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Boyaci MG, Eser O, Kocogullari CU, Karavelioglu E, Tokyol C, Can Y. Neuroprotective effect of alpha-lipoic acid and methylprednisolone on the spinal cord ischemia/reperfusion injury in rabbits. Br J Neurosurg 2014; 29:46-51. [PMID: 25192009 DOI: 10.3109/02688697.2014.954986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the putative neuroprotective effect of alpha-lipoic acid (LA) on spinal ischemia/reperfusion (I/R) injury in rabbits. METHODS Thirty-five adult female New Zeland rabbits, weighing 2,000-3,500 g (mean: 2,800), were divided randomly into five groups of seven rabbits each (n: 7) as Group 1: sham, only laparotomy; Group 2 (İ/R): I/R; Group 3 (LA): I/R and 100 mg/kg of LA; Group 4 (MP): I/R and 30 mg/kg of methylprednisolone (MP); and Group 5 (LA + MP): I/R and 100 mg/kg of LA plus 30 mg/kg of MP. RESULTS A statically significant effect of LA, MP, and LA plus MP on lowering malondialdehyde levels both in the blood and in the cerebrospinal fluid (CSF) has been observed. Nitric oxide is significantly decreased in the blood and spinal cord tissues, and also in the CSF but it is not significant. Superoxide dismutase, catalase, and glutathione levels were increased by LA administration. CONCLUSION LA exhibits antioxidant efficacy in spinal cord I/R injury, but it cannot decrease the oxidative stress. The histopathological result of the present study also demonstrated that LA has neuroprotective effect in spinal cord injury.
Collapse
Affiliation(s)
- Mehmet Gazi Boyaci
- a Department of Neurosurgery , School of Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Olcay Eser
- a Department of Neurosurgery , School of Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Cevdet Ugur Kocogullari
- b Department of Cardiovascular Surgery , Derince Education and Research Hospital , Kocaeli , Turkey
| | - Ergun Karavelioglu
- a Department of Neurosurgery , School of Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Cigdem Tokyol
- c Department of Pathology , School of Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Yesim Can
- d Department of Biochemistry , Tayfur Ata Sokmen School of Medicine, Mustafa Kemal University , Hatay , Turkey
| |
Collapse
|
21
|
Wang Y, Gao A, Xu X, Dang B, You W, Li H, Yu Z, Chen G. The Neuroprotection of Lysosomotropic Agents in Experimental Subarachnoid Hemorrhage Probably Involving the Apoptosis Pathway Triggering by Cathepsins via Chelating Intralysosomal Iron. Mol Neurobiol 2014; 52:64-77. [PMID: 25112680 DOI: 10.1007/s12035-014-8846-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023]
Abstract
α-Lipoic acid-plus (LAP), an amine derivative of α-lipoic acid (LA), could protect cells against oxidant challenges via chelating intralysosomal iron. However, the application of LAP in experimental subarachnoid hemorrhage (SAH) is still not well known. This study was designed to evaluate the potential neuroprotection of LAP on the early brain injury (EBI) and the underlying mechanisms in a rat model of SAH. The SAH models were induced in Sprague-Dawley rats. LA and LAP were oral administration and lasted for 72 h once a day. The brain tissue samples were obtained for assay at 72 h after SAH. In experiment 1, we found that lysosome amounts in neurons decreased significantly in SAH group, and LAP (100 mg/kg) could stabilize lysosomal membrane markedly based on lysosomal-associated membrane protein-1 (LAMP-1) expression in neurons by immunofluorescence. Hence, the LAP dosages of 100 and 150 mg/kg were applied in experiment 2. Firstly, Western blot analysis showed that the protein levels of cathepsin B/D, caspase-3, Bax, ferritin, and heme-oxygenase-1 (HO-1) markedly increased after SAH, which were further confirmed by double immunofluorescence staining and reversed by LA and LAP treatments. In addition, LA and LAP also reduced oxidative stress and iron deposition in brain tissue. Furthermore, LA and LAP significantly ameliorated brain edema, blood-brain barrier injury, cortical apoptosis, and neurological behavior impairment induced by SAH. Finally, it is noteworthy that LAP exerted more significant effects than LA on these parameters as described above. LAP probably exerted neuroprotective effects via targeting lysosomes and chelating intralysosomal iron in EBI post-SAH in rats.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Subarachnoid hemorrhage (SAH), predominantly caused by a ruptured aneurysm, is a devastating neurological disease that has a morbidity and mortality rate higher than 50%. Most of the traditional in vivo research has focused on the pathophysiological or morphological changes of large-arteries after intracisternal blood injection. This was due to a widely held assumption that delayed vasospasm following SAH was the major cause of delayed cerebral ischemia and poor outcome. However, the results of the CONSCIOUS-1 trial implicated some other pathophysiological factors, independent of angiographic vasospasm, in contributing to the poor clinical outcome. The term early brain injury (EBI) has been coined and describes the immediate injury to the brain after SAH, before onset of delayed vasospasm. During the EBI period, a ruptured aneurysm brings on many physiological derangements such as increasing intracranial pressure (ICP), decreased cerebral blood flow (CBF), and global cerebral ischemia. These events initiate secondary injuries such as blood-brain barrier disruption, inflammation, and oxidative cascades that all ultimately lead to cell death. Given the fact that the reversal of vasospasm does not appear to improve patient outcome, it could be argued that the treatment of EBI may successfully attenuate some of the devastating secondary injuries and improve the outcome of patients with SAH. In this review, we provide an overview of the major advances in EBI after SAH research.
Collapse
|
23
|
Tewari A, Mahendru V, Sinha A, Bilotta F. Antioxidants: The new frontier for translational research in cerebroprotection. J Anaesthesiol Clin Pharmacol 2014; 30:160-71. [PMID: 24803750 PMCID: PMC4009632 DOI: 10.4103/0970-9185.130001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is important for the anesthesiologist to understand the etiology of free radical damage and how free-radical scavengers attenuate this, so that this knowledge can be applied to diverse neuro-pathological conditions. This review will concentrate on the role of reactive species of oxygen in the pathophysiology of organ dysfunction, specifically sub arachnoid hemorrhage (SAH), traumatic brain injury (TBI) as well as global central nervous system (CNS) hypoxic, ischemic and reperfusion states. We enumerate potential therapeutic modalities that are been currently investigated and of interest for future trials. Antioxidants are perhaps the next frontier of translational research, especially in neuro-anesthesiology.
Collapse
Affiliation(s)
- Anurag Tewari
- Department of Anesthesiology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Vidhi Mahendru
- Department of Anesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Sinha
- Department of Anesthesiology and Perioperative Medicine, Drexel University College of Medicine, Philadelphia, USA
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
24
|
Anti-inflammatory and Antiapoptotic Effect of Interleukine-18 Binding Protein on the Spinal Cord Ischemia-Reperfusion Injury. Inflammation 2014; 37:917-23. [DOI: 10.1007/s10753-014-9811-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice. J Neuroinflammation 2013; 10:73. [PMID: 23782872 PMCID: PMC3693897 DOI: 10.1186/1742-2094-10-73] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Results Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations.
Collapse
Affiliation(s)
- Ryusuke Takechi
- School of Public Health, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Kent st, Bentley, WA, 6102, Australia
| | | | | | | | | |
Collapse
|
26
|
Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res 2013; 247:17-26. [DOI: 10.1016/j.bbr.2013.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
|
27
|
Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013; 2013:394036. [PMID: 23533958 PMCID: PMC3603523 DOI: 10.1155/2013/394036] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/27/2013] [Indexed: 12/19/2022] Open
Abstract
Early brain injury (EBI) has become an area of extreme interest in the recent years and seems to be a common denominator in the pathophysiology of global transient ischemia and subarachnoid hemorrhage (SAH). In this paper, we highlight the importance of cerebral hypoperfusion and other mechanisms that occur in tandem in both pathologies and underline their possible roles in triggering brain injury after hemorrhagic or ischemic strokes.
Collapse
|
28
|
Caner B, Hou J, Altay O, Fuj M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012; 123 Suppl 2:12-21. [DOI: 10.1111/j.1471-4159.2012.07939.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Basak Caner
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Jack Hou
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Orhan Altay
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Mutsumi Fuj
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | | |
Collapse
|
29
|
Liu B, Ma X, Guo D, Guo Y, Chen N, Bi H. Neuroprotective effect of alpha-lipoic acid on hydrostatic pressure-induced damage of retinal ganglion cells in vitro. Neurosci Lett 2012; 526:24-8. [PMID: 22917607 DOI: 10.1016/j.neulet.2012.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Recently, alpha-lipoic acid (ALA) has been reported to afford protection against neurodegenerative disorders in humans and experimental animals, yet little study elucidates whether it works in glaucomatous optic neuropathy. OBJECTIVE This study aims to investigate whether ALA possesses neuroprotection against hydrostatic pressure-induced damage and explore its possible protective mechanism in cultured retinal ganglion cells (RGCs) in vitro. METHODS RGC-5 cells were differentiated using staurosporine and pre-treated with different concentrations of ALA, then subjected to 50mm Hg hydrostatic pressure for 6h. After elevated hydrostatic pressure, cell viability was measured using MTT assay and apoptosis was evaluated using flow cytometry with Annexin V/PI staining. Intracellular reactive oxygen species (ROS) changes were determined by flow cytometry based on 2',7'-dichlorofluorescein diacetate (DCFH-DA). The expression of manganese superoxide dismutase (MnSOD) was measured via quantitative real-time PCR and Western blotting analysis. RESULTS Increases of apoptotic rate and ROS production were observed in pressure-treated RGC-5 cells compared to normal control cells. In contrast, pretreatment of ALA significantly reduced the production of ROS, increased the expression of MnSOD and prevented apoptosis in pressure-treated RGC-5 cells. CONCLUSIONS These findings suggest that there are protective effects of ALA against elevated hydrostatic pressure-induced damage in RGC-5 cells, indicating ALA might be a potential therapeutic agent for glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Bing Liu
- Shandong University of Traditional Chinese Medicine, 16369 Jinan Jingshi Road, Jinan 250014, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Miller SL, Wallace EM, Walker DW. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 2012; 96:13-23. [PMID: 22377769 DOI: 10.1159/000336378] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022]
Abstract
Pregnancies complicated by impaired placentation, acute severe reductions in oxygen supply to the fetus, or intrauterine infection are associated with oxidative stress to the mother and developing baby. Such oxidative stress is characterized as an upregulation in the production of oxidative or nitrative free radicals and a concomitant decrease in the availability of antioxidant species, thereby creating a state of fetoplacental oxidative imbalance. Recently, there has been a good deal of interest in the potential for the use of antioxidant therapies in the perinatal period to protect the fetus, particularly the developing brain, against oxidative stress in complications of pregnancy and birth. This review will examine why the immature brain is particularly susceptible to oxidative imbalance and will provide discussion on antioxidant treatments currently receiving attention in the adult and perinatal literature - allopurinol, melatonin, α-lipoic acid, and vitamins C and E. In addition, we aim to address the interaction between oxidative stress and the fetal inflammatory response, an interaction that may be vital when proposing antioxidant or other neuroprotective strategies.
Collapse
Affiliation(s)
- S L Miller
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Vic., Australia
| | | | | |
Collapse
|
31
|
Abstract
An increase in oxidative stress and overproduction of oxidizing reactive species plays an important role in the pathophysiology of several conditions encountered in the neurocritical care setting including: ischemic and hemorrhagic strokes, traumatic brain injury, acute respiratory distress syndrome, sepsis, and organ failure. The presence of oxidative stress in these conditions is supported by a large body of pre-clinical and clinical studies, and provides a rationale to support a potential therapeutic role for antioxidants. The purpose of this article is to briefly review the basic mechanisms and molecular biology of oxidative stress, summarize its role in critically ill neurological patients, and review available data regarding the potential role of antioxidant strategies in neurocritical care and future directions.
Collapse
Affiliation(s)
- Khalid A. Hanafy
- Department of Neurology, Divisions of Neurocritical Care, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Magdy H. Selim
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue – Palmer 127, Boston, MA 02215 USA
| |
Collapse
|
32
|
Braconi D, Bianchini C, Bernardini G, Laschi M, Millucci L, Spreafico A, Santucci A. Redox-proteomics of the effects of homogentisic acid in an in vitro human serum model of alkaptonuric ochronosis. J Inherit Metab Dis 2011; 34:1163-76. [PMID: 21874298 DOI: 10.1007/s10545-011-9377-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023]
Abstract
Alkaptonuria (AKU) is a rare inborn error of metabolism associated with a deficient activity of homogentisate 1,2-dioxygenase (HGO), an enzyme involved in tyrosine and phenylalanine metabolism. Such a deficiency leads to the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products in connective tissues, where melanin-like pigments accumulate (ochronosis). Ochronosis involves especially joints, where an ochronotic arthropathy develops. Little is known on the molecular mechanisms leading to ochronosis and ochronotic arthropathy in AKU. Previous works of ours showed that HGA in vitro propagates oxidative stress through its conversion into benzoquinone acetate (BQA). We hence used an in vitro model consisting of human serum treated with HGA and evaluated the activities of glutathione related anti-oxidant enzymes and levels of compounds indexes of oxidative stress. Proteomics and redox-proteomics were used to identify oxidized proteins and proteins more likely able to bind BQA. Overall, we found that the production of ochronotic pigment in HGA-treated serum is accompanied by lipid peroxidation, decreased activity of the enzyme glutathione peroxidase and massive depletion of thiol groups, together with increased protein carbonylation and thiol oxidation. We also found that BQA was likely to bind carrier proteins and naturally abundant serum proteins, eventually altering their chemico-physical properties. Concluding, our work points towards a critical importance of thiol compounds in counteracting HGA- and BQA- mediated stress in AKU, so that future research for disease biomarkers and pharmacological treatments for AKU and ochronosis will be more easily addressed.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Università degli Studi di Siena (SI), via Fiorentina 1, 53100, Siena, SI, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Erşahin M, Toklu HZ, Akakin D, Yuksel M, Yeğen BC, Sener G. The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage. Acta Neurochir (Wien) 2011; 153:333-41. [PMID: 21072672 DOI: 10.1007/s00701-010-0853-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/23/2010] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the putative neuroprotective effect of Nigella sativa oil (NSO) treatment against subarachnoid hemorrhage (SAH) in rats. METHODS To induce SAH, rats were injected with 0.3 ml blood into their cisterna magna. Male Wistar albino rats were divided as control, vehicle-treated SAH, and NSO-treated (0.2 ml/kg, intraperitoneally) SAH groups. Forty-eight hours after SAH induction, neurological examination scores were recorded and the rats were decapitated. Brain tissue samples were taken for blood brain barrier permeability, brain water content, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na(+)-K(+)-ATPase activities. RESULTS AND DISCUSSION On the second day of SAH induction, neurological examination scores were increased in SAH groups, while SAH caused significant decreases in brain GSH content and Na(+)-K(+)-ATPase activity, which were accompanied with significant increases in MDA levels and MPO activity. The histological observation showed vasospasm of the basillary artery. On the other hand, NSO treatment markedly improved the neurological scores while all oxidant responses were prevented, implicating that NSO treatment may be of therapeutic use in preventing oxidative stress due to SAH.
Collapse
Affiliation(s)
- Mehmet Erşahin
- Department of Neurosurgery, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
Toklu HZ, Hakan T, Celik H, Biber N, Erzik C, Ogunc AV, Akakin D, Cikler E, Cetinel S, Ersahin M, Sener G. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J Spinal Cord Med 2010; 33:401-9. [PMID: 21061900 PMCID: PMC2964029 DOI: 10.1080/10790268.2010.11689719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Oxidative stress is a mediator of secondary injury to the spinal cord following trauma. OBJECTIVE To investigate the putative neuroprotective effect of alpha-lipoic acid (LA), a powerful antioxidant, in a rat model of spinal cord injury (SCI). METHODS Wistar albino rats were divided as control, vehicle-treated SCI, and LA-treated SCI groups. To induce SCI, a standard weight-drop method that induced a moderately severe injury (100 g/cm force) at T10 was used. Injured animals were given either 50 mg/kg LA or saline at 30 minutes postinjury by intraperitoneal injection. At 7 days postinjury, neurologic examination was performed, and rats were decapitated. Spinal cord samples were taken for histologic examination or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and DNA fragmentation. Formation of reactive oxygen species in spinal cord tissue samples was monitored by using a chemiluminescence (CL) technique. RESULTS SCI caused a significant decrease in spinal cord GSH content, which was accompanied with significant increases in luminol CL and MDA levels, MPO activity, and DNA damage. Furthermore, LA treatment reversed all these biochemical parameters as well as SCI-induced histopathologic alterations. Conversely, impairment of the neurologic function caused by SCI remained unchanged. CONCLUSION The present study suggests that LA reduces SCI-induced oxidative stress and exerts neuroprotection by inhibiting lipid peroxidation, glutathione depletion, and DNA fragmentation.
Collapse
Affiliation(s)
- Hale Z Toklu
- Marmara University School of Pharmacy, Department of Pharmacology, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Braconi D, Laschi M, Amato L, Bernardini G, Millucci L, Marcolongo R, Cavallo G, Spreafico A, Santucci A. Evaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis. Rheumatology (Oxford) 2010; 49:1975-83. [PMID: 20601653 DOI: 10.1093/rheumatology/keq175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Alkaptonuria (AKU) is a rare genetic disease associated with deficient homogentisate 1,2-dioxygenase activity in the liver. This leads to the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products in connective tissues, which in turn become characterized by the presence of melanin-like pigments (ochronosis). Since at present, further studies are necessary to support the use of drugs for the treatment of AKU, we investigated the effects of various anti-oxidants in counteracting melanin-like pigmentation and oxidative stress related to HGA and its metabolites. METHODS We set up an in vitro model using human serum treated with 0.33 mM HGA and tested the anti-oxidants ascorbic acid, N-acetylcysteine, phytic acid (PHY), taurine (TAU), ferulic acid (FER) and lipoic acid (LIP) for their ability to prevent or delay the production of melanin-like pigments, as well as to reduce oxidative post-translational modifications of proteins. Monitoring of intrinsic fluorescence of HGA-induced melanin-like pigments was used to evaluate the efficacy of compounds. RESULTS Our model allowed us to prove efficacy especially for PHY, TAU, LIP and FER in counteracting the production of HGA-induced melanin-like pigments and protein oxidation induced by HGA and its metabolites. CONCLUSIONS Our model allows the opening of new anti-oxidant therapeutic strategies to treat alkaptonuric ochronosis.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|