1
|
Luque-Uría Á, Calvo MV, Visioli F, Fontecha J. Milk fat globule membrane and its polar lipids: reviewing preclinical and clinical trials on cognition. Food Funct 2024; 15:6783-6797. [PMID: 38828877 DOI: 10.1039/d4fo00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In most parts of the world, life expectancy is increasing thanks to improved healthcare, public health policies, nutrition, and treatment. This increase in lifespan is often not accompanied by an increase in health span, which severely affects people as they age. One notable consequence of this is the increasing prevalence of neurodegenerative diseases such as mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, dietary and pharmaceutical measures must be taken to reduce the burden of such pathologies. Among the different types of nutrients found in the diet, lipids and especially polar lipids are very important for cognition due to their abundance in the brain. Amid the most studied sources of polar lipids, milk fat globule membrane (MFGM) stands out as it is abundant in industrial by-products such as buttermilk. In this narrative review, we discuss the latest, i.e. less than five years old, scientific evidence on the use of MFGM and its polar lipids in cognitive neurodevelopment in early life and their potential effect in preventing neurodegeneration in old age. We conclude that MFGM is an interesting, abundant and exploitable source of relatively inexpensive bioactive molecules that could be properly formulated and utilized in the areas of neurodevelopment and cognitive decline. Sufficiently large randomized controlled trials are required before health-related statements can be made. However, research in this area is progressing rapidly and the evidence gathered points to biological, health-promoting effects.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.
- IMDEA-Food, Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
2
|
Jáñez Pedrayes A, Rymen D, Ghesquière B, Witters P. Glycosphingolipids in congenital disorders of glycosylation (CDG). Mol Genet Metab 2024; 142:108434. [PMID: 38489976 DOI: 10.1016/j.ymgme.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Andrea Jáñez Pedrayes
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium; Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Daisy Rymen
- Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium.
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Bockus LB, Jensen PN, Fretts AM, Hoofnagle AN, McKnight B, Sitlani CM, Siscovick DS, King IB, Psaty BM, Sotoodehnia N, Lemaitre RN. Plasma Ceramides and Sphingomyelins and Sudden Cardiac Death in the Cardiovascular Health Study. JAMA Netw Open 2023; 6:e2343854. [PMID: 37976059 PMCID: PMC10656644 DOI: 10.1001/jamanetworkopen.2023.43854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Importance Sphingolipids, including ceramides and sphingomyelins, may influence the pathophysiology and risk of sudden cardiac death (SCD) through multiple biological activities. Whether the length of the fatty acid acylated to plasma sphingolipid species is associated with SCD risk is not known. Objective To determine whether the saturated fatty acid length of plasma ceramides and sphingomyelins influences the association with SCD risk. Design, Setting, and Participants In this cohort study, multivariable Cox proportional hazards regression models were used to examine the association of sphingolipid species with SCD risk. The study population included 4612 participants in the Cardiovascular Health Study followed up prospectively for a median of 10.2 (IQR, 5.5-11.6) years. Baseline data were collected from January 1992 to December 1995 during annual examinations. Data were analyzed from February 11, 2020, to September 9, 2023. Exposures Eight plasma sphingolipid species (4 ceramides and 4 sphingomyelins) with saturated fatty acids of 16, 20, 22, and 24 carbons. Main Outcome and Measure Association of plasma ceramides and sphingomyelins with saturated fatty acids of different lengths with SCD risk. Results Among the 4612 CHS participants included in the analysis (mean [SD] age, 77 [5] years; 2724 [59.1%] women; 6 [0.1%] American Indian; 4 [0.1%] Asian; 718 [15.6%] Black; 3869 [83.9%] White, and 15 [0.3%] Other), 215 SCD cases were identified. In adjusted Cox proportional hazards regression analyses, plasma ceramides and sphingomyelins with palmitic acid (Cer-16 and SM-16) were associated with higher SCD risk per higher SD of log sphingolipid levels (hazard ratio [HR] for Cer-16, 1.34 [95% CI, 1.12-1.59]; HR for SM-16, 1.37 [95% CI, 1.12-1.67]). Associations did not differ by baseline age, sex, race, or body mass index. No significant association of SCD with sphingolipids with very-long-chain saturated fatty acids was observed after correction for multiple testing (HR for ceramide with arachidic acid, 1.06 [95% CI, 0.90-1.24]; HR for ceramide with behenic acid, 0.92 [95% CI, 0.77-1.10]; HR for ceramide with lignoceric acid, 0.92 [95% CI, 0.77-1.09]; HR for sphingomyelin with arachidic acid, 0.83 [95% CI, 0.71-0.98]; HR for sphingomyelin with behenic acid, 0.84 [95% CI, 0.70-1.00]; HR for sphingomyelin with lignoceric acid, 0.86 [95% CI, 0.72-1.03]). Conclusions and Relevance The findings of this large, population-based cohort study of SCD identified that higher plasma levels of Cer-16 and SM-16 were associated with higher risk of SCD. Future studies are needed to examine the underlying mechanism of these associations.
Collapse
Affiliation(s)
- Lee B Bockus
- Department of Medicine, University of Washington, Seattle
| | - Paul N Jensen
- Department of Medicine, University of Washington, Seattle
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle
| | - Andrew N Hoofnagle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
| | | | | | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Health Systems and Population Health, University of Washington, Seattle
| | | | | |
Collapse
|
4
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
6
|
Monfrini E, Cogiamanian F, Salani S, Straniero L, Fagiolari G, Garbellini M, Carsana E, Borellini L, Biella F, Moggio M, Bresolin N, Corti S, Duga S, Comi GP, Aureli M, Di Fonzo A. A Novel Homozygous VPS11 Variant May Cause Generalized Dystonia. Ann Neurol 2021; 89:834-839. [PMID: 33452836 PMCID: PMC8048445 DOI: 10.1002/ana.26021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
In this work, we describe the association of a novel homozygous VPS11 variant with adult-onset generalized dystonia, providing a detailed clinical report and biological evidence of disease mechanism. Vps11 is a subunit of the homotypic fusion and protein sorting (HOPS) complex, which promotes the fusion of late endosomes and autophagosomes with the lysosome. Functional studies on mutated fibroblasts showed marked lysosomal and autophagic abnormalities, which improved after overexpression of the wild type Vps11 protein. In conclusion, a deleterious VPS11 variant, damaging the autophagic and lysosomal pathways, is the probable genetic cause of a novel form of generalized dystonia. ANN NEUROL 2021;89:834-839.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cogiamanian
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neuropathophysiology, University of Milan, Milan, Italy
| | - Sabrina Salani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gigliola Fagiolari
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Healthcare Professionals Department, Milan, Italy
| | - Manuela Garbellini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Healthcare Professionals Department, Milan, Italy
| | - Emma Carsana
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milan, Italy
| | - Linda Borellini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neuropathophysiology, University of Milan, Milan, Italy
| | - Fabio Biella
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Giacomo P Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Massimo Aureli
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
8
|
Curcumin Analogue C1 Promotes Hex and Gal Recruitment to the Plasma Membrane via mTORC1-Independent TFEB Activation. Int J Mol Sci 2019; 20:ijms20061363. [PMID: 30889901 PMCID: PMC6471159 DOI: 10.3390/ijms20061363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The monocarbonyl analogue of curcumin (1E,4E)-1,5-Bis(2-methoxyphenyl)penta-1,4-dien-3-one (C1) has been used as a specific activator of the master gene transcription factor EB (TFEB) to correlate the activation of this nuclear factor with the increased activity of lysosomal glycohydrolases and their recruitment to the cell surface. The presence of active lysosomal glycohydrolases associated with the lipid microdomains has been extensively demonstrated, and their role in glycosphingolipid (GSL) remodeling in both physiological and pathological conditions, such as neurodegenerative disorders, has been suggested. Here, we demonstrate that Jurkat cell stimulation elicits TFEB nuclear translocation and an increase of both the expression of hexosaminidase subunit beta (HEXB), hexosaminidase subunit alpha (HEXA), and galactosidase beta 1 (GLB1) genes, and the recruitment of β-hexosaminidase (Hex, EC 3.2.1.52) and β-galactosidase (Gal, EC 3.2.1.23) on lipid microdomains. Treatment of Jurkat cells with the curcumin analogue C1 also resulted in an increase of both lysosomal glycohydrolase activity and their targeting to the cell surface. Similar effects of C1 on lysosomal glycohydrolase expression and their recruitment to lipid microdomains was observed by treating the SH-SY5Y neuroblastoma cell line; the effects of C1 treatment were abolished by TFEB silencing. Together, these results clearly demonstrate the existence of a direct link between TFEB nuclear translocation and the transport of Hex and Gal from lysosomes to the plasma membrane.
Collapse
|
9
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Bottai D, Adami R, Ghidoni R. The crosstalk between glycosphingolipids and neural stem cells. J Neurochem 2018; 148:698-711. [PMID: 30269334 DOI: 10.1111/jnc.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023]
Abstract
Until a few years ago, the majority of cell functions were envisioned as the result of protein and DNA activity. The cell membranes were considered as a mere structure of support and/or separation. In the last years, the function of cell membranes has, however, received more attention and their components of lipid nature have also been depicted as important cell mediators and the membrane organization was described as an important determinant for membrane-anchored proteins activity. In particular, because of their high diversity, glycosphingolipids offer a wide possibility of regulation. Specifically, the role of glycosphingolipids, in the fine-tuning of neuron activity, has recently received deep attention. For their pivotal role in vertebrate and mammals neural development, neural stem cells regulation is of main interest especially concerning their further functions in neurological pathology progression and treatment. Glycosphingolipids expression present a developmental regulation. In this view, glycosphingolipids can hold an important role in neural stem cells features because of their heterogeneity and their consequent capacity for eclectic interaction with other cell components.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Malekkou A, Samarani M, Drousiotou A, Votsi C, Sonnino S, Pantzaris M, Chiricozzi E, Zamba-Papanicolaou E, Aureli M, Loberto N, Christodoulou K. Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. Int J Mol Sci 2018; 19:ijms19103099. [PMID: 30308956 PMCID: PMC6213336 DOI: 10.3390/ijms19103099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.
Collapse
Affiliation(s)
- Anna Malekkou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Anthi Drousiotou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Christina Votsi
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Eleni Zamba-Papanicolaou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| |
Collapse
|
12
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators Inflamm 2017; 2017:1730245. [PMID: 29333001 PMCID: PMC5733190 DOI: 10.1155/2017/1730245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/02/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.
Collapse
|
14
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
15
|
Richichi B, Pastori C, Gherardi S, Venuti A, Cerreto A, Sanvito F, Toma L, Lopalco L, Nativi C. GM-3 Lactone Mimetic Interacts with CD4 and HIV-1 Env Proteins, Hampering HIV-1 Infection without Inducing a Histopathological Alteration. ACS Infect Dis 2016; 2:564-71. [PMID: 27626296 DOI: 10.1021/acsinfecdis.6b00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosphingolipids (GSLs) are involved in HIV-1 entry. GM-3 ganglioside, a widespread GSL, affects HIV entry and infection in different ways, depending on the concentration, through its anchoring activity in lipid rafts. This explains why the induction of an altered GSLs metabolism was a tempting approach to reducing HIV-1 cell infection. This study assayed the biological properties of a synthetic GM-3 lactone mimetic, 1, aimed at blocking HIV-1 infection without inducing the adverse events expected by an altered metabolism of GLSs in vivo. The mimetic, conjugated to immunogenic protein ovalbumin and multivalently presented, was able to bind the CD4 molecule with high affinity and block its engagement with gp120, thus inhibiting virus entry. Elicited antimimetic antibodies were also able to block HIV-1 infection in vitro, with activity complementary to that observed for 1. These preliminary results show that the use of GSLs mimetics can be a novel promising mode to block HIV-1 infection and that 1 and other GSL mimetics deserve further attention.
Collapse
Affiliation(s)
- Barbara Richichi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Stefano Gherardi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Antonella Cerreto
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Francesca Sanvito
- Pathology Department, Mouse Histopathology Unit, San Raffaele Scientific Institute, 20100 Milan, Italy
| | - Lucio Toma
- Department
of Chemistry, University of Pavia, Pavia, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Cristina Nativi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| |
Collapse
|
16
|
Chiu CP, Liu SC, Tang CH, Chan Y, El-Shazly M, Lee CL, Du YC, Wu TY, Chang FR, Wu YC. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1540-1548. [PMID: 26853111 DOI: 10.1021/acs.jafc.5b05931] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM.
Collapse
Affiliation(s)
- Ching-Peng Chiu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Shan-Chi Liu
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan
| | - You Chan
- Institute of Microbiology, Chung Shan Medical University , Taichung 402, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University , Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Chia-Lin Lee
- Department of Cosmeceutics, China Medical University , Taichung 404, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Tung-Ying Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital , Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University , Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 40402, Taiwan
- Center of Molecular Medicine, China Medical University Hospital , Taichung 40402, Taiwan
| |
Collapse
|
17
|
Current and Novel Aspects on the Non-lysosomal β-Glucosylceramidase GBA2. Neurochem Res 2015; 41:210-20. [DOI: 10.1007/s11064-015-1763-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
18
|
Castro-Gómez P, Garcia-Serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot Essent Fatty Acids 2015; 101:41-51. [PMID: 26242691 DOI: 10.1016/j.plefa.2015.07.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023]
Abstract
Glycerophospholipids and sphingolipids participate in a variety of indispensable metabolic, neurological, and intracellular signaling processes. In this didactic paper we review the biological roles of phospholipids and try to unravel the precise nature of their putative healthful activities. We conclude that the biological actions of phospholipids activities potentially be nutraceutically exploited in the adjunct therapy of widely diffused pathologies such as neurodegeneration or the metabolic syndrome. As phospholipids can be recovered from inexpensive sources such as food processing by-products, ad-hoc investigation is warranted.
Collapse
Affiliation(s)
- P Castro-Gómez
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - A Garcia-Serrano
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - F Visioli
- Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - J Fontecha
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain.
| |
Collapse
|
19
|
Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R, Sonnino S. Exploring the link between ceramide and ionizing radiation. Glycoconj J 2015; 31:449-59. [PMID: 25129488 DOI: 10.1007/s10719-014-9541-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Magini A, Polchi A, Tozzi A, Tancini B, Tantucci M, Urbanelli L, Borsello T, Calabresi P, Emiliani C. Abnormal cortical lysosomal β-hexosaminidase and β-galactosidase activity at post-synaptic sites during Alzheimer's disease progression. Int J Biochem Cell Biol 2015; 58:62-70. [DOI: 10.1016/j.biocel.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
|
21
|
Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:223-44. [DOI: 10.1007/978-1-4939-1154-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
D'Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J 2013; 280:6338-53. [PMID: 24165035 DOI: 10.1111/febs.12559] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | |
Collapse
|
23
|
Magini A, Polchi A, Urbanelli L, Cesselli D, Beltrami A, Tancini B, Emiliani C. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane. Biochem Biophys Res Commun 2013; 440:251-7. [DOI: 10.1016/j.bbrc.2013.09.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
|
24
|
Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, Aerts JM, Boot RG, Filocamo M, Sonnino S. Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 2012; 35:1081-91. [PMID: 22526844 DOI: 10.1007/s10545-012-9478-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090, Segrate, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Valsecchi M, Mauri L, Casellato R, Ciampa MG, Rizza L, Bonina A, Bonina F, Sonnino S. Ceramides as possible nutraceutical compounds: characterization of the ceramides of the Moro blood orange ( Citrus sinensis ). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10103-10110. [PMID: 22985176 DOI: 10.1021/jf3027414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ceramides are presented as nutraceutical compounds for protection of colon carcinoma and as important cosmetic preparation components, increasing absorption through the skin. Therefore, the ceramide (Cer) content of Moro blood oranges was determined by mass spectrometry. A total of 114 Cer species were identified: ∼160 mg in the peels and ∼140 mg in the pulp per kilogram of oranges, expressed as "milligram equivalents of d18:1,17:0 Cer". The predominant ceramides contained 4-hydroxy-8-sphingenine (t18:1(Δ8)) and 4-hydroxysphinganine (t18:0) as long-chain bases (LCBs) and fatty acids (FAs) with different structures. In the pulp, t18:1(Δ8)- and t18:0-containing Cer species comprised 50.5 and 33.5% of the total, respectively, 11.5 and 3.5% non-hydroxylated FAs, respectively, 32.0 and 21.0% α-hydroxylated FAs, respectively, and 7.0 and 9.0% α,β-hydroxylated FAs, respectively. In the peels, t18:1(Δ8)- and t18:0-containing species comprised 49.5 and 34.5% of the total, respectively, 16.0 and 1.5% non-hydroxylated FAs, respectively, 31.5 and 29.0% α-hydroxylated FAs, respectively, and 2.0 and 4.0% α,β-hydroxylated FAs, respectively.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan , Via Fratelli Cervi 93, 20090 Segrate (Milan), Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 2012; 29:585-97. [PMID: 22592846 DOI: 10.1007/s10719-012-9385-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.
Collapse
|
28
|
Plasma Membrane-Associated Glycohydrolases Activation by Extracellular Acidification due to Proton Exchangers. Neurochem Res 2012; 37:1296-307. [DOI: 10.1007/s11064-012-0725-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/15/2011] [Accepted: 02/10/2012] [Indexed: 11/25/2022]
|