1
|
Whitt ZT, Sturgeon T, Rattermann MJ, Salyers M, Zapolski T, Cyders MA. Mapping recovery: A qualitative node map approach to understanding factors proximal to relapse among adolescents in a recovery high school. J Subst Abuse Treat 2022; 138:108750. [DOI: 10.1016/j.jsat.2022.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Palandri J, Smith SL, Heal DJ, Wonnacott S, Bailey CP. Contrasting effects of the α7 nicotinic receptor antagonist methyllycaconitine in different rat models of heroin reinstatement. J Psychopharmacol 2021; 35:1204-1215. [PMID: 33691518 PMCID: PMC8521373 DOI: 10.1177/0269881121991570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND α7 Nicotinic acetylcholine receptors are implicated in the reinstatement of drug-seeking, an important component of relapse. We showed previously that the α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, specifically attenuated morphine-primed reinstatement of conditioned place preference in rodents and this effect was mediated in the ventral hippocampus. AIMS The purpose of this study was to evaluate α7 nicotinic acetylcholine receptor antagonism in reinstatement of the conditioned place preference for the more widely abused opioid, heroin, and to compare the effect of α7 nicotinic acetylcholine receptor blockade on reinstatement of heroin-seeking and heroin self-administration in an intravenous self-administration model of addictive behaviour. METHODS Rats were trained to acquire heroin conditioned place preference or heroin self-administration; both followed by extinction of responding. Methyllycaconitine or saline was given prior to reinstatement of drug-primed conditioned place preference, or drug-prime plus cue-induced reinstatement of intravenous self-administration, using two protocols: without delivery of heroin in response to lever pressing to model heroin-seeking, or with heroin self-administration, using fixed and progressive ratio reward schedules, to model relapse. RESULTS Methyllycaconitine had no effect on acquisition of heroin conditioned place preference or lever-pressing for food rewards. Methyllycaconitine blocked reinstatement of heroin-primed conditioned place preference. Methyllycaconitine did not prevent drug-prime plus cue-induced reinstatement of heroin-seeking, reinstatement of heroin self-administration, or diminish the reinforcing effect of heroin. CONCLUSIONS The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, prevented reinstatement of the opioid conditioned place preference, consistent with a role for α7 nicotinic acetylcholine receptors in the retrieval of associative memories of drug liking. The lack of effect of methyllycaconitine in heroin-dependent rats in two intravenous self-administration models suggests that α7 nicotinic acetylcholine receptors do not play a role in later stages of heroin abuse.
Collapse
Affiliation(s)
| | - Sharon L Smith
- RenaSci Ltd, BioCity, Nottingham, UK,DevelRx Ltd, BioCity, Nottingham, UK
| | - David J Heal
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,DevelRx Ltd, BioCity, Nottingham, UK
| | - Sue Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Chris P Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,Chris P Bailey, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Ewing ST, Dorcely C, Maidi R, Paker G, Schelbaum E, Ranaldi R. Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduces cue-induced relapse to heroin seeking in rats. Addict Biol 2021; 26:e12988. [PMID: 33496050 DOI: 10.1111/adb.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Chemical compounds that target dopamine (DA) D1 or D3 receptors have shown promise as potential interventions in animal models of cue-induced relapse. However, undesirable side effects or pharmacodynamic profiles have limited the advancement of new compounds in preclinical studies when administered as independent treatments. In this series of experiments, we explored the effects of coadministration of a D1-receptor partial agonist (SKF 77434) and a D3-receptor antagonist (NGB 2904) in heroin-seeking rats within a "conflict" model of abstinence and cue-induced relapse. Rats were first trained to press a lever to self-administer heroin, and drug delivery was paired contingently with cues (e.g., light and pump noise). Self-initiated abstinence was facilitated by applying electrical current to the flooring in front of the levers. Lastly, a relapse response was provoked by noncontingent presentation of conditioned cues. Prior to provocation, rats received a systemic injection of SKF 77434, NGB 2904, or a combination of both compounds to assess treatment effects on lever pressing. Results indicated that the coadministration of low (i.e., independently ineffective) doses of both compounds was more effective in reducing cue-induced relapse to heroin seeking than either compound alone, with some evidence of drug synergism. Follow-up studies indicated that this reduction was not due to motoric impairment nor enhanced sensitivity to the electrified flooring and that this treatment did not significantly affect motivation for food. Implications for the treatment of opiate use disorder and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Scott T. Ewing
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Chris Dorcely
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Rivka Maidi
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Gulsah Paker
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Eva Schelbaum
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Robert Ranaldi
- Psychology Department Queens College of the City University of New York Flushing New York USA
| |
Collapse
|
4
|
Abstract
Opioids are among the most effective pain relievers; however, their abuse has been on the rise worldwide evident from an alarming increase in accidental opioid overdoses. This demands for an urgent increase in scientific endeavors for better understanding of main cellular mechanisms and circuits involved in opiate addiction. Preclinical studies strongly suggest that memories associated with positive and negative opioid experiences are critical in promoting compulsive opiate-seeking and opiate-taking behaviors, and relapse. Particular focus on synaptic plasticity as the cellular correlate of learning and memory has rapidly evolved in drug addiction field over the past two decades. Several critical addiction-related brain areas are identified, one of which is the ventral tegmental area (VTA), an area intensively studied as the initial locus for drug reward. Here, we provide an update to our previous review on "Opiates and Plasticity" highlighting the most recent discoveries of synaptic plasticity associated with opiates in the VTA. Electrophysiological studies of plasticity of addiction to date have been invaluable in addressing learning processes and mechanisms that underlie motivated and addictive behaviors, and now with the availability of powerful technologies of transgenic approaches and optogenetics, circuit-based studies hold high promise in fostering synaptic studies of opiate addiction.
Collapse
Affiliation(s)
- Ludovic D. Langlois
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Fereshteh S. Nugent
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|
5
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Barkin RL, Barkin SJ, Irving GA, Gordon A. Management of Chronic Noncancer Pain in Depressed Patients. Postgrad Med 2015; 123:143-54. [DOI: 10.3810/pgm.2011.09.2470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Zhou Y, Leri F, Cummins E, Kreek MJ. Individual differences in gene expression of vasopressin, D2 receptor, POMC and orexin: vulnerability to relapse to heroin-seeking in rats. Physiol Behav 2015; 139:127-35. [PMID: 25446223 PMCID: PMC4275356 DOI: 10.1016/j.physbeh.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Individual vulnerability to stress-induced relapse during abstinence from chronic heroin exposure is a key feature of opiate addiction, with limited studies on this topic. Arginine vasopressin (AVP) and its V1b receptor, components of the brain stress responsive systems, play a role in heroin-seeking behavior triggered by foot shock (FS) stress in rats. In this study, we tested whether individual differences in the FS-induced heroin-seeking were associated with alterations of AVP and V1b, as well as other stress responsive systems, including pro-opiomelanocortin (POMC), orexin, plasma ACTH and corticosterone, as well as dopamine D2 receptor (D2) and plasma prolactin. Sprague-Dawley rats were subjected to 3-hour intravenous heroin self-administration (SA) and then tested in extinction, and FS-induced and heroin priming-induced reinstatements. The rats that self-administered heroin were divided into high and low reinstatement responders induced by FS (H-RI; L-RI). Over SA sessions, both the H-RI and L-RI displayed similar active lever responding, heroin infusion and total heroin intake. Compared to the L-RI, however, the H-RI showed greater active lever responses during stress-induced reinstatement, with higher AVP mRNA levels in medial/basolateral amygdala and lower D2 mRNA levels in caudate putamen. However, heroin priming resulted in similar reinstatement in both groups and produced similarly low POMC and high orexin mRNA levels in hypothalamus. Our results indicate that: 1) enhanced amygdalar AVP and reduced striatal D2 expression may be related to individual vulnerability to stress-induced reinstatement of heroin- seeking; and 2) heroin abstinence-associated alterations of hypothalamic orexin and POMC expression may be involved in drug priming-induced heroin-seeking.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Conditioning, Classical/drug effects
- Corticosterone/blood
- Electroshock/adverse effects
- Extinction, Psychological/drug effects
- Gene Expression/drug effects
- Heroin/administration & dosage
- Individuality
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Orexins
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Prolactin/blood
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Reinforcement, Psychology
- Self Administration
- Vasopressins/genetics
- Vasopressins/metabolism
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, Canada
| | - Erin Cummins
- Department of Psychology, University of Guelph, Guelph, Canada
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Lunden JW, Kirby LG. Opiate exposure and withdrawal dynamically regulate mRNA expression in the serotonergic dorsal raphe nucleus. Neuroscience 2013; 254:160-72. [PMID: 24055683 DOI: 10.1016/j.neuroscience.2013.08.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/22/2013] [Accepted: 08/31/2013] [Indexed: 12/15/2022]
Abstract
Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), corticotrophin releasing-factor (CRF)-R1, CRF-R2, alpha 1 subunit of the GABAA receptor (GABAA-α1), μ-opioid receptor (MOR), 5-HT1A receptor, tryptophan hydroxylase2 (TPH2) and the 5-HT transporter was then measured using quantitative real-time polymerase chain reaction at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following 7days of withdrawal. CRF-R2 mRNA expression was elevated after 7days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3h of morphine exposure, while TPH2 mRNA expression was decreased after 7days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse.
Collapse
Affiliation(s)
- J W Lunden
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
9
|
Yuan WX, Heng LJ, Ma J, Wang XQ, Qu LJ, Duan L, Kang JJ, Chen LW, Gao GD. Increased expression of cannabinoid receptor 1 in the nucleus accumbens core in a rat model with morphine withdrawal. Brain Res 2013; 1531:102-12. [DOI: 10.1016/j.brainres.2013.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 01/28/2023]
|
10
|
Babovic D, Jiang L, Goto S, Gantois I, Schütz G, Lawrence AJ, Waddington JL, Drago J. Behavioural and anatomical characterization of mutant mice with targeted deletion of D1 dopamine receptor-expressing cells: response to acute morphine. J Pharmacol Sci 2013; 121:39-47. [PMID: 23337398 DOI: 10.1254/jphs.12214fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Considerable topographic overlap exists between brain opioidergic and dopaminergic neurons. Pharmacological blockade of the dopamine D(1) receptor (Drd1a) reverses several behavioural phenomena elicited by opioids. The present study examines the effects of morphine in adult mutant (MUT) mice expressing the attenuated diphtheria toxin-176 gene in Drd1a-expressing cells, a mutant line shown previously to undergo post-natal striatal atrophy and loss of Drd1a-expression. MUT and wild-type mice were assessed behaviourally following acute administration of 10 mg/kg morphine. Treatment with morphine reduced locomotion and rearing similarly in both genotypes but reduced total grooming only in MUT mice. Morphine-induced Straub tail and stillness were heightened in MUT mice. Chewing and sifting were decreased in MUT mice and these effects were not modified by morphine. Loss of striatal Drd1-positive cells and up-regulated D(2)-expression, as reflected in down-regulated D(1)-like and up-regulated D(2)-like binding, respectively, is not uniform along the cranio-caudal extent in this model but appears to be greater in the caudal striatum. Preferential caudal loss of µ-opioid-expression, a marker for the striosomal compartment, was seen. These data indicate that Drd1a-positive cell loss modifies the exploratory behavioural response elicited by morphine, unmasking novel morphine-induced MUT-specific behaviours and generating a hypersensitivity to morphine for others.
Collapse
Affiliation(s)
- Daniela Babovic
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Witkiewitz K, Lustyk MKB, Bowen S. Retraining the addicted brain: a review of hypothesized neurobiological mechanisms of mindfulness-based relapse prevention. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2013; 27:351-365. [PMID: 22775773 PMCID: PMC3699602 DOI: 10.1037/a0029258] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Addiction has generally been characterized as a chronic relapsing condition (Leshner, 1999). Several laboratory, preclinical, and clinical studies have provided evidence that craving and negative affect are strong predictors of the relapse process. These states, as well as the desire to avoid them, have been described as primary motives for substance use. A recently developed behavioral treatment, mindfulness-based relapse prevention (MBRP), was designed to target experiences of craving and negative affect and their roles in the relapse process. MBRP offers skills in cognitive-behavioral relapse prevention integrated with mindfulness meditation. The mindfulness practices in MBRP are intended to increase discriminative awareness, with a specific focus on acceptance of uncomfortable states or challenging situations without reacting "automatically." A recent efficacy trial found that those randomized to MBRP, as compared with those in a control group, demonstrated significantly lower rates of substance use and greater decreases in craving following treatment. Furthermore, individuals in MBRP did not report increased craving or substance use in response to negative affect. It is important to note, areas of the brain that have been associated with craving, negative affect, and relapse have also been shown to be affected by mindfulness training. Drawing from the neuroimaging literature, we review several plausible mechanisms by which MBRP might be changing neural responses to the experiences of craving and negative affect, which subsequently may reduce risk for relapse. We hypothesize that MBRP may affect numerous brain systems and may reverse, repair, or compensate for the neuroadaptive changes associated with addiction and addictive-behavior relapse.
Collapse
Affiliation(s)
| | | | - Sarah Bowen
- Department of Psychiatry and Behavioral Sciences
| |
Collapse
|
12
|
Dacher M, Nugent FS. Opiates and plasticity. Neuropharmacology 2011; 61:1088-96. [DOI: 10.1016/j.neuropharm.2011.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
|
13
|
Brown RM, Short JL, Lawrence AJ. Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One 2010; 5:e15889. [PMID: 21209913 PMCID: PMC3012115 DOI: 10.1371/journal.pone.0015889] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|